North Carolina State University is a landgrant university and a constituent institution of The University of North Carolina

NC STATE UNIVERSITY

MA 410 Theory of Numbers, first mid-semester examination, February 13, 2012 Prof. Erich Kaltofen <kaltofen@math.ncsu.edu> www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring12/ (URL) 919.515.8785 (phone) 919.515.3798 (fax)

Your Name: _

For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 5 problems, which are subdivided into 8 questions, where each question counts for the explicitly given number of points, adding to a total of **44 points**. Please write your answers in the spaces indicated, or below the questions, using the **back of the sheets** for completing the answers and **for all scratch work**, if necessary. You are allowed to consult **one** 8.5in \times 11in sheet with notes, but **not** your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have **75 minutes** to do this test.

Good luck!

Problem 1	
2	
3	
4	
5	

Total _____

Problem 1 (18 points)

(a, 5pts) Please give the solution (with an integer parameter λ) for the diophantine equation 315x + 217y = 14 in the integer variables *x* and *y*. Please show your work.

(b, 5pts) Please consider the expansion of the trinomial $(x + y + z)^6$. What is the multinomial coefficient of the term $x^2y^2z^2$ in that expansion?

(c, 4pts) Please list 5 prime numbers of the form $n^2 + 1$, where $n \in \mathbb{Z}_{\geq 1}$.

(d, 4pts) From the fact that $p_{55} = 257$, where p_{55} is the 55-th prime number and $p_1 = 2, p_2 = 3, p_3 = 5, \dots$, deduce the value of $\pi(262)$. Please show your work.

Problem 2 (8 points): Please prove for all integers $a, b \in \mathbb{Z}$: GCD(a+2b-1, 2a+b+2, b-1) = 1. [Hint: find Bezout coefficients; you can eliminate *b* from the first and second argument using the third.]

Problem 3 (8 points): Please prove for all integers $n \in \mathbb{Z}_{\geq 2}$: $\sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} = 1 - \frac{1}{n}.$ **Problem 4** (5 points): True or false: for all p that are prime numbers and for all $i \in \mathbb{Z}$ with $1 \le i \le p-1$ the binomial coefficient $\binom{p}{i}$ is divisible by p. Please explain. [Hint: consider the factorial representation of the binomial coefficient.]

Problem 5 (5 points): True or false: there are infinitely many prime numbers whose decimal representation ends with 001, i.e., are of the form 1000k + 1 for integers k. Please explain.