North Carolina State University is a landgrant university and a constituent institution of The University of North Carolina

NC STATE UNIVERSITY

MA 410 Theory of Numbers, first mid-semester examination, Feb 14, 2007 kaltofen@math.ncsu.edu (email) www.math.ncsu.edu/~kaltofen/courses/NumberTheory/Spring07/ (URL) 919.515.8785 (phone) 919.515.3798 (fax)

Your Name: _

For purpose of anonymous grading, please do not write your name on the subsequent pages.

This examination consists of 5 problems, which are subdivided into 9 questions, where each question counts for the explicitly given number of points, adding to a total of **44 points**. Please write your answers in the spaces indicated, or below the questions, using the **back of the sheets** for completing the answers and **for all scratch work**, if necessary. You are allowed to consult **one** 8.5in \times 11in sheet with notes, but **not** your book or your class notes. If you get stuck on a problem, it may be advisable to go to another problem and come back to that one later.

You will have **60 minutes** to do this test.

Good luck!

Problem 1	
2	
3	
4	
5	

Total _____

Problem 1 (18 points)

(a, 5pts) Please compute $g = \gcd(325, 120)$ and $s, t \in \mathbb{Z}$ such that 325s + 120t = g. Please show all work.

(b, 5pts) Please give the prime factorization of $\binom{12}{6}$.

(c, 4pts) Knowing that $p_{50} = 229$, (the 50-th prime number) please compute $\pi(232)$.

(d, 4pts) You are choosing 10 times from 2 objects, *A* and *B*. How many combinations with repetition are possible?

Problem 2 (8 points): Please prove for all integers $n \ge 1$ that $\sum_{i=1}^{n} (2i-1) = n^2$.

Problem 3 (8 points): Please prove by induction on *n* that for all integers $n \ge 1$, $3^{3n+1} + 2^{n+1}$ is divisible by 5.

Problem 4 (5 points): Please list the first 3 Mersenne primes and the first 3 Fermat primes.

Problem 5 (5 points): Please state the prime number theorem.