Problem 1 (17 points) In Parts (a) and (b), you are to compute one integral solution (x_0, y_0, z_0, w_0) of the linear equation

$$30x + 42y + 70z + 105w = 1$$
 where $30 = 2 \cdot 3 \cdot 5, 42 = 2 \cdot 3 \cdot 7, 70 = 2 \cdot 5 \cdot 7, 105 = 3 \cdot 5 \cdot 7.$ (1)

(a, 3pts) First, compute one integral solution (u_0, v_0) to the equation 6u + 35v = 1. Please show your work.

(b, 6pts) Then compute one integral solution (x_0, y_0) to $30x + 42y = 6u_0$ and one integral solution (z_0, w_0) to $70z + 105w = 35v_0$, with the u_0, v_0 from Part (a); note that by (a) the solution satisfies (1). Please show your work.

(c, 4pts) Please consider the expansion of $(2x+1)^{10}$. What is the coefficient of x^4 ?

$$(2x+1)^{10} = \dots + (\frac{10}{4})(2x)^{4} \cdot 1^{6} + \dots$$

$$2^{4} \cdot (\frac{10}{4}) = 2^{4} \cdot (\frac{10}{6}) = 3360$$

(d, 4pts) Please determine p_{306} , where p_n is the *n*-th prime number, e.g., $p_1=2$, $p_2=3$, $p_{25}=97$. You may assume that $\pi(2003)=304$ and $\pi(2020)=306$.

Solution 2019

Problem 2 (8 points): Please prove for all integers $a, b \in \mathbb{Z}$, $(a, b) \neq (0, 0)$: GCD(8a + 5b, 5a + 3b) = GCD(a, b). [Hint: express both a, b as integer linear combinations of 8a + 5b, 5a + 3b.]

Problem 3 (8 points): Please prove for all integers $n \in \mathbb{Z}_{\geq 0}$: $\sum_{i=0}^{n} (i^2 - i) = \frac{1}{3} (n^3 - n)$.

Basis:
$$h=0: 0^2-0=0=\frac{1}{3}(0^3-0)$$
.
Hypo: $\sum_{i=0}^{N}(i^2-i)=\frac{1}{3}(n^3-n)$

$$|nd.proof| \sum_{i=0}^{n+1} (i^2-i) = (\sum_{i=0}^{n} (i^2-i)) + (n+1)^2 - (n+1)$$

$$= \frac{1}{3}(n^3 - n) + \frac{1}{3}(3n^2 + 3n)$$

$$(n+1)^2 - (n+1)$$

$$=\frac{1}{3}\left(\frac{n^3+3n^2+3n+1}{3}-(n+1)\right)=\frac{1}{3}\left(\frac{n+1}{3}-(n+1)\right)$$

Problem 4 (6 points): Please place check marks in the following table.

Problem 4 (6 points): Please place check marks in the following table.				
Statement	Proved to	Proved to	conjectured	conjectured
	be true	be false	to be true	to be false
$\forall n \in \mathbb{Z}_{\geq 2}$: $\binom{2n}{n}$ has a prime factor $> n$.				
There exists a prime twin whose smaller	2 ² -1=3 2 ² +1=5			
prime is a Mersenne prime and whose larger	Z+1=5			
prime is a Fermat prime.	V			
The sequence $2^{2^{3n}} + 1, n \ge 1$ contains in-				
finitely many primes.				V
The sequence $2^{3n} - 1, n \in \mathbb{Z}_{\geq 1}$ contains in-		1/		
finitely many primes.				
Let $\pi_{4,3}(n)$ be the number of primes $\leq n$ of the				
form $4k + 3, k \in \mathbb{Z}_{\geq 0}$, and $\pi(n)$ be the number	V			
of primes $\leq n$. Then $\lim_{n\to\infty} \frac{\pi_{4,3}(n)}{\pi(n)} = \frac{1}{2}$.				
$\forall a, b \in \mathbb{Z}_{\geq 1}$: the sequence $a, a + b, a + 2b$,				
$a+3b, \dots, a+10b$ contains at least one com-				
posite integer.				

Problem 5 (5 points): Consider complex numbers of the from $a+b\sqrt{-5} \in \mathbb{C}$, where $a,b \in \mathbb{Z}$. Note that such complex numbers have real part a and imaginary part $b\sqrt{5}$. Please prove that there do **not** exist integers $x,y,z,w \in \mathbb{Z}$ such that

$$(x+y\sqrt{-5}) (2+0\sqrt{-5}) + (z+w\sqrt{-5}) (1+\sqrt{-5}) = 1+0\sqrt{-5}.$$

Real part: 2x+2-5W=1Imag part: $2y\sqrt{5}+2\sqrt{5}+w\sqrt{5}=0$ =>2=-2y-WPlug into real part: 2x-2y-6W=1impossible

Second proof: Multiply equ by $1-\sqrt{-5}$ $2\cdot(x+y\sqrt{-5})(1-\sqrt{-5})+(2+W\sqrt{-5})\cdot 6=1-\sqrt{-5}$ real part is multiple of 2+1