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Problem 1 (18 points) You are to compute the integral solution (x,y,z) of a system of 2 simultane-
ous linear equations:

Sx—4y+2z=2 (Eq.1)
3x+2y—3z=-15 (Eq.2)
Please proceed as follows:

(a, Spts) Please compute the solution (with integer parameters A and p) for the diophantine equation
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(b, 5pts) Please substitute the solution for (Eq.1) from Part (a) in terms of A and y into (Eq.2) and
then solve the equation for A and y in terms of a new parameter v.
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(c, 4pts) Please write the trinomial coefficient 314151 as a product of two binomial coefficients.
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(d, 4pts) Please list all prime numbers p with 1038 < p < 1050. You can make use of the fact that

7(1038) = 174 and 7(1050) = 176. Please show your work.
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Problem 2 (8 points): Please prove for all integers n € Zs»: GCD(n® —1, n* —1) =n? 1.
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Problem 3 (8 points): Consider the sequence F,(x) of polynomials in x that is inductively defined
for all integers n > 0 by Fy(x) =0, Fj(x) =x— 1 and F,42(x) = (x+ 1) Fpy1(x) —x F(x). Thus the
next elements are F5(x) = x> — 1, F3(x) = x> — 1,. .. Please prove by induction that F,(x) =x" — 1
for all integers n > 0 (with 1V defined = 1).
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Problem 4 (6 points): Please place check marks in the following table. Here p, denotes the n-th
prime number.

Statement Proved to | Proved to | conjectured | conjectured
be true be false to be true | to be false

im —® S 1 001 e

2% Tog, () —

There are infinitely many prime numbers v
whose last 3 decimal digits are 777.

The sequence 2P" — 1,n € Z>1 contains in- \/ \/
finitely many primes. )
Vn > 2 3p,q prime integers: 2n = p+q L \/
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There exists an integer g such that the gap be-
tween two consecutive primes, pn41 — Pn 18 \//
equal g infinitely often.

Problem 5 (5 points): Please state Lagrange’s Theorem concerning representing integers as sums-
of-squares. Please demonstrate Lagrange’s Theorem on the integer 23.
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