7007

Problem 1 (18 points)

(-7)325+19.120=5

(a, 5pts) Please compute $g = \gcd(325, 120)$ and $s, t \in \mathbb{Z}$ such that 272s + 119t = g. Please show all

(b, 5pts) Please give the prime factorization of $\binom{12}{6}$.

(c, 4pts) Knowing that $p_{50} = 229$, (the 50-th prime number) please compute $\pi(232)$.

$$230, 231, 232$$

= 3.77
 $T(232) = 50$

(d, 4pts) You are choosing 10 times from 2 objects, A and B. How many combinations with repetition are possible?

$$\binom{n+i-1}{i-1} = \binom{10+1}{1} = 11$$

Problem 2 (8 points): Please prove for all integers
$$n \ge 1$$
 that $\sum_{i=1}^{n} (2i-1) = n^2$.

Basis: $N=1$: $(2\cdot 1-1)=1^2$.

Hypothesis $\forall n, 1 \le n \le k$: $Z_{i=1}^n(2i-1)=n^2$.

Inductive argument: $n=k+1$

$$\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + 2k+1$$

 $= k^2 + 2k + 1 = (k + 1)^2$

Problem 3 (8 points): Please prove by induction on n that for all integers $n \ge 1$, $3^{3n+1} + 2^{n+1}$ is divisible by 5.

Basis:
$$n=1-3^4+2^2=81+4=85=5\cdot 17$$

Hypothesis: $\forall n, 1 \leq n \leq k \exists f(n) \in \mathbb{Z} : 3^{3n+1} + 2^{n+1} = 5 \cdot f(n)$

Inductive argument: $n=k+1$

$$3^{3(k+1)+1} + 2^{(k+1)+1} = 27 \cdot 3^{3k+1} + 2 \cdot 2^{k+1}$$

$$= 27 \left(3^{3k+1} + 2^{k+1}\right) - 25 \cdot 2^{k+1}$$

$$= 27 \left(3^{3k+1} + 2^{k+1}\right) - 25 \cdot 2^{k+1}$$

$$= 5 \left(27 \cdot f(k) - 5 \cdot 2^{k+1}\right) = 5 \cdot f(k+1)$$

Problem 4 (5 points): Please list the first 3 Mersenne primes and the first 3 Fermat primes.

$$M_2 = 2^2 - 1 = 3$$

$$M_3 = 2^3 - 1 = 7$$

$$M_5 = 2^5 - 1 = 31$$

$$F_0 = 2^2 + 1 = 3$$

$$F_1 = 2^2 + 1 = 5$$

Problem 5 (5 points): Please state the prime number theorem.

$$\lim_{n\to\infty} \frac{\pi(n)}{n/\log_e n} = 1$$