Key Exchanges, Digital Signatures and Public Key Cryptography

MA 410

April 11, 2011

(MA 410) Public Key Cryptography April 11, 2011 1 / 20

Where It All Began

- "New Directions in Cryptography", by Whitfield Diffie and Martin Hellman (November 1976)
- Defined public key cryptosystem: a pair of families of algorithms, $\{E_K\}$ and $\{D_K\}$ (representing invertible transformations on a "message space"), such that
 - **1** For each K, E_K is the inverse of D_K
 - 2 For each K and each M (message), E_K and D_K are easy to compute
 - § For almost all K, any equivalent to D_K is computationally infeasible to derive from E_K
 - For each K, it is feasible to compute inverse pairs E_K and D_K from K.
- Note: Item (3) implies that E_K may be made public without compromising the security of D_K
- Had the setup, but no instantiation

(MA 410) Public Key Cryptography April 11, 2011 2 / 20

Where It All Began

A "suggestive, although unfortunately useless, example" (using linear algebra)

- Represent the "plaintext" message as a binary *n*-vector *m*
- Multiply by an invertible binary $n \times n$ matrix E, so $E_K(m) = Em = c$ ("ciphertext")
- Letting $D = E^{-1}$, decrypt via $D_K(c) = Dc = E^{-1}Em = m$
- Easy to generate E and D (from identity matrix)
- Downside: matrix-vector multiplication takes about $\sim n^2$ operations, and matrix inversion takes about n^3 operations (not a good ratio)

(MA 410)

Public Key Cryptography

April 11, 2011

3 / 20

Public Key Distribution System

"Diffie-Hellman Key Exchange"

Alice wants to send Bob a message, using a secret key that only she and Bob know.

- Alice and Bob agree on a prime p and a primitive root α in \mathbb{Z}_p
- Alice picks a secret $x \in \{1, 2, \dots, p-1\}$ and computes $\alpha^x \mod p$
- ullet Bob picks a secret $y \in \{1,2,\ldots,p-1\}$ and computes $lpha^y \mod p$
- Exchange: Alice $\xrightarrow{\alpha^y}$ Bob
- Alice computes $(\alpha^y)^x \mod p$, Bob computes $(\alpha^x)^y \mod p$ Fermat's Little Theorem: $\alpha^{p-1} \equiv 1 \mod p$
- Only α^x , α^y are transmitted
- Security relies on discrete log problem

(MA 410) Public Key Cryptography April 11, 2011 4 / 20

Digital Signatures

Easy to recognize, difficult to forge

Can use a public key cryptosystem:

- Alice has $E_A : M \mapsto C$ (public), $D_A : C \mapsto M$ (private). Bob has E_B , D_B .
- Alice sends Bob $D_A(M)$, as opposed to $E_B(M)$
- Bob computes $E_A(D_A(M)) = M$ (E_A is public)
- Only Alice knows D_A (forgery is difficult)
- Everyone knows E_A (recognition is easy)
- Note: D_A is private, but examples of $D_A(M)$ are public "known plaintext attack"

(MA 410)

Public Key Cryptography

April 11, 2011

5 / 20

RSA Cryptosystem

An instantiation of a public key cryptosystem

- Rivest, Shamir, Adelman (1978)
 [Also: Cocks, Ellis, Williamson (1973) with GCHQ, UK's equivalent of NSA]
- Uses Euler's (Generalization of Fermat's Little) Theorem: If $\gcd(a,n)=1$, then $a^{\phi(n)}\equiv 1 \mod n$, where $\phi(n)=\{m\in\mathbb{Z}_n:\gcd(m,n)=1\}$. (Theorem 7.5 in ENT, 7th ed.)
- $\phi(n) = n \cdot \prod_{p|n} \left(1 \frac{1}{p}\right)$ (Theorem 7.3 in ENT, 7th ed.)

For distinct primes p and q,

$$\phi(pq)=pq\left(1-rac{1}{p}
ight)\left(1-rac{1}{q}
ight)=(p-1)(q-1)$$

(MA 410) Public Key Cryptography April 11, 2011 6 / 20

RSA Cryptosystem

How it works

Alice wants to send a secret message (encoded as a number M) to Bob.

- Bob picks two (large) primes, p and q, and sets n = pq
- Bob picks e ("encoding exponent") such that $gcd(e, \phi(n)) = 1$
- ullet Bob computes d ("decoding exponent") such that $de\equiv 1 mod \phi(n)$
- Bob publishes (e, n), keeps (p, q) secret
- Alice computes $c \equiv M^e \mod n$, sends c to Bob (If $M \ge n$, then break into blocks smaller than n)
- Bob computes (use " \equiv_n " for "congruent modulo n")

$$c^{d} \equiv_{n} (M^{e})^{d} \equiv_{n} M^{t \cdot \phi(n) + 1} \equiv_{n} (M^{\phi(n)})^{t} \cdot M$$

$$\stackrel{\text{Euler}}{\equiv_{n}} 1^{t} \cdot M \equiv_{n} M \qquad M < n \Rightarrow c^{d} = M$$

• One catch: Euler's Theorem assumes gcd(M, n) = 1

(MA 410)

Public Key Cryptography

April 11, 2011

7 / 20

RSA Cryptosystem

What if gcd(M, n) > 1?

- Suppose gcd(M, n) = gcd(M, pq) > 1. Then either $p \mid M$ and $q \mid M$, or (WLOG) $p \mid M$ but $q \nmid M$.
- Suppose $p \mid M$ but $q \nmid M$, so $M^{ed} \equiv_p 0$ and gcd(M,q) = 1.

$$egin{aligned} M^{ed} &= M^{\phi(n) \cdot t + 1} = (M^{(p-1)(q-1)})^t \cdot M \ &= (M^{q-1})^{t(p-1)} \cdot M \stackrel{\mathrm{Euler}}{=_q} M \end{aligned}$$

• Set $x=M^{ed}$. Then $x\equiv_p 0$, $x\equiv_q M$, and $\gcd(p,q)=1$.

A 410) Public Key Cryptography

Recall: Chinese Remainder Theorem

Theorem 4.8 in ENT, 7th ed.

Chinese Remainder Theorem

Let n_1, n_2, \ldots, n_r be positive integers such that $gcd(n_i, n_j) = 1$ for $i \neq j$. Then the system of linear congruences

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_r \pmod{n_r}$

has a simultaneous solution, which is unique modulo the integer $n_1 n_2 \cdots n_r$.

(MA 410)

Public Key Cryptography

April 11, 2011

9 / 20

RSA Cryptosystem

What if gcd(M, n) > 1?

• Suppose gcd(M, n) = gcd(M, pq) > 1. Then either

$$p \mid M$$
 and $q \mid M$, or (WLOG) $p \mid M$ but $q \nmid M$.

• Suppose $p \mid M$ but $q \nmid M$, so $M^{ed} \equiv_p 0$ and gcd(M,q) = 1.

$$egin{aligned} M^{ed} &= M^{\phi(n) \cdot t + 1} = (M^{(p-1)(q-1)})^t \cdot M \ &= (M^{q-1})^{t(p-1)} \cdot M \stackrel{\mathrm{Euler}}{=}_a M \end{aligned}$$

- Set $x=M^{ed}$. Then $x\equiv_p 0$, $x\equiv_q M$, and $\gcd(p,q)=1$.
- By CRT, there is unique $\bar{x} \mod pq$ such that $\bar{x} \equiv_p 0$, $\bar{x} \equiv_q M$.
- $\bar{x} \equiv M \mod n$ is a solution, hence *the* solution. $(M < n \Rightarrow \bar{x} = M)$
- If $p \mid M$ and $q \mid M$, then $M \equiv_n 0$ (contradicting $0 \leq M < n$)

RSA Cryptosystem

How secure is it?

• Security/efficiency depends on ease of exponentiation and difficulty of factoring n = pq

With p and q, can find d ($de \equiv_{\phi(n)} 1$) via Euclidean Algorithm

- (ENT, 7th ed.) A 200-digit number can be tested for primality in 20 seconds, but the quickest factoring algorithm takes about 1.2×10^{23} operations for the same size number.
 - At 10^{-9} operations per second (1 GHz), it would take about 3.8×10^6 years. "...appears to be quite safe."
 - ▶ RSA-129: \$100 prize offered by R, S, and A; 129-digit encoding modulus; factored in 1994 by 600 volunteers running over 1600 computers for 8 months; "The magic words are squeamish ossifrage."
 - ▶ RSA Challenge List (42 numbers, posted in 1991); most recent, 193-digit factorization (two primes, 95 digits each); inactive as of 2007

(MA 410)

Public Key Cryptography

April 11, 2011

11 / 20

RSA Cryptosystem

Malleability

- Say M itself starts as a number (e.g., a bid on a product)
- Eve hears $C \equiv_n M^e$
- Suppose $\gcd(100,n)=1$ $[n=pq, \text{ so if } \gcd(100,pq)>1, \text{ then } p\in\{2,5\}]$ Then there exists $100^{-1} \mod n$
- Eve sends

$$(C \cdot (101 \cdot [100^{-1} \mod n])^e \equiv_n M^e \cdot 101^e \cdot 100^{-e} \equiv_n (M \cdot \frac{101}{100})^e)$$

Outbids by 1%!

Attacking the RSA

• Suppose p, q, $p^{-1} \mod q$, $q^{-1} \mod p$ are stored on a microchip, and suppose $M^e \mod n$ is computed in a particular way:

• After the computation of $q(q^{-1}C \mod p)$, toss the microchip in the microwave at the " $p^{-1}C \mod q$ " step:

$$\widetilde{C} \equiv_n q(q^{-1}C \mod p) + p(G \mod q)$$

- $C \widetilde{C} = p[(p^{-1}C G) \mod q]$ (divisible by p, but not q)
- $gcd(C \widetilde{C}, pq) = p$
- "Differential Fault Analysis"; Boneh, DeMillo, Lipton (Sep 1996)

(MA 410)

Public Key Cryptography

April 11, 2011

13 / 20

Recall: Chinese Remainder Theorem (Proof)

Theorem 4.8 in ENT, 7th ed.

Setup: $gcd(n_i, n_j) = 1$ for $i \neq j$. Then $x \equiv_{n_1} a_1$, $x \equiv_{n_2} a_2$, ..., $x \equiv_{n_r} a_r$ has unique solution $\bar{x} \mod n_1 n_2 \cdots n_r$.

- Let $n = n_1 n_2 \cdots n_r$, and let $N_k = \frac{n}{n_k}$, so that $gcd(N_k, n_k) = 1$.
- Then there exists x_k such that $N_k x_k \equiv_{n_k} 1$. $[x_k = N_k^{-1} \mod n_k]$
- Let $\bar{x}=a_1N_1x_1+a_2N_2x_2+\cdots+a_rN_rx_r$. Note that $N_i\equiv_{n_k} 0$ for $i\neq k$, but $N_kx_k\equiv_{n_k} 1$.
- $\bar{x} \equiv_{n_k} a_k N_k x_k \equiv_{n_k} a_k \cdot 1 \equiv_{n_k} a_k$ for each k
- For RSA, n = pq, $N_p = \frac{n}{p} = q$, $N_q = \frac{n}{q} = p$.
- Then $x \equiv_p C$, $x \equiv_q C$ has unique solution $\bar{x} \mod pq$:

$$C \cdot q \cdot (q^{-1} \mod p) + C \cdot p \cdot (p^{-1} \mod q)$$

(MA 410)

Attacking the RSA

• Suppose p, q, $p^{-1} \mod q$, $q^{-1} \mod p$ are stored on a microchip, and suppose $C \equiv M^e \mod n$ is computed in a particular way:

$$C \equiv_n q(q^{-1}C \bmod p) + p(p^{-1}C \bmod q).$$

• After the computation of $q(q^{-1}C \mod p)$, toss the microchip in the microwave at the " $p^{-1}C \mod q$ " step:

$$\widetilde{C} \equiv_n q(q^{-1}C \mod p) + p(G \mod q)$$

- $C \widetilde{C} = p[(p^{-1}C G) \mod q]$ (divisible by p, but not q)
- $gcd(C \widetilde{C}, pq) = p$
- "Differential Fault Analysis"; Boneh, DeMillo, Lipton (Sep 1996)

(MA 410)

Public Key Cryptography

April 11, 2011

15 / 20

The ElGamal Cryptosystem

Taher ElGamal (1985)

- RSA security: difficult to factor large numbers
- ElGamal security: difficult to solve discrete log problem: Find x, $0 < x < \phi(n)$, such that $r^x \equiv_n y$ ("log()" button won't work)
- RSA: public exponent, private (factored) modulus
- ElGamal: public (prime) modulus, private exponent(s)

MA 410) Public Key Cryptography April 11, 2011 16 / 20

The ElGamal Cryptosystem

How it works

Alice wants to send a secret message (encoded as a number M) to Bob.

- Bob picks a prime p and a primitive root r (so that $r^x \equiv_p y$ has a solution for all $y \in \mathbb{Z}_p$)
- Bob picks (random) $k \in \{2, 3, ..., p-2\}$ and computes $a \equiv_p r^k$, where $a \in \{0, 1, ..., p-1\}$
- Bob publishes (a, r, p), keeps k secret
- Alice picks (random) $j \in \{2, 3, \dots, p-2\}$ and computes

$$C_1 \equiv_p r^j, \quad C_2 \equiv_p Ma^j \equiv_p M(r^k)^j,$$

and sends C_1 , C_2 to Bob

Bob computes

$$C_2 C_1^{p-1-k} \equiv_p M(r^k)^j (r^j)^{p-1-k} \equiv_p Mr^{kj} r^{j(p-1)-kj}$$
$$\equiv_p Mr^{kj} r^{-kj} (r^{p-1})^j \equiv_p M(r^{p-1})^j \stackrel{\text{Fermat}}{\equiv_p} M$$

(MA 410)

Public Key Cryptography

April 11, 2011

17 / 20

The ElGamal Cryptosystem

Features

- Can use same k, j (hence, C_1) for each block, or change for each block (no need to tell other party)
- Bob never announces k, Alice never announces j
 Two private exponents, one public modulus
- Capitalizes on difficulty of discrete log problem
- Can be used for digital signatures as well (ENT §10.3, 7th ed.)

(MA 410) Public Key Cryptography April 11, 2011 18 / 20

The ElGamal Cryptosystem

Malleability

- Alice (rightfully) sends $C_1 \equiv_p r^j$, $C_2 \equiv_p Ma^j$
- Eve hears C_1 and C_2 , then sends

$$C'_{1} \equiv_{p} r^{j'} C_{1} \equiv_{p} r^{j'} r^{j} \equiv_{p} r^{j'+j}$$

$$C'_{2} \equiv_{p} \lambda a^{j'} C_{2} \equiv_{p} \lambda a^{j'} M a^{j} \equiv_{p} \lambda M a^{j'+j}$$

• Properly decrypts as λM

(MA 410) Public Key Cryptography April 11, 2011 19 / 20

Happy Encrypting/Decrypting!

(MA 410) Public Key Cryptography April 11, 2011 20 / 20