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Problem 1 (18 points) In Parts (a) and (b), you are to compute the integral solution (x,y,z) of a
system of 2 simultaneous linear equations:

Sx+2y—4z=17 (Eq.1)
3x—y—5z=4 (Eq.2)

Please consider a third equation 11y+13z=1 (Eq.3)=3- (Eq.1)—5-(Eq.2).
Please proceed as follows:

(a, 5pts) Please compute the solution (with integer parameter A) for the diophantine equation (Eq.3)
with variables y, z above.
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(b, 5pts) Please substitute the solution (y, z) for (Eq.3) from Part (a) in terms of A into (Eq.1) and then
solve the equation for the variables x and A in terms of a new parameter L.
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(c, 4pts) Please consider the coefficients of two trinomial terms (of exponent 11) written as products
of binomial coefficients: (3 ) (8) and (151) ( ). Please show that the coefficients are equal.
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(d, 4pts) Please determine 7(960). You may assume that the p1s, = 953, where Dn 1s the n-th prime
number, e.g., p1 =2, pr) =3, pas = 97.

T(d53) =162, TAse)= 162, T (F5) = 2, T(354)= 12
3T (153)= 2, T(9sT)=1tz) T(189): b2, HASH
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Problem 2 (8 points): Please prove for all integers n € Z: GCD(n®+ 1, n? +n+1) = 1. [Hint:
write 2 as an integer linear combination of the two arguments and show that n? +n+ 1 is always
odd.]
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Problem 3 (8 pomts) Please prove for all integers n € Z>o: Z 22l = (n —2n+3)2" 5l 6.
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Problem 4 (6 points): Please place check marks in the following table. Herep;denotes-the n=thr

prime-number.
Statement Proved to | Proved to | conjectured | conjectured
be true be false tobe true | to be false
If a prime number p is a factor of 22" 41 then L
Jk: p=k2"t2 4 1.
There exists a prime number p such that L

Vn,p <n<2p: nis composite.

The sequence k209 1k € Z~ contains in-
finitely many primes.

The number of prime numbers of the form
2P —1,p € Z>p is < 25.

The number of prime numbers of the form
22" 4 1,n € Zsgis > 6.
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There exist infinitely many prime numbers p
such that p+ 2 is a prime number.
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Problem 5 (5 points): True or false: The fundamental theorem of arithmetic remains valid for
complex numbers of the form a4 +/—5 B where o, 8 € Z. Please explain.

a X = 22




