Problem 1 (12 points)

(a, 4pts) True of false:

$$\forall p, p \text{ prime } \geq 5 \colon \forall a \in \mathbb{Z}_p \colon a^3 \equiv 1 \pmod{p} \Longrightarrow a \equiv 1 \pmod{p}.$$

Please explain.

Folse:
$$2^3 = 1 \pmod{7}$$
 and $2 \neq 1 \pmod{7}$
2pts
$$43 \text{ prime}$$

$$-1 \text{ pt}$$

(b, 4pts) Please compute residues $x, y \in \mathbb{Z}_{10}$, or prove that none exist, such that $3x + 4y \equiv 5 \pmod{13}$ and $6x + 7y \equiv 8 \pmod{13}$. Please show all your work.

(c, 4pts) Please compute 7¹⁰¹⁰ mod 10. Please show your work. [Hint: use Euler's theorem.]

$$7^{\phi(10)} \equiv 7^{4} \equiv 1 \pmod{10}$$

$$(74)^{10/4} \equiv 1 \pmod{10}$$

load eylon.

Problem 2 (6 points): For which $n \in \mathbb{Z}$ is $2 \cdot 3^{n+1} + 4^n \equiv 0 \pmod{7}$? Please explain.

$$2.3^{h+1} + 4^{h} = 6.3^{h} + (-3)^{n}$$

= $(6+(-1)^{h})3^{h} = \begin{cases} 0 & \text{if } \\ 6.3^{h} + (-3)^{n} \end{cases}$
even $2pts$
Proof $3pts$
odd $\neq 0$ | pt

Problem 3 (6 points): By completing the entries in the following table, please verify Gauss's theorem for Euler's totient function ϕ and its associated Möbius's inversion formula for n = 72:

d	$\phi(d)$	$\mu(d)$	$\mu(d) \cdot \frac{72}{d}$
$1=2^0\cdot 3^0$		ı	72
$2=2^1\cdot 3^0$		-1	-36
$4=2^2\cdot 3^0$	2.	0.	0
$8=2^3\cdot 3^0$	4	0	D
$3=2^0\cdot 3^1$	2	-1	- 24
$6=2^1\cdot 3^1$, Z	J	12
$12=2^2\cdot 3^1$	$(2^{2}-2)(3-1)=4$	0	0
$24 = 2^3 \cdot 3^1$	$(2^3-2^2)(3-1)=8$	0	0
$9=2^0\cdot 3^2$	32-3=6	0	0
$18=2^1\cdot 3^2$	$(2-1)(3^2-3)=6$	0	0
$36 = 2^2 \cdot 3^2$	$(2^2-2)(3^2-3)= 2 $	0	0
$72 = 2^3 \cdot 3^2$	(23-27) (3-3) = 24	0	0
$\sum_{d 72 \text{ and } d \ge 1}$	72		24=0(72)
	3 pts 3		3 pts

Problem 4 (8 points): Consider $1716 = 13 \cdot 12 \cdot 11$ and let $a \in \mathbb{Z}_{1716}$ with

$$a \equiv 9 \pmod{13}$$
,

$$a \equiv 7 \pmod{12}$$
,

$$a \equiv 3 \pmod{11}$$
.

Please compute $y_0 \in \mathbb{Z}_{13}$, $y_1 \in \mathbb{Z}_{12}$ and $y_2 \in \mathbb{Z}_{11}$ such that

$$a = y_0 + y_1 \cdot 13 + y_2 \cdot 13 \cdot 12$$
.

Please show all your work.

$$y_0 = 9$$

 $9 + 13 \cdot y_1 = 7 \pmod{12}$
 $y_1 = -2 = 10 \pmod{12}$ 3pts

$$9+13\cdot10+13\cdot12\cdot y_2=3 \pmod{11}$$

 $-2+2\cdot(-1)+2\cdot1y_2=3 \pmod{11}$
 $2y_2=7 \pmod{11}$

$$y_2 = (-4) \cdot 6 = -24$$

= 9

4pts

no penalty in arred

Problem 5 (9 points): This problem shows an instance of the Miller-Rabin Monte Carlo primality test. Let n = 1105 and $a = 511 \in \mathbb{Z}_{1105}$. Note that $n - 1 = 1104 = 2^4 \cdot 69$. The following has been computed by repeated squaring modulo n:

$$a^{69} \equiv 511^{69} \equiv 766 \pmod{1105}$$
 and $766^2 \equiv 1 \pmod{1105}$. (1)

(a, 4pts) Please explain why (1) already proves that n = 1105 is a composite integer.

(b, 5pts) Using (1), please compute a non-trivial factor of 1105. Please show all your work.

1105
765
340
105: 85 = 13
105 = 5.13.17
85
85 Factorization One
255

$$\frac{255}{4}$$
 W/o (1) factor
1105 + 1

Problem 6 (5 points): Please prove: if for an integer $N \ge 2$ the integer $2^N + 1$ is a prime number, then N must be a pure power of 2, i.e., there exists an integer $n \ge 1$ such that $N = 2^n$ (N has no odd factor > 1).

Suppose
$$N = u \cdot 2^n$$
, $u \text{ odd}$, $u > 1$, $u > 70$

$$2^{N} + 1 = (2^{2^n})^{U} + 1 = (-1)^{U} + 1 = 0 \pmod{2^{2^n} + 1}$$
So $2^{2^n} + 1 = 2^{N} + 1 \text{ and } 2^{2^n} + 1 > 2^{2^n} + 1 = 3$