NC STATE UNIVERSITY

MA 410 Theory of Numbers, second mid-semester examination, March 22, 20169Prof. Erich Kaltofen <kaltofen@math.ncsu.edu>9www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring16/ (URL)9© Erich Kaltofen 20169

919.515.8785 (phone) 919.515.3798 (fax)

Your Name: _

For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 6 problems, which are subdivided into 9 questions, where each question counts for the explicitly given number of points, adding to a total of **46 points**. Please write your answers in the spaces indicated, or below the questions, using the **back of the sheets** for completing the answers and **for all scratch work**, if necessary. You are allowed to consult **two** 8.5in \times 11in sheets with notes, but **not** your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have **75 minutes** to do this test.

Good luck!

Problem 1	
2	
3	
4	
5	
6	
Total	

Problem 1 (16 points)

(a, 4pts) Let p be a prime number > 19 with $p \equiv 4 \pmod{5}$.

- (i) please prove that 3(p-1)+1 = 3p-2 is divisible by 5. (ii) please prove that for all $a \in \mathbb{Z}_p$ we have for $b = a^{(3p-2)/5} \mod p$ that $b^5 \equiv a \pmod{p}$.

(b, 4pts) The integer 341 is a pseudo-prime (to base 2) but not a Carmichael number. Please explain what both mean.

(c, 4pts) Please show that $3^{100} \equiv 1 \pmod{1000}$. [Hint: factor the modulus $1000 = 8 \cdot 125$.]

(d, 4pts) Please compute residues $x, y \in \mathbb{Z}_8$, or prove that none exist, such that

and

Problem 2 (6 points): Please prove that there are infinitely many composite integers that are $\equiv 5 \pmod{6}$.

Problem 3 (6 points): By completing the 3 · 10 entries in the following table in terms of prime numbers p and q with $p \neq q$, please verify Gauss's Theorem for Euler's ϕ function and its associate Möbius inversion formula for $n = p^2 q^2$:

	d	$\phi(d)$	$\mu(d)$	$\mu(d) \cdot rac{n}{d}$
1.	1			
2.	р			
3.	p^2			
4.	q			
5.	pq			
6.	p^2q			
7.	q^2			
8.	pq^2			
9.	p^2q^2			
10.	Σ			
	d divides p^2q^2 and $d \ge 1$			

Problem 4 (8 points): Consider $2310 = 5 \cdot 6 \cdot 7 \cdot 11$ and let $a \in \mathbb{Z}_{2310}$ with

$$a \equiv 4 \pmod{5},$$

$$a \equiv 5 \pmod{6},$$

$$a \equiv 4 \pmod{7},$$

$$a \equiv 7 \pmod{11}.$$

Please compute $y_0 \in \mathbb{Z}_5$, $y_1 \in \mathbb{Z}_6$, $y_2 \in \mathbb{Z}_7$ and $y_3 \in \mathbb{Z}_{11}$ such that

$$a = y_0 + y_1 \cdot 5 + y_2 \cdot 5 \cdot 6 + y_3 \cdot 5 \cdot 6 \cdot 7.$$

Then compute *a*. Please show all your work.

Problem 5 (5 points): Let $k = 2^4 + 2^2 + 2 + 1 = 23$. Please show how one can compute $a^k \mod n$ with 7 multiplications of residues modulo *n*.

Problem 6 (5 points): Please consider the following (toy) instance of the RSA: the public modulus is n = 77 and the public (enciphering) exponent is k = 43. Please compute the private deciphering exponent *j* such that $(M^{43})^j \equiv M \pmod{77}$ (at least for all $M \in U_{77}$). Please show your work.