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GCD computation becomes possible by wiitg non-decreasing norms or remainders whose
norms are not as small as possiblige then provide tw dgorithms for computing the GCD of
algebraic integers in quadratic number figlfgD). Thefirst applies only to compkequadratic
number fields with class number 1, and it is based on a short vector construction in aligttice.
compleity is O(S®), whereS is the number of bits needed to encode the input. The second
allows to compute GCDs of algebraic igégs in arbitrary number fields (ideal GCDs if the class
number is > 1). It requires oni9(S?) binary steps for figd D, but works poorly ifD is lamge.
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primes. Oureduction is based on a construetvasion of a theorem by A. Thue.
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1. Introduction

The fact that the set of compléntegers x+vV-1y | X, y 0 Z} forms a uniquedctoriza-
tion domain follows from the ability to performuiions with remainder in this domain.
Already C. FFGauss generalized the complategers to the domain of algebraic integers

_x+Vdy _ _U4D  if D=2,3mod 4
Oq4 ={ > |x,yDZ,x_dymod2},d—BD i D=1 mod 4

of a quadratic number fiel@(VD), D a gjuarefree intger, and proved that a Euclidean dision
(and thus unique factorization) was possibledor -11, -8, -7, -4, -3, 5, 8 andvseal more
positive dscriminantsd. In general, an abstract il domainR is Euclidean with respect to a
degree functionN from the non-zero elements Bfinto the non-ngative integers if for ay two
elementsr, g OR, B £ 0, eitherp dividesa or there exists a (Euclidean) quotignil R and a
(Euclidean) remaindep O R such thator = By + p andN(p) < N(B). Oncesuch a Euclidean
division is constructible, the GCD of aiwo dements inR can be determined by repeatedidi
sion. TheEuclidean algorithm (EA) consists of computing foy &nwo dementspy, p1 O R, a
sequence of Euclidean divisions

Pi = Pi2 = ViaPi-n, 122,

such thatN(p;) < N(pj4) or p; = 0, in which case GC[py, p1) = pij4. In the cases of quadratic
number fields mentioned before the norm esras a degree function for the Euclidean algo-
rithm. Inthis paper we westigate the sequential comgley for GCD computations and prime
factorizations in ay quadratic number field, including non-Euclidean ones.

We measure the input size in terms of the rational and irrational parts of the inputs. Let

X ey
RE—E,If— > for & =

+
X 2de 00,

and let

size¢) = log(|R &]) + log(|! &),

which is the number of bits necessary to writevald. With our notation the norm af, N &, can
be represented as follows:

- x+yd x-ywd _x*-dy _
NE=dd=5 2 4
_ORe?-(¢? ford>00

TO(REZ (1€ ford<OBDZ'

It is easy to shw thatOy4 is a Euclidean domain with respect to the normdfer -11, -8, -7,
-4, =3, but for no othed < 0, and ford =5, 8, 12 ad 13. There are exactly twelmore
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discriminantsd > 0 for whichOy is Euclidean with respect to the norm, namely 17, 21, 24, 28,
29, 33, 37, 41, 44, 57, 73 and 76 (cChatland/Dsenport [4] and Barnes/Swinnerton-Dyer [1]).

Oq4 is a UFD if and only if its class numbé&(d) is one. Thereare exactly four more
quadratic number fields with(d) = 1, namelyd = -19, —-43, —-67, and —-163. That this list is
exhaustve was finally established by Stark [29]t is conjectured that infinitely manreal
guadratic number fields & dass number 1. The list of thosk> 0 for which O4 is not
Euclidean with respect to the norm, but whifd) = 1, begns with 53, 56, 61, 69, 77, 88, 89, 92,
93,0

By definition, the Euclidean algorithm (EA) with respect to the norm appligs,t@;
exactly if there exists a norm-decreasing remainder sequepge.<, o, > with

P2=Po~ViP1 P3=PL™V2P2:++» Pn= Pn-2 " Vn1Pn1 0= Pna = VnPn (1.1)

wherey,..., v, 0Oq4. The question arises, whether one can introduce anothgezedéunction

with respect to whicl®4 with h(d) = 1 becomes Euclidean. Even more generaihe may drop

the condition that the remainder sequence be decreasing with respgctiégrae function and

ask if there rists ary sequence of the form (1.1), norm-decreasing or not. Before discussing this
guestion, we introduce some more notation.

Generalizing (1.1), we consider a (finite or infinite) sequeee pq, o1, P, ... > Where
all p; OQ(d) (not necessarily10y). We definel =1(Z) to be oo, if Z is infinite, orn+1, if £ =
< po,---, P >. Following Coole [6], we callZ adivision chain if

) For alli, 1<i<I(2), there exists & [104 such thato;,; = o1 — Vi oi,
ii) p; 20 for alli <I; if | <00, thenp, = 0.

The Euclidean algorithm in the most general sense consists of computing a division chain
< po, P1,---Pns1 > @A returningp,,, and every rule for specifying the choice of the remainders
defines aversionof (EA). If the norms of all remainders are minimized, that is, if for all, y;

is chosen such thal( p;41) = N(p;_1 — Vi p;) has the smallest possible value, then we Xalimini-
mal remainderdivision chain, the corresponding instance of (EA) a minimal remairetsion

of (EA). Notice that we thus relax (1.1) in that we alleemainders with norm larger then the
corresponding disors. W dso apply the attribute ‘minimal remainder-’ to the individuadi-di
sions; thus the terms ‘minimal remaindgrotient, * minimal remainder * minimal remainder
division’ have the olvious meaning. In this papdhe elementg; will always hare the meaning
specified in i), whener a dvision chainZ is considered; for sequencEs " etc. we use, y;
etc., without defining these numbers.

We row turn to the question raised at@o First, consider the quadratic domai@g with
d<-109. It is easy to shw that the domain®,, d = -19, —43, -67, and —163 are not Euclidean
with respect to andegee function (Samuel [24]). Also, thergig py, p; such that no finite
division chain beginning withpg, p; exists (Cohn [5]). Thus there does not existyaversion of



(EA) which can compute GCIpg, p1).

Our first group of results extends these facts.qwdw in section 2 that i =< pg, py,...>
is an arbitrary division chain aril = < pq, py, P2, P3,...>a mnimal remainder division chain,
thenl(Z)=1(¥"). Thusnothing can eer be qained by choosing remainders whose norms are not
as small as possible; neither can this reduce the numbesigibds needed, nor does therese
even a sngle input(pg, p;) for which the computation of GEp,, p;) succeeds by choosing a
non-minimal remainder at some stage, but does not succeed otherwise.

It has previously been shown for certain Euclidean domains that choosing minimal remain-
ders with respect to the standard degree function minimizes the numberswindl This vas
done by Lazard foz and forK[x], K a field ([17]), and also fo©_; (private communication),
and by Rolletschek [22] fdD_,. Here the standard degree function is the absolute value for the
domainZ, the dgree in the usual sense for polynomials and the norm for imaginary quadratic
number fields. &r d = -4, that is the Gaussian integers, Caviness/Collins [8¢ laopted
Lehmers idea for intger GCD (cf. Knuth [14], 84.5.2), whereas Rolletschek [21], [22] estab-
lished the equilent of Lan&s [15] bound on the maximum number of possible divisions neces-
sary.

Our second theorem from section 2 says thaOjn d = -19, -43, -67, and —-163,
GCD(pq, p1) can be computed by some version of (EA) only if a nhorm-decreasing sequence of
remainders can be achieel. From this the results of Samuel and Cohn Yol&s an asy corol-
lary.

In the casal > 0 the situation is different. Under a generalized Riemapothesis, Win-
bemger [32] shows thatvery unique factorization domai@y, d > 0, is HEiclidean with respect to
some degree function, and in CedR/einbeger [7] it is shown that a constant bound for the
number of divisions can be ached, namely 5. Indct, these results are shown for the rings of
algebraic integers in arbitrary algebraic number fields, provided there infinitely unas. It is
not shown, hevever, how one can efficiently construct these division chains and thus compute
GCDs.

There remains the need for efficient algorithms for computing GCDs in those quadratic
domains which are not Euclidean with respect to the norm, both real and imayveawil
describe tw such algorithms in this pap€eFhe first, to be presented in section 3, only applies to
the imaginary quadratic domai,, d = —-19, -43, —67 or —163. It is based on a shexttor
construction in a lattice. The number of binary steps needed to compute&,GXaB(

O(S), S=sizeé +sizen.

The polynomial bound would still remain valid faanabled < 0. In other words, a polynomial
upper bound for the compigy can be preed without using the fact shown in [29] that only 4
non-Euclidean imaginary quadratic domaigsatisfyh(d) = 1.
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The second algorithm, \ggn in section 4, is much more general, because it applies to all
guadratic domain®y, both real and imaginaryncluding those witth(d) > 1. In the latter case,
ideal GCDs are computed in a certain sense, which we will precisely specify Tatealgo-
rithm has quadratic complexity for yarfixed d. Howeve, it requires some preparatoryork
(independent of, 1), which is quite costly ifl is lage. It is not clear to us toto accomplish
polynomial running time ifd is not fixed. Concluding the discussion of GCD-algorithms, we
wish to point out that an asymptotically fast algorithm egant to Sckinhages [25] integer-
half-GCD-algorithm is still not described at this time.

We rext turn to factorization into primes. One realizes easily that an algorithmaéborf
ing in O4 can be devised which requires only an additional polynomial cgenbdehe &ctoriza-
tion of certain rational ingeersx. The reason is that a rational primpeither remains irreducible
in Oy4 or factors intop=rmm p=rmm with N 75 =N 75 = p. In this paperwe establish that from
a factorization oN ¢ into primesp, OUOCp, we can construct for fed d in deterministic polyno-
mial time the &ctorizationé = ; 007,,. We lve this problem by using a construiveasion
of a theorem by A. Thue for solving the diophantine equatfondy’ = z pin x, y and smallz.
This approach follows Shanks [28], Section 71, althouglzasiabout the squareroot of the one
obtained there. The main feature of this approach is that it does not require the computation of
greatest common divisors @y, which is the basis for another standard procedure t@ duly
problem. Thabur reduction is deterministic follows from a result by R. Schoof [27] anchtiie f
thatd is fixed.



2. Properties of Quadratic Fields

The point of this section is to shdhat in imaginary quadratic domaifg, d<-19, one
cannot speed up (EA) or increase the set of input for which (EeA§saby allowing remainder
sequences which are not norm-decreasing or remainders of non-minimal norm. First we recall
some well-knowndcts about quadratic fields, the proofs of which can be found, e. g. indHasse’
text [9], 816. Let

1++vd

B > ford=1 mod 4
wy =1

O V—d ford =0 mod 4

n 2

Then the sefl, wy} forms an integral basis f@,, that is, @ery element ofO4 can be repre-
sented in the form[1 + b [y, with a, b O Z.

A unit e 0Oy is an element such thbte [0 O4. A necessary and sufficient condition for
to be a unit is thgN ¢ = L For d < 0 the multiplicatve goup of units is generated §y-1} for
d=-4,{@1+V-3)/2} for d = -3 and {1} in all other casesFor d > 0 there alvays &ists afun-
damental units;, Reg; > 0, | & > 0, quch that the unit group is generated{byl, &}. Two de-
mentsé;, & 0Oy areassociatesé; [1&,, if there exists a unit such thaté; = ¢&,. Ford >0
any &, has, according to [9], an associ&evith

N +
IRE& N &l < #

However, we will need a better estimate in 88y ¢ we denote the gument-function,
which is defined for all comptenumbersé # 0 by & = |&] [{cos@(&)) + i sin(¢(¢))). We dso need
the analogous definitionygn in [9], p. 288, for elements of real quadratic fields:dor O, ¢(&)
is defined by = sign(é) VIN&|e?9); theng(é) = —¢(é). Dividing & by a paver £f of & such that
go(ef) Is as dose tog(&;) as wssible, we can also find an associgtef & such thajg(é,)| <
“(&)/2. By adding and subtracting the equalities

& = Sign(E)VINE e,

&, = SignEVINZ e
we gel|R&,|, A1 &| < VINE, [(e%?) + &%), hence
IRE, || &l < VINE,|e) < YNE 7z,
We row discuss hw rational primesp split in O4, h(d) = 1. If p|d thenp O 72 for some

prime 7 0 Oy4. If p= 3 and the Legendre symb@d/p) = (D/p) = +1 then there d@sts| 0Z
such thatl?> = D mod p. Thereforep | (| +VD)(I -VD) and thusp O 77 with 7 = GCD(p,



| +VD). If p=2andd =D =1 mod 8then

210-270) @ -1

and thus 2177 7 with 7= GCD(2, 1 - (1 +VD)/2). In dl other case® is a prime inOy.

We ow come to the main results of this section, which apply to the dorgind = -19,
-43, —-67, —163. Although one would usually expect that minimal remaugisions require the
smallest number of divisions among arsions of (EA), one might suspect that there ace@
tional instances, where other versions terminastef The folloving theorem shows, kcever,
that this is not the case in those imaginary quadratic fields under consideration.

Theorem 2.1: Let Q(Vd) be an maginary quadratic number field whose corresponding number
ring Oy is a UFD without a Euclidean algorithm with respect to the norm, thdthas one of

the \alues—19 -43 -67, -163. LetX =< py, o1, 0o,...>Dbe an arbitrary division chain, and let

2 =< pg, P1, P, P3-.->be a minimal-remainder division chain beginning with the sanme tw
elementsog, p;. Thenl(2) = I(X).

Proof: We gply a technique deloped in Lazard [17] and in Rolletschek [22]. In what folg
we call a division chailx =< pg, p1,...>a ounter@ample, if there exists a sequenke < p,,
01, P, ...>such that the assertion of the theorem does not hold. Since the theoremalig tri
true forl(X) = oo, we may apply induction oh(Z). Thusassume thal =< pg, p; ..., Pt > IS

a ountergcample, but that the theorem is true faerg shorter sequence in place2ofLet be

a minimal remaindedivision chain forpy, p; with I(2)<I(X). Thenn=2 and p, # p,, other-
wise <p1, P, ..., Pru > Would be another counterexample, contrary to the induciipothesis.
Without loss of generality we may neatie following three assumptions:

i) All remainders irk except possiblyp, are minimal. For otherwise we could he mnsid-
ered a minimal remaindelivision chain< p;, p,, 05,...>whose lengthk, by induction
hypothesis, would hee © be no nore thann; but then< pg, p1, 02, 03,..., Prr > Would be
another counterexample which would also satisfy i).

i)  p =0; otherwise we could replaggy by po — i1, i by 0to get a counterexample satis-
fying ii).
i)  p =1; otherwise we could dde oy , ..., pn+1 DY o1 to Obtain a countexample satisfying

iii). It is here that the consideration of non-integral valueppf. makes the proof more
corvenient.

It follows from assumption ii) tha® is ane of the algebraic integers @y closest to
Po = p2. Hencepy must lie in a rgion R, = {a | a DQ(Vd), |a| < |a - y| for all y 0Oy}, which is
shown in fig. 1.
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Place figure 1 here or below

Sincep, # o, 1 # 0. We consider the various possible valueg/fin seveaal cases we ha
consider the value g§,/p, =1/p,, and we denote this value ldy

a) 1 =1. Thenp, lies in the rgion R, which is constructed by shifting; to the left byl;
R, is bounded by the straight line8/2 + yi and-1/2 + yi (y OR), and 4 additional straight
lines. Henced certainly lies within the regioR shown in fig. 2;

Place figure 2 here or below

here the circle€;, C, are the sets of werses of all points of the forml/2 + yi and of the form
—-3/2 + yi respecitiely.

Now recall the definition of the elemeunt; at the beginning of this section.eWeed the
fact thatl wy > 2. J has a distance 1 from -1, but a distance 1 from all lattice points outside
the real axis. Hencg, which is a minimal remainder-quotient pf and p, by assumption i),
and which is therefore one of the element®gfclosest ta, can only hae ame of the alues 0
-1 or 2. Correspondinglywe haveto consider three subcases.

al) y» =0. Then the sequengestarts with< pq, 1, pg—1, 1, po, os,...> 9nce the mini-
mal remainder ofpy —1 and 1 equals the minimal remainder pf, and 1.(More preciselywe
may assume without loss of generality tpat= py by the same gument as in the justification
of assumption i), although there may beesal minimal remainders g, and 1.)We rmow con-
sider the division chaill =< pg, 1, oo, o5 ,..., Ppu >. Z IS atually a minimal remaindetivi-
sion chain, though not necessarily identical with= < pgy, 1, po, 03,...> We @an apply the
induction hypothesis to the sequences formed fEdbrand 2 by omitting their first elements;
since is dso a minimal remaindetivision chain, it follows thal(X) < I(X) = n -1, contradict-
ing the assumption that+1 =1(Z) <I(X). This concludes the proof of the theorem for this case.

a2) y, =—1. In this casez starts with< pg, 1, pg—1, po, 0a,...> Agan we construct an
division chainX shorter thar®: ¥ =< po, 1, pg, =4, Pss---, (-1)" pns >, this time using theaft
that 1mod oy = —((pg —1) mod pg). Then we can sho as in d) that the gien minimal
remainder-division chaill’ satisfies (X) < I(Z) < 1(X), a contradiction.

a3) p, = — 2. The sequence starts with
< po L po—1, 200 =1, pol = 2y3) + (-1 + y3), Ps, Pg, - - - >
We put
Z=<pol po1=2pg po(-1+2y3)+(L~y3), = p5, = Pe,--- >,
choosingy’ = y;—1. Inthis casel(X) < I(Z) =1(X), a contradiction.

b) 4 = —1. This case parallels a) completalgly some signs he o be dhanged.
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C) 1 = 2. As in case a), we can determine the set of all possible valaes &f the rgion
R shown in fig. 3.
Place figure 3 here or below

It follows thaty, can only bed or 1. The casg, =0 is reated as in case al). Assuppe —1. 2
now has the form

< pol po—2, po =1, po(l = y3) +(=2+ y3), p5,...>,

and the sequence we mnstruct has the form

< po, L, po, 1= po, po(-1+y3) + (2= y3), = ps, ... >,

where we choosg” =-2+y;. Thenl(Z) =1(Z), and the rest of the proof parallels \poeis
cases.

d) 4 =—2. This case is analogous to c).

e) y is real,|s| = 3. Then|p,| =|po — 1| > 2, hencdd| <1/2. Theny, =0, and the assertion
of the theorem follows as in al).

f) y4 is not real:y; =a+bi with bz0. We show in al cases|l (0,) =|1(po— 1) > 1
Indeed, the minimal absolutalue ofl (o —)4) occurs withd = -19, 1 = wy and py = ¢ as pic-
tured in fig. 1, and in this ca$gp,)| >1. Fig.4 shows the rgion R, which is the set of all
inverses of compbe numbersa with |l (a)] >1, and which contains the set of all possitd&igs
of J.

Place figure 4 here or below

Again it follows that the element [1O4 closest tod can only be 0, s&@ =< pg, 1, po— ¥,
Pa,...> But naw 2" =< pg, 1, pa4,...>is a shorter division chain than leading to the same
contradiction as in the previous cases.

The cases a)-f) are exhausticompleting the proof.o

The conditiond < -19 in the previous theorem is used in the estimates in the cases a) and
f) in the abwe poof. Remarkablythe statement of the theorem (without the assumptidd,of
being non-Euclidean) fails fad = —11, but it remains alid for all other Euclidean imaginary
number fields, as was recently shown in [23].

In algorithm-theoretic terms, theorem 2.1 can be formulated as follows:
Corollary 2.1: Letd be as in the theorem. Then

i) All minimal remaindewersions of (EA), applied t@y, o, require the same number of
divisions, and no other version requires fewer.
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i) If no minimal remaindeversion of (EA) allaws the computation of GGp,, p;), then no
division chain terminates with GCpY{, p;). O

While theorem 2.1 and its corollary deal with divisions where the remainder has non-mini-
mal norm, the nd theorem shows that nothing is gained by allowing divisions where the
remainder has norm greater than thasdr, even if that remainder is minimal. In other words, if
a minimal remaindewersion of (EA), applied t@g, p;, leads to a division where no remainder
with norm smaller than the divisor exists, theerg version of (EA) fails for this input.

Theorem 2.2: For ary d < -19,h(d) = 1, and for all oy, o1 [0 O4 there exists a sequenge, ...,

¥n 0Oy satisfying (1.1) only if a norm-decreasing sequence with this propasts ethat is, if
the common ersion of (EA) applies t@y, o, where the remainder of each division has smaller
norm than the divisor.

Proof: Consider a minimal remainddivision chainx =< pg, o4, p2,...> and assume that p;,

0o, ...> 1S not norm-decreasing. &ill show that there exists an infinite minimal remainder
division chainXZ starting with py, p;. Smilarly as in the proof of theorem 2.1. a number of
assumptions can be made without loss of generality:

1) INo2l = N poyf;
i) pp =1,
iii) 15 =0;

iV) RpOZO, IpoZO

The justification of i) is immediate. For ii) and iii) see the analogous assumptions in the proof of
theorem 2.1. Finallyiv) can be justified by symmetry; in the following proof only some signs
and limits forg(,0p) would have o be danged ifR py and/orl pg is <0. We mote in passing that

an assumption analogous to iv) could alseehieeen made in the proof of theorem 2.1., but its
justification would hee required a fe lines, and the rest of the proof would notdndeen sim-
plified.

We have p, = pg by iii), N(pg) = N(p,) =1 by i) and ii). By iii), O is ane of the algebraic
integers inOy closest topy = p,. Together these facts imply thag lies in the region shown in
fig. 5.

Place figure 5 here or below

It follows naow that 77/3 < ¢(0) < 7112, henced =1/p, satisfies—m/2 < ¢(0) < — n/3; aso,
N(J) <1. Then one of the algebraic igegsy, [104 closest tod is 0. Choosingy, =0, we get
o3 =1. Hence the following is a minimal remainder-division chain:

¥ =<pnl pol po,...>.

This sequence is infinite, as desired. By theorem f2ety elivision chain starting withog, p; is
infinite, so no version of (EA) can terminate.
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Corollary 2.2: O4, d < -19,h(d) = 1, is rot a Euclidean domain for prchoice of degree func-
tion.

Proof: Recall that fod<—-19, O is not Euclidean with respect to the norm. This means, by defi-
nition, that there exist elements, p, JO4 such that eery remainder ofp, and p; has lager
norm thanp,. Thus ifZ is a minimal remaindedivision chain bginning with pg, o1, then <p,

0>, ...>is not norm-decreasing, and by theorem 2.2 no finite division chain beginninggyith
P, exists. The assertion followst
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3. GCD Computation by L attice Reduction

As we hae ®en in 82 not all quadratic fields with unique factorizationnalidH.clidean
algorithm, e.gQ(\-19) andQ(V53). Therefore a dferent GCD procedure is required for these
domains. Oufirst algorithm for imaginary quadratic fields is based on computing shagtahte
lattice vectors and is interesting fordaweasons, \en though the algorithm in 84 haswer
asymptotic compbdaty. First, it does not require grfield-dependent preconditioning, and sec-
ond its running time is polynomial independently of the fact fdhais known to be bounded.
The main idea of the algorithm is to selwé + un = 0 such thatNy is small. The follaving
lemma will be useful.

Lemma 3.1: Let &, 7 0Oy, d <-19,h(d) =1, &7 # 0, 5 = GCD(¢,n), £ = &lo, n* = nld.
Assume tha#té + up =0, A, u 0Oy4. Thenn* | A, & | u. Furthermore, ifA is not an associate
of n* thenNy = 4Né&*.

Proof: SinceAé* = —un* and GCI}é*, n*) = 1 dl prime factors ofy* must occur im and simi-
larly for & andu. Since 2 and 3 are primes in a@y in questionN(u/é*) = 4. O

We mnsider the casd = 1 mod 4 only, snce only this one occurd.et A = (I; = 1,/2) +
Vd 1512, & = (X3 = Xo/2) + Vd %/2, g = (my —mu/2) + Vd my/2, 1 = (Y, — Y2/2) + Vd y,/2 with |4,
|21 rn]_1 m2a X]_, X21 y_‘]_, y2 aZz. Then

AR(AE + pn) = (4% = 2X)l1 + (%o = 2Xg + dXo)l 5 + (4yy — 2yo)my + (Y2 — 2y; + dy,)my

21() (3.1)
% = Xoly + (X = X)l2 + Yoy + (Y1 — Yo) M.

We want to find intgersly, I,, my andm, such that the right sides of the equations (3.1) are 0,
meaning that for the correspondingand u, A& + un = 0. Simultaneously we want todepN u
small because the smallest syclts an associate @ by the previous lemma. This leads to the
problem of finding a short vector in an integer lattice. The next theorews ghat only asso-
ciates ofé* can correspond to short vectors in a particular lattice and thus finding a esttort v
in that lattice with a reduction algorithm actuallyes &* and hence = é/&é*.

Theorem 3.1: LetOy4 a UFD withd < =19, and le¥ = (x; — X»/2) + Vd %/2 and 7 = (y; — ¥»/2) +

Vd y,/2 be o nonzero elements @,. Letc andd be integers such that VIZN¢&, Md| - d| <
1/2. Furthermorelet L* be the 4-dimensional irder lattice spanned by the columns of the
matrix

O0C(4% —2Xp)  C(Xp —2X% +dXy) C(4yr —2y,) cC(y2—2y; +dy,)
Uex c(X; — X Cc c(y; — [
L= Do 2 O( 1~ X2) 2Y2 _i)h Y2) 0
] R ]
0o 0 0 d ]

Then ifv* = L x[l, |, my, my]T #0is a \ector of shortest Euclidean length in the latti¢e then
u = (m, —my/2) + Vd my/2 must be an associate §f = &/GCD(¢, ). Furthermoreif v O L* \
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{0} does not hee shortest Euclidean length théwl? > 12/5 [lv* |12,

Proof: Since
Ax; — 2%, X — 2% + dx, U
detg = 77 T2 TR Oz (2% +x)2 - d@ >0, XXy #0,
2 X~ X2 0

L is of full rank. With A and u as abge we get from (3.1) that

l 4cR(AE + un) vy

Lx |12 | = 2cl (A& + um)Vd _y= | 2| gz
my 2m; - m, V3
my dm Vg

We row estimate the Euclidean lengthll of v # 0. If A& + un # 0 thenlivi®> = ¢® 2 12N¢. In
caseAé + up = 0, v, = v, = 0, and we get fromjd|-d’| < d, d/|d| < V4, d < -19, andn? <
AN d|.
~2
[IVIP = 4Ny =](2my = my)* +d"mb - ((2m, - mp)® — dp)| 3.2)
~ ~ 4dN )
=1d" - allmp < dnf < =1 <Npw

From (3.2) we conclude that

3Np<IvIP<5Ny for Aé + un =0. 3.3)

Therefore, under the assumption tpas an associate df* andAé + un = 0, the corresponding
vector V* satisfieslv* > < BNy = BN&*. Otherwise lemma 3.1 states ti = 4N&* and thus
we get from (3.3)

VI = min(l2NE, 3N z) = 12NE*,

Therefore
12
IVI? = 12N&* > T IVl
which proves the theorem. O

The algorithm for computing the GCD éfands is nov easy One computes a vector in
the latticeL* whose length is within attorC3? of the length of the shortesector whereC is
a onstant withC > 4/3 andC? < 12/5, e.g.C = 83/62. Thereexist several versions of the basis
reduction algorithm by A. K. Lenstra et al [18],. cf [12].. Already the original algorithm [18]
can find such aector Since the dimension is fixed all these algorithms @ksize’n) binary
steps to compute such a vector (slightly less if fast multiplication is used)by theorem 3.1
such a vector must be a shortest vector whose entries determine an asscaCiat®Vefthen
obtaind = GCD(¢é, ) = é/&*.
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4. Greatest Common Divisor Computation

We present a GCD procedure thabmks for all quadratic domains. It turns out that one
always can divide an appropriate multiglé, | 0 Z, of the dvidend & by n and accomplish a
remainder of norm smaller thiisis|. Morewer, the size of only depends od and not or¢ or
n. This fact was shown for arbitrary number fields by Hurwitz, see [11], p. PB&.following
lemma provides the specific bound fdor quadratic number fieldS94. It is not restricted to the
caseh(d) = 1.

Lemma4.l: Letc OR, 1/2<c< 1, Q4 the ring of intgers in a quadratic number fiel@hen
for all &, n 0Oy there exists ahsuch that

| O
| OZ with 1< < D\/[ O
0% [
and there exists a [1O4 with
IR(1¢/n - y)I< 5 (& =y) <c. (4.1)

Furthermore, ifd > 0 then N(I& — yn)| < 02|N/7|; if d < 0thenN(I& - yn)| <(c®+1/4) Nn|.

Proof: This follows from the theory of approximation of real by rational numbers and of contin-
ued fractions. W gply theorem 171 in Hardy/Wright [8]: 1b,,/q,, and p4/dny are then-th and
n +1-th continued fraction approximation of a real numkehen

- Pope (<)
] Qn 0] qnqn+1 qn

1 (&) _ 1(éln)

We @ply this theorem tx = = - , and a continued fraction approximatigy/q,, of
I(wg)  V[d|/2
x such thaq,, < \/[ | and eithemp,/q,, = X or g, > V|[d|/2c. Then
O O
S
D\/]-d|/2 On ] OnQna \/]-dl
2
hence
O
d(ané/n — pn \/[2 |)D Anl (£/n) — pn MD< C.
O O ad O

Then (4.1) is satisfied for=q,,, y = ppwg + OR(Q,é/n — phwy +1/2) 1

Now let7 = 1&g — y. Ford > 0, Nz| =|R(z)? — 1 (1)3] < maxR(r)% 1(z)?) = ¢ Ford <0,
IN7| = R(7)? + 1 (r)*> < ¢ + 1/4. Then the second statement of the lemma follows by multiplying
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these inequalities bi¥p|. o

This lemma suggests the follng algorithm for computing GCB’in abitrary quadratic
domains. W formulate it first for thosel with unique &ctorization. Atthe end of this section
we will discuss ha to adapt it to apply to the casg€d) > 1.

Preconditioned GCD in Oq4

Input &, n Oy, Og4 a UFD.

Preconditioning Given are the prime factors df=2,..., m=[d|Hin Oy,
| = m* 0007, 2<1<m, g, 20.

If d >0 we furthermore are gen a fundamental unit;.

Output = GCD(¢, n).

FORi < 1, 2,(IONHILE p, # 0 DO gep 2.

Step2: Here we carry out &'seudo-remainderstep, that is we compule; 0Z, 1< 1, < m,
andy,; 0Oy such that

1
IN(lisz 014 = Vi i)l < 5 IN oi].

Set ; +y;Vd)/2 — pi41/p;, wherex;, y; OQ.

Determinel,,; satisfying lemma 3.1 for = 1/2 as follavs. Computdahe n-th corvergent p,/q,
of the continued fraction approximation fgrsuch thatg, < m and eitherp,,/q, = y; Or Q41 >
m.

Setliy « On; Yiar < Pn- Atthis pointli,y; - Yisl <1Vd.

Computex;;; OZ such that

O, — (dyie mod 2)_

0 1
XS 5.
0 2 g 2
Setyii « Xisg + (dyig Mod 2 +y;,4Vd)/2.
Setpiy < linpia —vupi N <« NO{m [1<j<k, g ;21}.
At this point N pi,1| <|Np;|/2.
IF d >0 and Npj.y # 1 THEN

We aljust p;4; such thaRR p;; andl p;,; do not become too large, as follows:
Computek > 0 such that(ef) — ¢ i) < A£1)/2.

Setpiy « pialel. At this point|R piy| and || pi.| ae both <JNp4lve. (Refer to §2
for an explanation of these facts.)
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Step3: Remee exraneous factors from,_; introduced by thé;.
SetB — 1. FORz 0N DO

Compute the maxima, f such thatz® | &, " | 7.
Setg — pxa™@D; oy piy/a™ED,
WHILE | p;-1 DO pj4 « pj4/m.

RETURNS « B piy. O

If one also needs the extended Euclidean scheée rn = o it suffices to setv =
(s+Vd $)/2, 1 = (t; +Vd t,)/2, 5, —ds, = 253, t; —dt, = 2t3, and sole the four resulting linear
equations with integer coefficients in the gaess,, s,, S, 1y, to, t3 by some integer linear sys-
tem solversee R. Kannan and A. Bachem [13].

It is easy to shae that for fixedd this algorithm has time compiligy O(S®), whereSiis the
size of the input, defined in 81. Some additionfdrefs needed to shwthat the complexity can
be impraved to O(S?), and lastly to determine the complexity in dependenck of

Theorem 4.1: After input independent preconditioning, the GC¥pf 004, O4 a UFD, can
be computed in

O(SV[d|(logd) (S+V[d]|logd)), S=sizeé + sizen,
binary steps using classical integer arithmetic procedures.

Proof: This can be shown similarly as for the Euclidean algorithm applied to rationgériste
(see Knuth [14], Eercise 30 of 84.5.2), but the details are somewhat moeok/ed. W\e haveto
analyze the preconditioned algorithm, and also to apply some minor modifications. In what fol-
lows, we mean by ‘constant’ some quantity that is independefitaofd 7, though it may still
depend ord. First we hae o consider the number of iterations of step 2. It follows fidm, 4|
<|Np;|/2 that this number is bounded by Ibigg| + 1, which isO(S).

Second, we he  establish an upper bound for the size of the remaingdgrgs etc.
Because of the adjustment gf, at the end of each iteration of step 2, applieddferO, there
exists a constart; such that bothR(p;.1)| and || (pi+1)l < CiVINpiul < CiV[Npy|, whereC, =7
(see §2). Thus size = O(S+log &), without fixingi. Moreover, & < d (cf. Hua [10]), thus
log(s7) = O(V[d| log d]).* We will also need the consta} in the following paragraphs.

It is nowv easy to analyze the complexity of step\8%e assume that the multiplication®
— BOM® D and diisionspi4 — pi4/7™"® " are replaced by sequences of multiplicatigns
~ Bt and dvisions p;; « pi4/m, which does not reduce the comytg. Then, apart from
the final multiplicationd — Bp;_1, step 3 consists of a sequence of divisions and multiplications,

* Unfortunately by the BraueiSiegel theorem [16], Chapter XVI, not a much better estimate fdg; o to be
expected sincé(d) log(g;) > d*2 ¢ for d - co.
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where one of the operands has €%8+ V[d| logd) while the other is a prime factor of a rational
integerl < V[d|. Sucha prime factor is either a rational prime < V[d|, or an elementr 00 Oy
with N7l <V[d|. Inthe latter caser will also hare keen adjusted by multiplication by an appro-
priate power ofg;, so hat sizér) = O(log|d| + loge;) = O(V[d|logd). Thuseach operation
requiresO((S+ V|[d|logd)V|[d|logd) steps. Noticethat wheneer a dvision a/y is performed,
Ny must be computed, which takes ofdyd(logd)?) binary steps, sincgs will always be the
second type of operatowith sizeO(V[d|logd). Thenumber of multiplications and\dsions to
be performed in step 3 is easily seen t@®), wherez is the sum of the number of primact
tors of &, n, and p;_1, which isO(S). In the final multiplicationd — Bp,4 both factors hee
once again siz&(S+V[d|logd). Thusthe total complexity of all operations in step 3 becomes

O(S(S+V[d| logd)V[d] logd + (S+V[d| logd)?) = O(S(S + V[d| log d)V[d| logd).
It remains to analyze the complexity of step 2.

If we compute the exact representatiorxoéndy;, then this calculation would talO(S?)
steps for a figd d, which is too much to guarantee the desireeral complexity for all itera-
tions. Havever, it suffices to compute floating point approximations Xgry;, with an appropri-
ate upper bound for thebsoluteerror, 0.01 say Then instead dN p;,1| <|Np;|/2 we will accom-
plish N p;.1| < C5N ;| for some constar@,, 1/2 <C, < 1. This does not affect the analysis as f
as asymptotic step count and bit sizes are concemdetice that the floating point approxima-
tions thus are local to step 2, and no error gets patpddo the next iteration. The exaeatues
of x;, y; are

X =2 Rpi-1Rpi + | pial pi ’

Np

with the +sign applying fod <0,

yi=2 —Rpial pi + 1 pi4Rp;
i — — .
N o V[d|

Let A =log/[Npi4| —logV[Npj|. The numerators ofx and y; have &solute walues

< 2C%JINp,2Npi|. Hence there is a consta®y such that logx|, loglyi| < A + Cs, and a con-
stantC, such that the desired accwdor X;, y; is guaranteed, iy, + C, significant digits of
both numerator and denominator ®gf and y; are computed, and floating point division is
applied.

For the following sufficiently exact error analysis we need to introduce a variant of the def-
inition of siz€a) (a 0O4) given in the introduction. (The previous definition is insziént

because sifa + avd) can be roughly2 sze(a@) (a JZ), whereas we will need a bound for
sizef@+avd) —sizef) that is independent @) Define

sizg(a) = maxlog|Ra|, log| al).
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Now the relationiR(p;)|, [l (0j)| < C14/[Np;| dso allows to find another constaly such that

%izq(pj) - |og;/n\rpj|gs Cs. (4.2)

Therefore at mos2C; leading digits can cancel out when the subtraction in the calculation of
Np; is performed. Applying (4.2) toj=i-1 and to j=i, A can be estimated by
(sizq pi4 — sizq p;) within an error bounded by a constant bog so the number of digits
that ultimately haee © be wsed is(sizg p;; — sizq p;) + C, + 2C5 + C5 = B. Note thatB, con-

trary to A;, is known beforex;, y; are computed. As pointed o@; = O(ve;). Thenit follows
thatC; ,..., G are all of sizeO(log &;), which isO(V[d|logd), as stated ake. HenceB =

O(A +V[d|logd). All arithmetic with B-digit-precision can be performed i®(B%) =

O((A; +V[d|logd)?) = O(A? +|d|(log d)?) steps. The total complexity of all these operations for
all iterations of step 2 to is therefore

O(g1 A? + S|d|(log d)?) = O(S(S+|d|(log d)*)).

Floating point arithmetic only applies t¢ andy;, not to other intermediate resultsdilp;, q;

(j =1,...n), xjy etc. We now oonsider the complexity of the remaining operations in an itera-
tion of step 2. The continued fraction approximatyiqg, of y; can be calculated as folls:
from the B-digit floating point representation §f we obtain a fractional representatigi, s, t

0 Z, wheres hasB digits andt is a power of 2. Note th#y;| cannot be larger than iB-digit
mantissas, since B was large enough to guarantee an absolute error « [ly;| < 2/V[d|, then
instead of computing continued fractions we may simply chbhgse 1, y;,; = 0, which satisfies

the required inequalityt;,1yi — Vial < UV[d|. If not, then both log) and logt) are O(A; +
V[d|logd). If g;, g, are the quotients of the Euclidean algorithm for rational integers with non-
negaive remainders, applied ts, t, then the numberg;, g; are determined by the folleng
recurrence relation:

p—1:QO:0, g4 = p0=1;

=D N [l
pl p|—2+g| pl—l 0 i:l,Z,DED

G =di2+08iGi1
From these equations it becomes clear Fatlog(g;) = O(logq,) = O(logV[d|), and since the
intermediate results of the Euclidean algorithm applieg) tpas well as the numberp;, g; have
O(A +V[d|logd) digits, we find by the usual method tt@{(log d)(A; + V[d|logd)) binary steps
are needed for the calculation @f, qy,.

The logarithms of rational and irrational partynf are O(A, +V[d|logd), sincey,; is an
approximation ofl;;; p;4/p;. This ensures the desired complexity boud(A +V[d|logd)
(S++V[d|logd)) for the multiplicatiory:; p; in the computation op;,;. Then the same bound for
the order of magnitude applies to the logarithms;@f, Vix, p1,..., - The only step which
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requires further consideration is the divisionegf, by an appropriate power ef.

Consider first the alue o, of p;., before this adjustment. Recall theff) = p;7, where
IRz, 7] < 1 (actually< 1/2 if the exact values aof;, y; are used). This implies shzzéﬂ <
sizq pj + C; for some constan®, with C; = O(log[d|). Let o'} be the value ofy,,; after the
adjustment. Them(p'%) = &) + ke(er) = (k —~1)e(e;). Together with the defining equality
for the argument functiorp, this impliesk = O(A). We aan proceed as follows: first, if
RoY <0, replace o by -p9. Then if 1 5% >0, compute o) = ol Ve, j = 1, 2... until
1 019 < 0, so thatpp!ls™ > 0, g9 < 0, then choose among!s™ and p{'9 the one for which
the rational part, orequivalently, the absolute value of the irrational part, is smalfeimstead
after the possible replacement,aé‘f)1 by —pf?r)l we getl pl(o) <0, compute similarly,ofi)1 = p,(ill) &1,
j=1,2, .. until |p,(’+g)zo Thenumber of drisions isO(A;), and each division has comyiky

O((S+7[d| logd) ¥[d| logd).

We mnclude that the highest asymptotic comjilewithin step 2 occurs for the adjust-
ment of p;,;, namelyO(A; (S+V[d|logd) v[d|logd). Adding this up foii = 1, 2,...,we obtain
O(S(S+V[d|logd) V[d|logd). We have established that this is indeed an upper bound for the
complexity of all operations, including step 3. This completes the proof.

Omitting the adjustment gb;,; does not affect the correctness of the algorithm. In this
case it is not obvious, h@ver, that the complety O(S?) can still be achieed for fixed d.
Moreover, it is in any case desirable to carry out this normalization at least for the final result.
After all, if GCD(&, 1) = 1, it would be unsatisfactory to obtain someveozsf, k # 0, as out-
put.

We row dscuss hw the preconditioning for this algorithm can be doker the calcula-
tion of the fundamental uni; in the cased > 0, there exists the well-known algorithm using
continued fractions. An impu@ment has been provided in Pohst & Zassenhaus [20]. ddie f
torization of the multipliers < V[d| will begin by finding their factorization into rational primes
p. Using the siee d Eratosthenes, the largest prime factor feerg | can be found in time
O®/d|), which essentially solves the problem. Then it can be determifiei@refy, using the
law of quadratic reciprocitywhich of these rational primgssplit further inOy4; see 85. One of
the referees suggests the following algorithm for finding the prati@ris/z and 7, if p splits
further The idea is to explicitly find the transformation from the quadratic far@— d/4) or
1,1, @ - d)/4), whichever is integral, to a form(4p, g;, 9,), all of discriminantd. Consider first

. . oy O .
the cased =0 (mod 4. Then the transforming matrixM =] ;Dylelds the solution
0
a’?-dp®>=4p, the wanted dctorization. Br d=1(mod4, the matrix M yields

(2a + B)*>—d % = 4p as the solution. In order to compuéone appeals to the theory of reduc-
tion on the principalycle of reduced quadratic forms of discriminanfcf [26],. Section 4, pp.
256-261). One starts at a for(p, g;,9,) or (p, g, 9,) of discriminant d, which is easily
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determined using an algorithm for taking square roots mopul@hen one steps through the
principal cycle by repeated reduction until one detects the f@r®s- d/4) or (1,1,Q - d)/4),
respectrely. For each primep the running time depends on the number of forms in inybke c
aboutO(d'?**) such that the procedure for all primes[d| takesO(d**®).

We onclude by briefly discussing the application of this algorithm to don@jnsith h
> 1. The algorithm itself does not change, except that prime ideal fact@sfof the multipli-
ers| have o be onsidered, rather than primactors ofl in O4. What does it accomplish©®f
course it would be a trivial task to find a representation for the greatest comrisam df the
ideal ¢) and (7), as(¢, ) would already be such a representation. Instead, it is desirable to put it

into some normal formLet {l, ,..., Iy} be a set of representass of the ideal classes. As is
well-known, thel; can be chosen such that
Vd
B — ford>0,
il g =
2
021 ford <o
o

wherelllll is the number of congruence classes odhen &ery ideal ofO4 has a unique rep-
resentation of the forfw)/l;, @ 1Oy, 1<i < h. The GCD algorithm can mobe wsed to com-
pute the normal form d§, ). Thefollowing preparatory work is needed: one has to compute
the normal forms of the ideal prime factorslof = 2 ,..., (V[d| Jand a multiplication table for
the normal forms of the ideal produ¢t$l;. The latter problem is equalent to the computation

of the class group and can be done in jdfé*°Y, see Schoof [26]. The factorization of the
ideals () is at least as difficult as in the calsfd) = 1. After this preparatory work has been fin-
ished, the complexity bound of theorem 4.1 applies again.
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5. A Constructive Version of a Theorem by A. Thue with Application

A theorem by Axel Thue [30] states thatifand m are positie relatvely prime integers
then there exist integers Oxx< ym, 0 <|y| < VYm such thatax+y =0 mod m. This theorem and
its generalizations (cf. Brauer and Reynolds [2] and Nagell [19]) are usualigdpusing the
pigeon hole principle. The folang theorem shows oall solutions for the ab@ wngruence
can be found in Idgm steps.

Theorem 5.1: Leta=1,m, e, f =2 be ntegers such thad < m, (e—-1)f -1) <m<ef. Then
the problem

m|ax+y, O<x<e |y|<f, y#0 5.1)

is solvable in intgersx, y if and only ifd = GCD(a, m) < f. Furthermore, assuming that this is
the case, let

&=9, L ﬂ:ﬂ qN2L>e—l,

G 1 o qn mvd f-1
be the continued fraction approximationsath and choos@ such thag, <e< q,4. Thenx; =
On, Y1 = Mp, — aq, is a solution for (5.1). The set of all solutions for (5.43lesiely either
consists ofl xq, Ay, 1< A <min(e/xy, f/]y;]) or else consists 0k;, y; andx,, y, with y;y, < 0.
In the latter case we can determigey, from pp—/0n-1 OF Prst/Ansy in O(log? M) steps.

Before we can pree this theorem we need to establish a lemma from the theory of contin-
ued fraction approximationg-alowing Hardy and Wright [8], 810, we denote a continued frac-
tion by

1
, 8, - - Any gt —m———.
[aO 1 nlj]]] aO [al,...,an,lj]]]
Thenth corvergent is gven by
Pn
— =[ag, &,... 4
an [aO 1 n]
and satisfieP,0ng — Prnadn = (-1)" 2. Notice that
[ag, &,....an ] =[ag, &,....2, 1] (5.2)

but this is the only ambiguity possible for teenplecontinued fraction expansion of a real num-
ber whereg;, i > 0, ae positve integers.
Lemma5.1 ([8], Theorem 172): If

__PZ+R
T Qz+S’

whereZ =1 and P, Q, R, and S are integers such that
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Q>S>0 PS-QR=t+1,

thenR/S andP/Q are two consecutre mrvergents in the simple continued fraction expansion of
x provided we choose the LHS of (5.2) to resadmbiguity.

Proof. Consider the continued fraction expansion

P Pn
— = Ty, = —.
9 [ag, &, ..., &) a,

From (5.2) it follows that we may chooseven or add as we need it. Nwletn be such that

PS-QR= (_1)n—1 = PnGn-1 = PnaQn-
Now GCD(P, Q) =1 and Q > 0 and henceP = p,, andQ = q,, and therefore

Pn (S - qn—l) =0Qn (R - pn—l)-
This implies thafy, | (S—q,,-1) which by virtue ofg, =Q > S>0axd g, > g,4 > 0 is aly pos-
sible if S- g,4 = 0. ThereforeR= p,4 andS=q, and

an+pn—1 . .
X=—————= implies x=[ag, &,...,a,2Z]. O
0z, P (a0, &, &, Z]

Proof of Theorem 5:1Sincem | ax + y there exists an inger z such thaty = mz—- ax and thud
| y which impliesd <|y| < f. For p,/g, we have, as in he proof of lemma 4.1,

Oa  p,Q 1 1
00— ——0< <,
Dm qn 0 qn qn+1 qn €

therefore {;| =|aqg, — mp,| < m/e < f. Notice thaty; # 0 becausea/m # p,/q,, for q, < gy =
m/d.

We pove rext that if X;, y; also sole (5.1) andy,y; > 0 theny;/x; = V;/%. Since X; (ax
+ty) =x (@% +y)=0modm, yi % — Y% =0 modm. But fy; X, y1xf < (e-1)(f -1) <m,
hencey; X, = ¥; %, which is our claim.Nonetheless it can happen that G&Dy;) = g # 1 and
therefore the assertioq = Ax,, ¥; = 1y; needs proof. First we note that

ax +y; = mp, and GCOpy, 1) = GCD(p,, qn) = 1.
Thus

Yi _Amp,

X
al L+ L= =0modm

if and only ifg | A, Snce GCDg, p,) = 1.

Assume nw that there exists a second solutiagn y, to (5.1) such thay,y, < 0. Letax
+y; =mz, ax% + Y» = mz. Agan by multiplying the first equation witk,, the second with;
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and subtracting we gedy, — X,y3 =0 mod m. Since K Y|, Xoyi] < mandy;y, < 0 we nust
have X1y, = Xoy4| =m. Thusm X2, — X,z =|X1Y¥> — Xo¥4| = mwhich implies that

X1z, — Xoz| = 1. (5.3)

One immediate conclusion from (5.3) is that no solutions proportional to &jthgror x», Y,,
the only other possible solutions (as shown before), can.o€ourotherwise, for anof these
solutions, say, ¥, GCD(X, 2) # 1 whereZ'is the corresponding, also proportional, multiplier of
m.

It is harder to she how this second solutio®,, y, can be computed in case Mi€s. Sur
prisingly, this alternate solution can arise inotdifferent ways. Wthout loss of generality let us
assume thax, < x;. Notice that by this assumption wewonly know that eitherx;, y; or X,,
Yy, is the solution found as stated in the theorem.

Case 1 |y, >|yi|. LetZ =|yo/y1| > 1L ThenZmz = Zax + 2y, = Zax — Y,, henceZmz + mz,
= Zax + axy, or

a_Zza+z
m ZX+X,

All conditions to lemma 5.1 witl? = z, Q = X, R= 2, and S = x, are nov satisfied (refer in
particular to (5.3)) and we can conclude thdk, and z/x; must be consecwi& cnvergents to
a/m. Thereforex, = q,4 andy, = mp,4 — agp4.-

Case 2|yy|<|y1]. Considefor an integek =0,

X3 =X +KX, Y3=Yy1+Ky, Z3=27+Kz,

such that
Yol = |ysl and  sigrfys) = —sign(y,).
Now
a _ ZIn+tz Cly, O
0< Xy < Xg, — = , 2= =1, Z3Xo — ZHXq =1,
2 - 7% + X EI%B 3X2 2 X3

and lemma 5.1 applies @g. Thereforez,/x, and zz/x; are consecute @ntinued fraction
approximations. NoticéhatZ = 1 is possible if and only ifz,/x, is the second to last ceargent
of a/m. In that case

Z3 a
— =[0,a,...ay —1 h — =10, a4,....an]
X [0,a,....ay —1] where m [0,&,....ay]

In order to computey andy; we must findk. Since | =|ys — ky,| is monotonicly increasing
with k we choose the smallektsuch thatx; — kx, < e—1. In other words, the only possible
value is
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Eb(g_e"'ll:'
kK=O0——D0O
o * 0

Obsenre thatx; = X3 — kx, # X, since GCDK,, X3) = 1 and

ax+ty;=0modm for y;=y3—ky,. O

The following example shows that all three types of solutions, namely either a single one,
or two, or a family of proportional solutions do occur.

Example: Letm=11,e=f =4, a=7. The continued fraction expansion of 7/11is [0, 1, 1, 1,
3] and the covergents are 0/1, 1/1, 1/2, 2/3, and 7/Hencex; =3, y; =211 -7[B =1 ad x,

=2, ¥, =1[11 -7[2 = -3 ae the only solutions for (5.1) in this cadeor a = 2 the only solution
iS1[2 - 2=0 mod 1L but for a = 1 there are three solutions1 - 1=2[1 -2=3[1 -3=0
mod 11.

Next letm=244,a=47,e=7, and f = 39. Thefirst three cowergents are 0/1, 1/5, and 5/26.
Thus x, = 5 and y, = 2441 - 475 = 9. The second solution is obtained frokn =
[(26-7+1)S[=4a&x =26-4b=6ady, =-38.

Finally letm=56,a=21,e=7, and f = 9. The continued fraction expansion of 21/56 = [0, 2,
1, 2] and the corergents are 0/1, 1/2, 1/3, and 3/8husx, = 3, y, = =7. We dbtain z3/x3 = [0,
2,1,11=25k=05-7+1)B0=0,x, =5 andy; =7. O

One application of theorem 5.1, described bWeng [31] and others, is to rae ratio-
nal numbers from their modular representatiofet y/x [0 Q and suppose we ta found
boundse and f for the denominator and numeratogspectrely. Then having computed =
y X1 modm, GCD(x,m) = 1, e-1)(f —1) <m, we @n findy/x by continued fraction approxi-
mation. Unfortunatelywe nmay get tvo possible fractionsy;/x;, y»/X, of opposite sign.One
way to resolhe the ambiguity is to choose tlegwice the bound of the denominator and select the
solution withx < e/2, ly] < f. Wang, in fact, choose® such that ¥m/2 Cis a bound for both
numerator and denominatdin this application the existence of a solution is assumed andsThue’
theorem does not come into play.

We row goply theorem 5.1 to the problem of factoring a rational prpne the UFDOy,
d fixed. We agan must precondition our algorithm bgdtoring all rational primes smaller than
2V[D| (VD sufiices forD > 0). Firstconsiderp | d. From 82 we knw that p > VD factors if and
only if (D/p) = +1. Inthat case a prime factor gfis 7= GCD(p, | + VD) wherel? = D modulo
p. We can compute by either the Tonelli-Shanks algorithm (cf D. Knuth [14], Sec. 4.6.2r-Ex
cise 15) or by R. Schosf[27] algorithm. The latter is deterministic and run®ifiog® p) steps,
since {l| is fixed. TheGCD algorithm of 83 can gé ws the wanted dctor 7z but in this special

case theorem 5.1 can be applied to ouaathge. Let = Evaﬁrmgandf = EVEWD@ Then

(e-1)Xf-1) <p<efand 2< e< f for p > V[D|. Thenwe compute the continued fraction
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approximation td/p and get intgersx, y such thatp | yl + x, 0 <y < e, |x| < f. This solution
satisfies

0=(x+1y)x-1y)=x*-Dy?modp,

thus there exists an integgwith x> - D y?> = q p. By our bounds we get

2_Dy2< pVD|- D —P- =2VD| pfor D <0,
X y* < pV[D| Y [D| p for

X = D y?| < max(x?, D y?) <VD p for D >0,
thus ff| <2V[D|.

In the other case | d, p > V[D|, we hae x* — Dy? = gpwith x=0, y=1 andq <VD. In
both cases the factorization @into primesq = y; [I10y, in Oy is already knan. SinceQy is a
UFD and

(x+VDy)(x-VDYy) =y 000k p,

Y must dvide x + VDy or x — VDy. Lety be a maximum product of such thaty divides
x+VDy. Then g/y divides x-VDy and the prime factors op are then(x+VD y)/y and
(x=VD y)/(g/y). To prove tis, we only hee © show that neither quotient is a unit. This fol-
lows from the fact that the division can only decrease the norm ofwitewid. Ifone quotient
became a unit the other one would/dd havethe norm of their productp?, which is lager
than its original norngp.

We row dscuss hw to factor& [0 Oy4 with O4 a wnique factorization domainWe first
factorN & = p; [(0p, over the intgers. If(d/p,) = +1 o p; dividesd we splitp; = 7 7 by the
algorithm discussed abpe We thus obtain adctorizations & = i (7 and it remains to trial
divide & by 7z, 1<i <1, to determine which are its prime factors.



-26-

6. Conclusion

We havedescribed algorithms for taking the greatest common divisor and computing the
prime factorization of numbers in quadratic fields with unicaedrization. Thanethods also
apply to computing canonical representations of unions of ideals in quadratic number rings with-
out unique &ctorization. Oualgorithms are of polynomial running time provided we fix the dis-
criminant. W have also shown hwe to reduce &ctorization in quadratic number rings with
unique factorization to rational integeactorization. Ifthe discriminant is lae, say of order
10", our algorithms unfortunately become impractical. Futuxestigations will focus on he
to treat these cases efficiently.
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Note added September 22, 2006: corrected last line of proof of Theorem 5.1: replaced
Y1 =Yz — kg by yi = y3 = ky,.
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