Problem 1 (12 points)

(a, 4pts) True of false:

$$\forall n \in \mathbb{Z}_{\geq 2}, a \in \mathbb{Z}_n \colon a^2 \equiv 1 \pmod{n} \Longrightarrow a = 1 \text{ or } a = n - 1.$$

Please explain.

(b, 4pts) Applying Möbius's inversion formula to F(n) = n, namely, $f(n) = \sum_{d|n,d \ge 0} \mu(d) \frac{n}{d}$ yields what number theoretic function for f? Please explain.

$$\phi(n)$$
 bec. $\frac{1}{d^2}$

(c, 4pts) Please show that $1105 = 5 \cdot 13 \cdot 17$ is a Carmichael number.

$$P-1 \mid n-1 \Rightarrow a^{n-1} = 1 \pmod{n}$$

$$4 \mid 1104$$

$$12 \mid 1104$$

$$16 \mid 1104$$

2009

Problem 2 (6 points): For which integers $n \in \mathbb{Z}$, including negative integers, is $2^n - 4$ divisible by 7. Please justify your answer.

$$2^{3} \equiv 1 \pmod{7}$$
 $2^{\circ} - 4$
 $0 \equiv 2 \pmod{3}$ $2^{\circ} - 4$
 $2^{\circ} - 4$
 $2^{\circ} - 4 \equiv 2^{\circ} - 4$

Problem 3 (6 points): Please compute residues $x, y \in \mathbb{Z}_{11}$ such that $3x + 4y \equiv 0 \pmod{11}$ and $4x + 3y \equiv 1 \pmod{11}$. Please show all your work.

2009

Problem 4 (8 points): Consider $315 = 5 \cdot 7 \cdot 9$ and let $a \in \mathbb{Z}_{315}$ with

$$a \equiv 3 \pmod{5}$$
,
 $a \equiv 5 \pmod{7}$,
 $a \equiv 7 \pmod{9}$.

Please compute $y_0 \in \mathbb{Z}_5$, $y_1 \in \mathbb{Z}_7$ and $y_2 \in \mathbb{Z}_9$ such that

$$a = y_0 + y_1 \cdot 5 + y_2 \cdot 5 \cdot 7.$$

Please show all your work. After seeing the answer, could you have determined y_1 and y_2 without any computation?

$$y_0 = 3$$
 $5 \equiv 3 + 5 \cdot y$, (mod 7)

 $2 \equiv 5 \cdot y$, (mod 7)

 $1 \equiv 3 + 5 \cdot 6 + 5 \cdot 7 \cdot y \geq (\text{mod } 9)$
 $1 \equiv 5 \cdot 7 \cdot y \geq (\text{mod } 9)$
 $1 = 5 \cdot 7 \cdot y \geq (\text{mod } 9)$
 $1 \cdot (-1) \equiv y \geq (\text{mod } 9)$

2009

Problem 5 (12 points): Consider the following instance of the RSA: the public key $K = P \cdot Q$ where P and Q are primes with $P \not\equiv 1 \pmod{5}$, $Q \not\equiv 1 \pmod{5}$; the public (enciphering) exponent is Y = 5, i.e., the ciphertext of a message M is $N = E_K(M) = (M^5 \mod K)$. Please prove the following.

(a, 5pts)
$$\lambda = ((P-1)(Q-1) \mod 5) \neq 0$$

and $X = \frac{\mu(P-1)(Q-1)+1}{5}$ is an integer for $\mu = (4\lambda^{-1} \mod 5)$.
 $5 \nmid P-1$ $5 \nmid Q-1 \implies 5 \nmid (P-1)(Q-1)$
 $M = (P-1)(Q-1)+1 = 0 \pmod 5$

(b, 5pts) The integer X as defined in (a) is the private (recovery) exponent, that is for all residues $M \in \mathbb{Z}_K$ with GCD(M,K) = 1 one has $(M^5)^X \equiv M \pmod{K}$.

$$(M^{5})^{\times} = M^{n}(P-1)(Q-1)+1$$

$$= (M^{4}(K))^{n}.M$$

$$= M (md K)$$

(c, 2pts) What is X in this case (namely, Y = 5) for P = 3 and Q = 5?

$$\lambda = 2.4 = 3 \pmod{5}$$
 $M = 4.3^{-1} \pmod{5}$
 $= 3$
 $X = \frac{3.8 + 1}{5} = 5$