NC STATE UNIVERSITY

MA 410 Theory of Numbers, first mid-semester examination, Feb 11, 2009 Prof. Erich Kaltofen <kaltofen@math.ncsu.edu> www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring09/ (URL) © Erich Kaltofen 2009 919.515.8785 (phone) 919.515.3798 (fax)

Your Name: ____

For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 5 problems, which are subdivided into 8 questions, where each question counts for the explicitly given number of points, adding to a total of **44 points**. Please write your answers in the spaces indicated, or below the questions, using the **back of the sheets** for completing the answers and **for all scratch work**, if necessary. You are allowed to consult **one** 8.5in \times 11in sheet with notes, but **not** your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have **60 minutes** to do this test.

Good luck!

Problem 1	
2	
3	
4	
5	
Total	

Problem 1 (18 points)

(a, 5pts) Please compute $g = \gcd(224, 156)$ and $s, t \in \mathbb{Z}$ such that 224s + 156t = g. Please show all work.

(b, 4pts) Please give a parametric solution for the diophantine equation 224x + 156y = 8.

(c, 4pts) Please compute $\pi(105)$. Please show your work.

(d, 5pts) Alice and Bob are choosing from 6 objects, *A*, *B*, *C*, *D*, *E*, and *F*. First, Alice chooses 2 and then Bob chooses 3 from the rest. How many different results are possible?

Problem 2 (8 points): Please prove for all integers $n \ge 1$: $\frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n-1}$.

Problem 3 (8 points): Consider the sequence a_n that is inductively defined for all integers $n \ge 0$ by $a_0 = 0$, $a_1 = 2$ and $a_{n+2} = 4a_{n+1} - 4a_n$. Thus the next elements are $a_2 = 8$, $a_3 = 24$, $a_4 = 64$,... Please prove that $a_n = n \cdot 2^n$ for all integers $n \ge 0$.

Problem 4 (5 points): Please find all twin prime pairs (F_n, M_p) , where F_n is a Fermat prime and M_p is a Mersenne prime.

Problem 5 (5 points): Please state the Green-Tao theorem on primes in an arithmetic progression.