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Abstract. In a quadratic number fieldQ(√ D), D a squarefree integer, with class number 1 any
algebraic integer can be decomposed uniquely into primes but for only 21 domains Euclidean
algorithms are known. It was shown by Cohn [5] that forD ≤ −19 even remainder sequences
with possibly non-decreasing norms cannot determine the GCD of arbitrary inputs.We extend
this result by showing that there does not even exist an input in these domains for which the
GCD computation becomes possible by allowing non-decreasing norms or remainders whose
norms are not as small as possible.We then provide two algorithms for computing the GCD of

algebraic integers in quadratic number fieldsQ(√ D). Thefirst applies only to complex quadratic
number fields with class number 1, and it is based on a short vector construction in a lattice.Its
complexity is O(S3), whereS is the number of bits needed to encode the input. The second
allows to compute GCDs of algebraic integers in arbitrary number fields (ideal GCDs if the class
number is > 1). It requires onlyO(S2) binary steps for fixed D, but works poorly ifD is large.
Finally, we prove that in any domain the computation of the prime factorization of an algebraic
integer can be reduced in polynomial-time to the problem of factoring its norm into rational
primes. Ourreduction is based on a constructive version of a theorem by A. Thue.
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1. Introduction

The fact that the set of complex integers {x + √ −1 y | x, y ∈ Z} f orms a unique factoriza-
tion domain follows from the ability to perform divisions with remainder in this domain.
Already C. F. Gauss generalized the complex integers to the domain of algebraic integers

Od = {
x + √ d y

2
| x, y ∈Z, x ≡ d y mod 2}, d =





4D

D

if D ≡ 2, 3mod 4

if D ≡1 mod 4

of a quadratic number fieldQ(√ D), D a squarefree integer, and proved that a Euclidean division
(and thus unique factorization) was possible ford = −11, −8, −7, −4, −3, 5, 8 and several more
positive discriminantsd. In general, an abstract integral domainR is Euclidean with respect to a
degree functionN from the non-zero elements ofR into the non-negative integers if for any two
elementsα , β ∈ R, β ≠ 0, eitherβ dividesα or there exists a (Euclidean) quotientγ ∈ R and a
(Euclidean) remainderρ ∈ R such thatα = βγ + ρ and N(ρ) < N(β ). Oncesuch a Euclidean
division is constructible, the GCD of any two elements inR can be determined by repeated divi-
sion. TheEuclidean algorithm (EA) consists of computing for any two elementsρ0, ρ1 ∈ R, a
sequence of Euclidean divisions

ρ i = ρ i−2 − γ i−1ρ i−1, i ≥ 2,

such thatN(ρ i) < N(ρ i−1) or ρ i = 0, in which case GCD(ρ0, ρ1) = ρ i−1. In the cases of quadratic
number fields mentioned before the norm serves as a degree function for the Euclidean algo-
rithm. In this paper we investigate the sequential complexity for GCD computations and prime
factorizations in any quadratic number field, including non-Euclidean ones.

We measure the input size in terms of the rational and irrational parts of the inputs. Let

Rξ =
x

2
, I ξ =

y√ |d|

2
for ξ =

x + y√ d

2
∈ Od

and let

size(ξ) = log(|Rξ|) + log(|I ξ|),

which is the number of bits necessary to write down ξ . With our notation the norm ofξ , N ξ , can
be represented as follows:

N ξ = ξ ξ =
x + y√ d

2

x − y√ d

2
=

x2 − d y2

4
=

=




(Rξ)2 − (I ξ)2

(Rξ)2 + (I ξ)2
for d > 0

for d < 0





∈ Z.

It is easy to show that Od is a Euclidean domain with respect to the norm ford = −11, −8, −7,
−4, −3, but for no otherd < 0, and for d = 5, 8, 12 and 13. There are exactly twelve more



-3-

discriminantsd > 0 for whichOd is Euclidean with respect to the norm, namely 17, 21, 24, 28,
29, 33, 37, 41, 44, 57, 73 and 76 (c.f.Chatland/Davenport [4] and Barnes/Swinnerton-Dyer [1]).

Od is a UFD if and only if its class numberh(d) is one. Thereare exactly four more
quadratic number fields withh(d) = 1, namely d = −19, −43, −67, and −163. That this list is
exhaustive was finally established by Stark [29].It is conjectured that infinitely many real
quadratic number fields have class number 1. The list of thosed > 0 for which Od is not
Euclidean with respect to the norm, but withh(d) = 1, begins with 53, 56, 61, 69, 77, 88, 89, 92,
93,⋅ ⋅  ⋅.

By definition, the Euclidean algorithm (EA) with respect to the norm applies toρ0, ρ1

exactly if there exists a norm-decreasing remainder sequence <ρ1, . . .  ,ρ n > with

ρ2 = ρ0 − γ1ρ1, ρ3 = ρ1 − γ2ρ2,..., ρ n = ρ n−2 − γ n−1ρ n−1, 0= ρ n−1 − γ nρ n, (1.1)

whereγ1,..., γ n ∈Od. The question arises, whether one can introduce another degree function
with respect to whichOd with h(d) = 1 becomes Euclidean. Even more generally, one may drop
the condition that the remainder sequence be decreasing with respect to any degree function and
ask if there exists any sequence of the form (1.1), norm-decreasing or not. Before discussing this
question, we introduce some more notation.

Generalizing (1.1), we consider a (finite or infinite) sequenceΣ = < ρ0, ρ1, ρ2, . . .  >, where

all ρ i ∈Q(√ d) (not necessarily∈Od). We define l = l (Σ) to be ∞, if Σ is infinite, orn+1, if Σ =
< ρ0, . . .  ,ρ n+1 >. Following Cooke [6], we callΣ adivision chain, if

i) For all i , 1≤ i < l (Σ), there exists aγ i ∈Od such thatρ i+1 = ρ i−1 − γ i ρ i ,

ii) ρ i ≠ 0 for all i < l ; if l <∞, thenρ l = 0.

The Euclidean algorithm in the most general sense consists of computing a division chain
< ρ0, ρ1,...,ρ n+1 > and returningρ n, and every rule for specifying the choice of the remainders
defines aversionof (EA). If the norms of all remainders are minimized, that is, if for alli < l , γ i

is chosen such thatN(ρ i+1) = N(ρ i−1 − γ i ρ i) has the smallest possible value, then we callΣ a mini-
mal remainderdivision chain, the corresponding instance of (EA) a minimal remainder-version
of (EA). Notice that we thus relax (1.1) in that we allow remainders with norm larger then the
corresponding divisors. We also apply the attribute ‘minimal remainder-’ to the individual divi-
sions; thus the terms ‘minimal remainder-quotient,’ ‘ minimal remainder,’ ‘ minimal remainder-
division’ have the obvious meaning. In this paper, the elementsγ i will always have the meaning

specified in i), whenever a division chainΣ is considered; for sequencesΣ′, Σ′′ etc. we useγ ′
i , γ ′′

i

etc., without defining these numbers.

We now turn to the question raised above. First, consider the quadratic domainsOd with
d ≤ −19. It is easy to show that the domainsOd, d = −19, −43, −67, and −163 are not Euclidean
with respect to any degree function (Samuel [24]). Also, there exist ρ0, ρ1 such that no finite
division chain beginning withρ0, ρ1 exists (Cohn [5]).Thus there does not exist any version of
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(EA) which can compute GCD(ρ0, ρ1).

Our first group of results extends these facts. We show in section 2 that ifΣ = < ρ0, ρ1, . . .  >

is an arbitrary division chain andΣ′ = < ρ0, ρ1, ρ ′
2, ρ ′

3, . . .  > a minimal remainder division chain,
then l (Σ) ≥ l (Σ′). Thusnothing can ever be gained by choosing remainders whose norms are not
as small as possible; neither can this reduce the number of divisions needed, nor does there exist
ev en a single input(ρ0, ρ1) for which the computation of GCD(ρ0, ρ1) succeeds by choosing a
non-minimal remainder at some stage, but does not succeed otherwise.

It has previously been shown for certain Euclidean domains that choosing minimal remain-
ders with respect to the standard degree function minimizes the number of divisions. This was
done by Lazard forZ and forK [x], K a field ([17]), and also forO−3 (private communication),
and by Rolletschek [22] forO−4. Here the standard degree function is the absolute value for the
domainZ, the degree in the usual sense for polynomials and the norm for imaginary quadratic
number fields. For d = −4, that is the Gaussian integers, Caviness/Collins [3] have adopted
Lehmer’s idea for integer GCD (cf. Knuth [14], §4.5.2), whereas Rolletschek [21], [22] estab-
lished the equivalent of Laḿe’s [15] bound on the maximum number of possible divisions neces-
sary.

Our second theorem from section 2 says that inOd, d = −19, −43, −67, and −163,
GCD(ρ0, ρ1) can be computed by some version of (EA) only if a norm-decreasing sequence of
remainders can be achieved. From this the results of Samuel and Cohn follow as an easy corol-
lary.

In the cased > 0 the situation is different. Under a generalized Riemann hypothesis, Wein-
berger [32] shows that every unique factorization domainOd, d > 0, is Euclidean with respect to
some degree function, and in Cooke/Weinberger [7] it is shown that a constant bound for the
number of divisions can be achieved, namely 5. In fact, these results are shown for the rings of
algebraic integers in arbitrary algebraic number fields, provided there infinitely many units. It is
not shown, however, how one can efficiently construct these division chains and thus compute
GCDs.

There remains the need for efficient algorithms for computing GCDs in those quadratic
domains which are not Euclidean with respect to the norm, both real and imaginary. We will
describe two such algorithms in this paper. The first, to be presented in section 3, only applies to
the imaginary quadratic domainsOd, d = −19, −43, −67 or −163. It is based on a short vector
construction in a lattice. The number of binary steps needed to compute GCD(ξ,η) is

O(S3), S= sizeξ + sizeη.

The polynomial bound would still remain valid for variabled < 0. In other words, a polynomial
upper bound for the complexity can be proved without using the fact shown in [29] that only 4
non-Euclidean imaginary quadratic domainsOd satisfyh(d) = 1.
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The second algorithm, given in section 4, is much more general, because it applies to all
quadratic domainsOd, both real and imaginary, including those withh(d) > 1. In the latter case,
ideal GCDs are computed in a certain sense, which we will precisely specify later. The algo-
rithm has quadratic complexity for any fixed d. Howev er, it requires some preparatory work
(independent ofξ , η), which is quite costly ifd is large. It is not clear to us how to accomplish
polynomial running time ifd is not fixed. Concluding the discussion of GCD-algorithms, we
wish to point out that an asymptotically fast algorithm equivalent to Scḧonhage’s [25] integer-
half-GCD-algorithm is still not described at this time.

We next turn to factorization into primes. One realizes easily that an algorithm for factor-
ing in Od can be devised which requires only an additional polynomial cost beyond the factoriza-
tion of certain rational integersx. The reason is that a rational primep either remains irreducible
in Od or factors intop= π1π2 p= π1π2 with N π1 = N π2 = p. In this paper, we establish that from
a factorization ofN ξ into primesp1 ⋅ ⋅ ⋅ pk we can construct for fixedd in deterministic polyno-
mial time the factorizationξ = π1 ⋅ ⋅ ⋅ π n. We solve this problem by using a constructive version
of a theorem by A. Thue for solving the diophantine equationx2 − dy2 = z p in x, y and smallz.
This approach follows Shanks [28], Section 71, although ourz is about the squareroot of the one
obtained there. The main feature of this approach is that it does not require the computation of
greatest common divisors inOd, which is the basis for another standard procedure to solve this
problem. Thatour reduction is deterministic follows from a result by R. Schoof [27] and the fact
thatd is fixed.
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2. Properties of Quadratic Fields

The point of this section is to show that in imaginary quadratic domainsOd, d ≤ −19, one
cannot speed up (EA) or increase the set of input for which (EA) works by allowing remainder
sequences which are not norm-decreasing or remainders of non-minimal norm. First we recall
some well-known facts about quadratic fields, the proofs of which can be found, e. g. in Hasse’s
text [9], §16. Let

ω d =







1 + √ d

2
√ d

2

for d ≡ 1 mod 4,

for d ≡ 0 mod 4.

Then the set{1, ω d} forms an integral basis forOd, that is, every element ofOd can be repre-
sented in the forma ⋅1 + b ⋅ ω d, with a, b ∈ Z.

A unit ε ∈ Od is an element such that1/ε ∈ Od. A necessary and sufficient condition forε
to be a unit is that|N ε| = 1. For d < 0 the multiplicative group of units is generated by{ √ −1} for

d = −4, { (1 + √ −3) /2} for d = −3 and {−1} in all other cases.For d > 0 there always exists afun-
damental unitε1, Rε1 > 0, I ε1 > 0, such that the unit group is generated by{ −1, ε1}. Two ele-
mentsξ1, ξ2 ∈ Od areassociates, ξ1 ∼ ξ2, if there exists a unitε such thatξ1 = εξ2. For d > 0
anyξ1 has, according to [9], an associateξ2 with

|Rξ2|, |I ξ2| <
|N ξ1| + ε1

2
.

However, we will need a better estimate in §4.By φ we denote the argument-function,
which is defined for all complex numbersξ ≠ 0 by ξ = |ξ| ⋅ (cos(φ(ξ)) + i sin(φ(ξ))). We also need
the analogous definition given in [9], p. 288, for elements of real quadratic fields: ford > 0, φ(ξ)

is defined byξ = sign(ξ) √ |Nξ|eφ(ξ); thenφ(ξ) = −φ(ξ). Dividing ξ1 by a power ε k
1 of ε1 such that

φ (ε k
1 ) is as close toφ(ξ1) as possible, we can also find an associateξ2 of ξ1 such that|φ(ξ2)| ≤

φ(ε1)/2. By adding and subtracting the equalities

ξ2 = sign(ξ2)√ |Nξ2|e
φ(ξ2),

ξ2 = sign(ξ2)√ |Nξ2|e
−φ(ξ2)

we get2|Rξ2|, 2|I ξ2| ≤ √ |Nξ2| ⋅ (eφ(ξ2) + e−φ(ξ2)), hence

|Rξ2|, |I ξ2| ≤ √ |Nξ2|e
|φ(ξ2)| ≤ √ |Nξ2|√ ε1.

We now discuss how rational primesp split in Od, h(d) = 1. If p | d then p ∼ π 2 for some
prime π ∈ Od. If p ≥ 3 and the Legendre symbol(d/p) = (D/p) = +1 then there exists l ∈ Z
such thatl2 ≡ D mod p. Thereforep | (l + √ D)(l − √ D) and thus p ∼ π π with π = GCD(p,



-7-

l + √ D). If p = 2 and d = D ≡ 1 mod 8then

2 |  (1 −
1+ √ D

2
) (1 −

1− √ D
2

)

and thus 2∼ π π with π = GCD(2, 1− (1 + √ D)/2). In all other casesp is a prime inOd.

We now come to the main results of this section, which apply to the domainsOd, d = −19,
−43, −67, −163. Although one would usually expect that minimal remainder-versions require the
smallest number of divisions among all versions of (EA), one might suspect that there are excep-
tional instances, where other versions terminate faster. The following theorem shows, however,
that this is not the case in those imaginary quadratic fields under consideration.

Theorem 2.1: Let Q(√ d) be an imaginary quadratic number field whose corresponding number
ring Od is a UFD without a Euclidean algorithm with respect to the norm, that is,d has one of
the values−19, −43, −67, −163. Let Σ = < ρ0, ρ1, ρ2, . . .  > be an arbitrary division chain, and let
Σ́ = < ρ0, ρ1, ρ2́, ρ3́, . . .  > be a minimal-remainder division chain beginning with the same two
elementsρ0, ρ1. Thenl (Σ) ≥ l (Σ́ ).

Proof: We apply a technique developed in Lazard [17] and in Rolletschek [22]. In what follows,
we call a division chainΣ = < ρ0, ρ1, . . .  >a counterexample, if there exists a sequenceΣ́ = < ρ0,
ρ1, ρ2́, . . .  > such that the assertion of the theorem does not hold. Since the theorem is trivially
true for l (Σ) = ∞, we may apply induction onl (Σ). Thusassume thatΣ = < ρ0, ρ1 ,..., ρ n+1 > is
a counterexample, but that the theorem is true for every shorter sequence in place ofΣ. Let Σ́ be
a minimal remainder-division chain forρ0, ρ1 with l (Σ) < l (Σ́ ). Then n≥ 2 and ρ2 ≠ ρ2́, other-
wise < ρ1, ρ2, ..., ρ n+1 > would be another counterexample, contrary to the induction hypothesis.
Without loss of generality we may make the following three assumptions:

i) All remainders inΣ except possiblyρ2 are minimal. For otherwise we could have consid-
ered a minimal remainder-division chain< ρ1, ρ2, ρ´́3, . . .  > whose lengthk, by induction
hypothesis, would have to be no more thann; but then< ρ0, ρ1, ρ2, ρ´́3,..., ρ´́k+1 > would be
another counterexample which would also satisfy i).

ii) γ1́ = 0; otherwise we could replaceρ0 by ρ0 − γ1́ρ1, γ1́ by 0 to get a counterexample satis-
fying ii).

iii) ρ1 = 1; otherwise we could divide ρ0 ,..., ρ n+1 by ρ1 to obtain a counterexample satisfying
iii). It is here that the consideration of non-integral values ofρ0,... makes the proof more
convenient.

It follows from assumption ii) that0 is one of the algebraic integers inOd closest to

ρ0 = ρ2. Henceρ0 must lie in a region R1 = {α | α ∈Q(√ d), |α | ≤ |α − γ | for all γ ∈Od}, which is
shown in fig. 1.
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Place figure 1 here or below

Sinceρ2 ≠ ρ2́, γ1 ≠ 0. We consider the various possible values ofγ1. In sev eral cases we have to
consider the value ofρ1/ρ2 = 1/ρ2, and we denote this value byδ .

a) γ1 = 1. Thenρ2 lies in the region R2 which is constructed by shiftingR1 to the left by1;
R2 is bounded by the straight lines−3/2 + yi and −1/2 + yi (y ∈ R), and 4 additional straight
lines. Henceδ certainly lies within the regionŔ2 shown in fig. 2;

Place figure 2 here or below

here the circlesC1, C2 are the sets of inverses of all points of the form−1/2 + yi and of the form
−3/2 + yi respectively.

Now recall the definition of the elementω d at the beginning of this section. We need the
fact that I ω d > 2. δ has a distance≤ 1 from −1, but a distance> 1  from all lattice points outside
the real axis. Henceγ2, which is a minimal remainder-quotient ofρ1 and ρ2 by assumption i),
and which is therefore one of the elements ofOd closest toδ , can only have one of the values 0,
−1 or −2. Correspondingly, we hav eto consider three subcases.

a1)γ2 = 0. Then the sequenceΣ starts with< ρ0, 1, ρ0 −1, 1, ρ0, ρ5, . . .  >, since the mini-
mal remainder ofρ0 −1 and 1 equals the minimal remainder ofρ0 and 1.(More precisely, we
may assume without loss of generality thatρ4 = ρ0 by the same argument as in the justification
of assumption i), although there may be several minimal remainders ofρ0 and 1.)We now con-
sider the division chainΣ́́́ = < ρ0, 1, ρ0, ρ5 ,..., ρ n+1 >. Σ́́́ is actually a minimal remainder-divi-
sion chain, though not necessarily identical withΣ́ = < ρ0, 1, ρ0, ρ3́, . . .  >. We can apply the
induction hypothesis to the sequences formed fromΣ́́́ and Σ́ by omitting their first elements;
sinceΣ́ is also a minimal remainder-division chain, it follows thatl (Σ́ ) ≤ l (Σ́́́ ) = n −1, contradict-
ing the assumption thatn +1 = l (Σ) < l (Σ́ ). This concludes the proof of the theorem for this case.

a2)γ2 = −1. In this case,Σ starts with< ρ0, 1, ρ0 −1, ρ0, ρ4, . . .  >. Again we construct an
division chainΣ́́́ shorter thanΣ: Σ́́́ = < ρ0, 1, ρ0, −ρ4, ρ5,..., (−1)nρ n+1 >, this time using the fact
that 1mod ρ0 = − ((ρ0 −1) mod ρ0). Then we can show as in a1) that the given minimal
remainder-division chainΣ́ satisfiesl (Σ́ ) ≤ l (Σ́́́ ) < l (Σ), a contradiction.

a3) ρ2 = − 2. The sequenceΣ starts with

< ρ0, 1, ρ0 −1, 2ρ0 −1, ρ0(1 − 2γ3) + (−1 + γ3), ρ5, ρ6, . . .  >.

We put

Σ́́́ = < ρ0,1, ρ0, 1− 2ρ0, ρ0(−1 + 2γ3) + (1 − γ3), − ρ5, − ρ6, . . .  >,

choosingγ ´́́3 = γ3 −1. In this case,l (Σ́ ) ≤ l (Σ́́́ ) = l (Σ), a contradiction.

b) γ1 = −1. This case parallels a) completely, only some signs have to be changed.
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c) γ1 = 2. As in case a), we can determine the set of all possible values ofδ ; it is the region
R3́ shown in fig. 3.

Place figure 3 here or below

It follows thatγ2 can only be0 or −1. The caseγ2 = 0 is treated as in case a1). Assumeγ2 = −1. Σ
now has the form

< ρ0, 1, ρ0 − 2, ρ0 −1, ρ0(1 − γ3) + (−2 + γ3), ρ5, . . .  >,

and the sequenceΣ́́́ we construct has the form

< ρ0, 1, ρ0, 1− ρ0, ρ0(−1 + γ3) + (2 − γ3), − ρ5, . . .  >,

where we chooseγ ´́́3 = − 2 + γ3. Then l (Σ́́́ ) = l (Σ), and the rest of the proof parallels previous
cases.

d) γ1 = − 2. This case is analogous to c).

e) γ1 is real,|γ1| ≥ 3. Then|ρ2| = |ρ0 − γ1| > 2, hence|δ | <1/2. Thenγ2 = 0, and the assertion
of the theorem follows as in a1).

f) γ1 is not real:γ1 = a + bi with b ≠ 0. We show in all cases|I (ρ2)| = |I (ρ0 − γ1)| > 1.
Indeed, the minimal absolute value ofI (ρ0 − γ1) occurs withd = −19, γ1 = ω d andρ0 = ζ as pic-
tured in fig. 1, and in this case|I (ρ2)| >1. Fig. 4 shows the region Ŕ4, which is the set of all
inverses of complex numbersα with |I (α )| >1, and which contains the set of all possible values
of δ .

Place figure 4 here or below

Again it follows that the elementγ2 ∈ Od closest toδ can only be 0, soΣ = < ρ0, 1, ρ0 − γ1,
ρ4, . . .  >. But now Σ′′′ = < ρ0, 1, ρ4, . . .  > is a shorter division chain thanΣ, leading to the same
contradiction as in the previous cases.

The cases a)-f) are exhaustive, completing the proof.

The conditiond ≤ −19 in the previous theorem is used in the estimates in the cases a) and
f) in the above proof. Remarkably, the statement of the theorem (without the assumption ofOd

being non-Euclidean) fails ford = −11, but it remains valid for all other Euclidean imaginary
number fields, as was recently shown in [23].

In algorithm-theoretic terms, theorem 2.1 can be formulated as follows:

Corollary 2.1: Let d be as in the theorem. Then

i) All minimal remainder-versions of (EA), applied toρ0, ρ1 require the same number of
divisions, and no other version requires fewer.
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ii) If no minimal remainder-version of (EA) allows the computation of GCD(ρ0, ρ1), then no
division chain terminates with GCD(ρ0, ρ1).

While theorem 2.1 and its corollary deal with divisions where the remainder has non-mini-
mal norm, the next theorem shows that nothing is gained by allowing divisions where the
remainder has norm greater than the divisor, even if that remainder is minimal. In other words, if
a minimal remainder-version of (EA), applied toρ0, ρ1, leads to a division where no remainder
with norm smaller than the divisor exists, then every version of (EA) fails for this input.

Theorem 2.2: For any d ≤ −19, h(d) = 1, and for all ρ0, ρ1 ∈ Od there exists a sequenceγ1 ,...,
γ n ∈ Od satisfying (1.1) only if a norm-decreasing sequence with this property exists, that is, if
the common version of (EA) applies toρ0, ρ1, where the remainder of each division has smaller
norm than the divisor.

Proof: Consider a minimal remainder-division chainΣ = < ρ0, ρ1, ρ2, . . .  >, and assume that< ρ1,
ρ2, . . .  > is not norm-decreasing. We will show that there exists an infinite minimal remainder-
division chainΣ́ starting with ρ0, ρ1. Similarly as in the proof of theorem 2.1. a number of
assumptions can be made without loss of generality:

i) |Nρ2| ≥ |Nρ1|;
ii) ρ1 = 1;

iii) γ1 = 0;
iv) Rρ0 ≥ 0, I ρ0 ≥ 0.

The justification of i) is immediate. For ii) and iii) see the analogous assumptions in the proof of
theorem 2.1. Finally, iv) can be justified by symmetry; in the following proof only some signs
and limits forφ(ρ0) would have to be changed ifR ρ0 and/orI ρ0 is < 0. We note in passing that
an assumption analogous to iv) could also have been made in the proof of theorem 2.1., but its
justification would have required a few lines, and the rest of the proof would not have been sim-
plified.

We hav e ρ2 = ρ0 by iii), N(ρ0) = N(ρ2) ≥ 1 by i) and ii). By iii), 0 is one of the algebraic
integers inOd closest toρ0 = ρ2. Together these facts imply thatρ0 lies in the region shown in
fig. 5.

Place figure 5 here or below

It follows now that π /3 ≤ φ(ρ0) ≤ π /2, henceδ = 1/ρ0 satisfies−π /2 ≤ φ(δ ) ≤ − π /3; also,
N(δ ) ≤ 1. Then one of the algebraic integersγ2 ∈ Od closest toδ is 0. Choosingγ2 = 0, we get
ρ3 = 1. Hence the following is a minimal remainder-division chain:

Σ́ = < ρ0, 1, ρ0, 1, ρ0, . . .  >.

This sequence is infinite, as desired. By theorem 2.1. every division chain starting withρ0, ρ1 is
infinite, so no version of (EA) can terminate.
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Corollary 2.2: Od, d ≤ −19, h(d) = 1, is not a Euclidean domain for any choice of degree func-
tion.

Proof: Recall that ford ≤ −19, Od is not Euclidean with respect to the norm. This means, by defi-
nition, that there exist elementsρ0, ρ1∈Od such that every remainder ofρ0 and ρ1 has larger
norm thanρ1. Thus if Σ is a minimal remainder-division chain beginning with ρ0, ρ1, then <ρ1,
ρ2, . . .  > is not norm-decreasing, and by theorem 2.2 no finite division chain beginning withρ0,
ρ1 exists. The assertion follows.
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3. GCD Computation by Lattice Reduction

As we have seen in §2 not all quadratic fields with unique factorization allow a Euclidean

algorithm, e.g.Q(√ −19 ) andQ(√ 53 ). Therefore a different GCD procedure is required for these
domains. Ourfirst algorithm for imaginary quadratic fields is based on computing short integral
lattice vectors and is interesting for two reasons, even though the algorithm in §4 has lower
asymptotic complexity. First, it does not require any field-dependent preconditioning, and sec-
ond its running time is polynomial independently of the fact that|d| is known to be bounded.
The main idea of the algorithm is to solve λξ + µη = 0 such thatNµ is small. The following
lemma will be useful.

Lemma 3.1: Let ξ , η ∈ Od, d ≤ −19, h(d) = 1, ξη ≠ 0, δ = GCD(ξ,η), ξ * = ξ /δ , η* = η/δ .
Assume thatλξ + µη = 0, λ , µ ∈ Od. Thenη* | λ , ξ * | µ. Furthermore, ifλ is not an associate
of η* thenNµ ≥ 4Nξ * .

Proof: Sinceλξ * = −µη* and GCD(ξ * ,η* ) = 1 all prime factors ofη* must occur inλ and simi-
larly for ξ * andµ. Since 2 and 3 are primes in anyOd in question,N(µ/ξ * ) ≥ 4.

We consider the cased ≡ 1 mod 4 only, since only this one occurs.Let λ = (l1 − l2/2) +

√ d l2/2, ξ = (x1 − x2/2) + √ d x2/2, µ = (m1 − m2/2) + √ d m2/2, η = (y1 − y2/2) + √ d y2/2 with l1,
l2, m1, m2, x1, x2, y1, y2 ∈ Z. Then

4R(λξ + µη) = (4x1 − 2x2)l1 + (x2 − 2x1 + dx2)l2 + (4y1 − 2y2)m1 + (y2 − 2y1 + dy2)m2
2I (λξ + µη)

√ d
= x2l1 + (x1 − x2)l2 + y2m1 + (y1 − y2)m2.

(3.1)

We want to find integersl1, l2, m1 andm2 such that the right sides of the equations (3.1) are 0,
meaning that for the correspondingλ and µ, λξ + µη = 0. Simultaneously we want to keepNµ
small because the smallest suchµ is an associate ofξ * by the previous lemma. This leads to the
problem of finding a short vector in an integer lattice. The next theorem shows that only asso-
ciates ofξ * can correspond to short vectors in a particular lattice and thus finding a short vector
in that lattice with a reduction algorithm actually givesξ * and henceδ = ξ /ξ * .

Theorem 3.1: LetOd a UFD with d ≤ −19, and letξ = (x1 − x2/2) + √ d x2/2 andη = (y1 − y2/2) +

√ d y2/2 be two nonzero elements ofOd. Let c andd̂ be integers such thatc ≥ √ 12Nξ , |√ |d| − d̂| ≤
1/2. Furthermore,let L* be the 4-dimensional integer lattice spanned by the columns of the
matrix

L =







c(4x1 − 2x2)

cx2

0

0

c(x2 − 2x1 + dx2)

c(x1 − x2)

0

0

c(4y1 − 2y2)

cy2

2

0

c(y2 − 2y1 + dy2)

c(y1 − y2)

−1

d̂







.

Then ifv* = L × [l1, l2, m1, m2]
T ≠ 0 is a vector of shortest Euclidean length in the latticeL* , then

µ = (m1 − m2/2) + √ d m2/2 must be an associate ofξ * = ξ /GCD(ξ,η). Furthermore,if v ∈ L* \
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{0} does not have shortest Euclidean length thenv 2 > 12/5 v* 2.

Proof: Since

det




4x1 − 2x2

x2

x2 − 2x1 + dx2

x1 − x2





= (2x1 + x2)
2 − dx2

2 > 0, x1x2 ≠ 0,

L is of full rank. With λ andµ as above we get from (3.1) that

l1 4cR(λξ + µη) v1

l2 2cI (λξ + µη)/√ d v2

m1 2m1 − m2 v3

m2 d̂m2 v4

L × = = v = ∈ Z4.

We now estimate the Euclidean lengthv of v ≠ 0. If λξ + µη ≠ 0 then v 2 ≥ c2 ≥ 12Nξ . In

caseλξ + µη = 0, v1 = v2 = 0, and we get from||d|− d̂
2
| ≤ d̂, d̂/|d| < 1/4, d ≤ −19, andm2

2 ≤
4Nµ/|d|:

| v 2 − 4Nµ| = |( 2m1 − m2)
2 + d̂

2
m2

2 − (( 2m1 − m2)
2 − dm2

2)|

= |d̂
2 − |d||m2

2 ≤ d̂m2
2 ≤

4d̂Nµ
|d|

< Nµ.
(3.2)

From (3.2) we conclude that

3Nµ < v 2 < 5Nµ for λξ + µη = 0. (3.3)

Therefore, under the assumption thatµ is an associate ofξ * andλξ + µη = 0, the corresponding
vector v* satisfies v* 2 < 5Nµ = 5Nξ * . Otherwise lemma 3.1 states thatNµ ≥ 4Nξ * and thus
we get from (3.3)

v 2 ≥ min(1 2Nξ, 3Nµ) ≥ 12Nξ * .

Therefore

v 2 ≥ 12Nξ * >
12

5
v* 2

which proves the theorem.

The algorithm for computing the GCD ofξ andη is now easy. One computes a vector in
the latticeL* whose length is within a factorC3/2 of the length of the shortest vector, whereC is
a constant withC > 4/3 andC3 < 12/5, e.g.,C = 83/62. Thereexist several versions of the basis
reduction algorithm by A. K. Lenstra et al [18],. cf [12].. Already the original algorithm [18]
can find such a vector. Since the dimension is fixed all these algorithms take O(size3ξη) binary
steps to compute such a vector (slightly less if fast multiplication is used).But by theorem 3.1
such a vector must be a shortest vector whose entries determine an associate ofξ * . We then
obtainδ = GCD(ξ,η) = ξ /ξ * .
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4. Greatest Common Divisor Computation

We present a GCD procedure that works for all quadratic domains. It turns out that one
always can divide an appropriate multiplel ξ , l ∈ Z, of the dividendξ by η and accomplish a
remainder of norm smaller than|N η|. Moreover, the size ofl only depends ond and not onξ or
η. This fact was shown for arbitrary number fields by Hurwitz, see [11], p. 237.The following
lemma provides the specific bound forl for quadratic number fieldsOd. It is not restricted to the
caseh(d) = 1.

Lemma 4.1: Let c ∈ R, 1/2 ≤ c ≤ 1, Od the ring of integers in a quadratic number field.Then
for all ξ , η ∈ Od there exists anl such that

l ∈ Z with 1 ≤ l ≤




√ |d|

2c




,

and there exists aγ ∈ Od with

|R(lξ /η − γ )| ≤
1

2
, |I (lξ /η − γ )| < c. (4.1)

Furthermore, ifd > 0 then |N(lξ − γ η)| ≤ c2|Nη|; if d < 0 then |N(lξ − γ η)| <(c2 +1/4) |Nη|.

Proof: This follows from the theory of approximation of real by rational numbers and of contin-
ued fractions. We apply theorem 171 in Hardy/Wright [8]: ifpn/qn and pn+1/qn+1 are then-th and
n +1-th continued fraction approximation of a real numberx, then





x −
pn

qn





<
1

qnqn+1
(<

1

q2
n
).

We apply this theorem tox =
I (ξ /η)

I (ω d)
=

I (ξ /η)

√ |d|/2
, and a continued fraction approximationpn/qn of

x such thatqn ≤
√ |d|

2c
and eitherpn/qn = x or qn+1 > √ |d|/2c. Then





I (ξ /η)

√ |d|/2
−

pn

qn





<
1

qnqn+1
<

c

qn
√ |d|

2

,

hence




I (qnξ /η − pn

√ |d|

2
)




=



qn I (ξ /η) − pn

√ |d|

2





< c.

Then (4.1) is satisfied forl = qn, γ = pnω d +  R(qnξ /η − pnω d + 1/2).

Now let τ = lξ /η − γ . For d > 0, |Nτ | = |R(τ )2 − I (τ )2| ≤ max(R(τ )2, I (τ )2) = c2. For d < 0,
|Nτ | = R(τ )2 + I (τ )2 ≤ c2 + 1/4. Then the second statement of the lemma follows by multiplying
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these inequalities by |Nη|.

This lemma suggests the following algorithm for computing GCD’s in arbitrary quadratic
domains. We formulate it first for thosed with unique factorization. Atthe end of this section
we will discuss how to adapt it to apply to the caseh(d) > 1.

Preconditioned GCD in Od

Input: ξ , η ∈ Od, Od a UFD.

Preconditioning: Giv en are the prime factors ofl = 2 ,..., m= √ |d| in Od,

l = π el ,1

1 ⋅ ⋅ ⋅ π el ,k

k , 2 ≤ l ≤ m, el , j ≥ 0.

If d > 0 we furthermore are given a fundamental unitε1.

Output: δ = GCD(ξ,η).

Step1: Π ← ∅; ρ0 ← ξ ; ρ1 ← η.
FOR i ← 1, 2,⋅ ⋅  ⋅ WHILE ρ i ≠ 0 DO step 2.

Step2: Here we carry out a ‘‘pseudo-remainder’’ step, that is we computel i+1 ∈ Z, 1 ≤ l i+1 ≤ m,
andγ i+1 ∈ Od such that

|N(l i+1ρ i−1 − γ i+1ρ i)| <
1

2
|Nρ i|.

Set (xi + yi √ d)/2 ← ρ i−1/ρ i , wherexi , yi ∈ Q.
Determinel i+1 satisfying lemma 3.1 forc = 1/2 as follows. Computethe n-th convergent pn/qn

of the continued fraction approximation foryi such thatqn ≤ m and eitherpn/qn = yi or qn+1 >
m.

Setl i+1 ← qn; yi+1 ← pn. At this point |l i+1yi − yi+1| <1/√ d.
Computexi+1 ∈ Z such that





xi − (dyi+1 mod 2)

2
− xi+1





≤
1

2
.

Setγ i+1 ← xi+1 + (dyi+1 mod 2 +yi+1√ d)/2.
Setρ i+1 ← l i+1ρ i−1 − γ i+1ρ i ; Π ←  Π ∪ {π j | 1≤ j ≤ k, el , j ≥1}.
At this point |Nρ i+1| < |Nρ i|/2.
IF d > 0 and |Nρ i+1| ≠ 1 THEN

We adjust ρ i+1 such thatR ρ i+1 and I ρ i+1 do not become too large, as follows:
Computek ≥ 0 such that |φ(ε k

1 ) − φ(ρ i+1)| <φ(ε1)/2.

Set ρ i+1 ← ρ i+1/ε k
1 . At this point|R ρ i+1| and |I ρ i+1| are both <√ |Nρ i+1|√ ε1. (Refer to §2

for an explanation of these facts.)
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Step3: Remove extraneous factors fromρ i−1 introduced by thel i .
Setβ ← 1. FORπ ∈ Π DO

Compute the maximale, f such thatπ e | ξ , π f | η.
Setβ ← β ×π min(e, f ); ρ i−1 ← ρ i−1/π min(e, f ).
WHILE π | ρ i−1 DO ρ i−1 ← ρ i−1/π .

RETURNδ ← β ρ i−1.

If one also needs the extended Euclidean schemeσ ξ + τ η = δ it suffices to setσ =

(s1 + √ d s2)/2, τ = (t1 + √ d t2)/2, s1 − ds2 = 2s3, t1 − dt2 = 2t3, and solve the four resulting linear
equations with integer coefficients in the integerss1, s2, s3, t1, t2, t3 by some integer linear sys-
tem solver, see R. Kannan and A. Bachem [13].

It is easy to show that for fixedd this algorithm has time complexity O(S3), whereS is the
size of the input, defined in §1. Some additional effort is needed to show that the complexity can
be improved to O(S2), and lastly to determine the complexity in dependence ofd.

Theorem 4.1: After input independent preconditioning, the GCD ofξ , η ∈ Od, Od a UFD, can
be computed in

O(S √ |d| (log d) (S+ √ |d| logd)), S = sizeξ + sizeη,

binary steps using classical integer arithmetic procedures.

Proof: This can be shown similarly as for the Euclidean algorithm applied to rational integers
(see Knuth [14], Exercise 30 of §4.5.2), but the details are somewhat more involved. We hav eto
analyze the preconditioned algorithm, and also to apply some minor modifications. In what fol-
lows, we mean by ‘constant’ some quantity that is independent ofξ andη, though it may still
depend ond. First we have to consider the number of iterations of step 2. It follows from|Nρ i+1|
< |Nρ i|/2 that this number is bounded by log|Nρ1| + 1, which isO(S).

Second, we have to establish an upper bound for the size of the remaindersρ2, ρ3 etc.
Because of the adjustment ofρ i+1 at the end of each iteration of step 2, applied ford > 0, there

exists a constantC1 such that both|R(ρ i+1)| and |I (ρ i+1)| ≤ C1√ |Nρ i+1| < C1√ |Nρ1|, whereC1 = √ ε1

(see §2). Thus sizeρ i = O(S+ logε1), without fixing i . Moreover, ε1 < d√ |d| (cf. Hua [10]), thus

log(ε1) = O(√ |d| log |d|).* We will also need the constantC1 in the following paragraphs.

It is now easy to analyze the complexity of step 3.We assume that the multiplicationsβ
← β ⋅ π min(e, f ) and divisionsρ i−1 ← ρ i−1/π min(e, f ) are replaced by sequences of multiplicationsβ
← β ⋅ π and divisions ρ i−1 ← ρ i−1/π , which does not reduce the complexity. Then, apart from
the final multiplicationδ ← β ρ i−1, step 3 consists of a sequence of divisions and multiplications,

* Unfortunately, by the Brauer-Siegel theorem [16], Chapter XVI, not a much better estimate for log(ε1) is to be
expected sinceh(d) log(ε1) >> d1/2− ε for d → ∞.
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where one of the operands has sizeO(S+ √ |d| logd) while the other is a prime factor of a rational

integerl < √ |d|. Sucha prime factor is either a rational primep < √ |d|, or an elementπ ∈ Od

with |Nπ | < √ |d|. In the latter caseπ will also have been adjusted by multiplication by an appro-

priate power ofε1, so that size(π ) = O(log |d| + logε1) = O(√ |d| logd). Thuseach operation

requiresO((S+ √ |d| logd)√ |d| logd) steps. Noticethat whenever a division α /ψ is performed,
Nψ must be computed, which takes onlyO(d(log d)2) binary steps, sinceψ will always be the

second type of operator, with sizeO(√ |d| logd). Thenumber of multiplications and divisions to
be performed in step 3 is easily seen to beO(z), wherez is the sum of the number of prime fac-
tors of ξ , η, and ρ i−1, which is O(S). In the final multiplicationδ ← β ρ i−1 both factors have

once again sizeO(S+ √ |d| logd). Thusthe total complexity of all operations in step 3 becomes

O(S(S+ √ |d| logd)√ |d| logd + (S+ √ |d| logd)2) = O(S(S+ √ |d| logd)√ |d| logd).

It remains to analyze the complexity of step 2.

If we compute the exact representation ofxi andyi , then this calculation would take O(S2)
steps for a fixed d, which is too much to guarantee the desired overall complexity for all itera-
tions. However, it suffices to compute floating point approximations forxi , yi , with an appropri-
ate upper bound for theabsoluteerror, 0.01 say. Then instead of|Nρ i+1| < |Nρ i|/2 we will accom-
plish |Nρ i+1| < C2|Nρ i| for some constantC2, 1/2 < C2 < 1. This does not affect the analysis as far
as asymptotic step count and bit sizes are concerned.Notice that the floating point approxima-
tions thus are local to step 2, and no error gets propagated to the next iteration. The exact values
of xi , yi are

xi = 2
Rρ i−1Rρ i ± I ρ i−1I ρ i

Nρ i
,

with the +sign applying ford < 0,

yi = 2
−Rρ i−1I ρ i + I ρ i−1Rρ i

Nρ i √ |d|
.

Let Ai = log√ |Nρ i−1| − log√ |Nρ i|. The numerators of xi and yi have absolute values

≤ 2C2
1√ |Nρ i−1||Nρ i|. Hence there is a constantC3 such that log|xi|, log|yi| ≤ Ai + C3, and a con-

stantC4 such that the desired accuracy for xi , yi is guaranteed, ifAi + C4 significant digits of
both numerator and denominator ofxi and yi are computed, and floating point division is
applied.

For the following sufficiently exact error analysis we need to introduce a variant of the def-
inition of size(α ) (α ∈ Od) giv en in the introduction. (The previous definition is insufficient

because size(a + a√ d) can be roughly2 size(a) (a ∈ Z), whereas we will need a bound for

size(a+ a√ d) − size(a) that is independent ofa.) Define

size1(α ) = max(log |Rα |, log |Iα |).
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Now the relation |R(ρ j)|, |I (ρ j)| ≤ C1√ |Nρ j| also allows to find another constantC5 such that



size1(ρ j) − log√ |Nρ j|

≤ C5. (4.2)

Therefore at most2C5 leading digits can cancel out when the subtraction in the calculation of
Nρ j is performed. Applying (4.2) toj = i −1 and to j = i , Ai can be estimated by
(size1 ρ i−1 − size1 ρ i) within an error bounded by a constant boundC6; so the number of digits
that ultimately have to be used is(size1 ρ i−1 − size1 ρ i) + C4 + 2C5 + C6 = B. Note thatB, con-
trary to Ai , is known beforexi , yi are computed. As pointed out,C1 = O(√ ε1). Thenit follows

that C3 ,..., C6 are all of sizeO(logε1), which is O(√ |d| logd), as stated above. HenceB =

O(Ai + √ |d| logd). All arithmetic with B-digit-precision can be performed inO(B2) =

O((Ai + √ |d| logd)2) = O(A2
i + |d|(log d)2) steps. The total complexity of all these operations for

all iterations of step 2 to is therefore

O(
i≥1
Σ A2

i + S|d|(log d)2) = O(S(S+ |d|(log d)2)).

Floating point arithmetic only applies toxi and yi , not to other intermediate results like p j , q j

( j = 1,...,n), xi+1 etc. We now consider the complexity of the remaining operations in an itera-
tion of step 2. The continued fraction approximationpn/qn of yi can be calculated as follows:
from theB-digit floating point representation ofyi we obtain a fractional representations/t, s, t
∈ Z, wheres hasB digits andt is a power of 2. Note that|yi| cannot be larger than itsB-digit

mantissas, since B was large enough to guarantee an absolute error < 1.If |yi| < 1/√ |d|, then
instead of computing continued fractions we may simply choosel i+1 = 1, yi+1 = 0, which satisfies

the required inequality|l i+1yi − yi+1| < 1/√ |d|. If not, then both log(s) and log(t) are O(Ai +

√ |d| logd). If g1, g2 are the quotients of the Euclidean algorithm for rational integers with non-
negative remainders, applied tos, t, then the numberspi , qi are determined by the following
recurrence relation:

p−1 = q0 = 0, q−1 = p0 = 1,

pi = pi−2 + gi pi−1

qi = qi−2 + gi qi−1





i = 1, 2,⋅ ⋅ ⋅.

From these equations it becomes clear thatΣn
i=1 log(gi) = O(logqn) = O(log√ |d|), and since the

intermediate results of the Euclidean algorithm applied tos, t, as well as the numberspi , qi have

O(Ai + √ |d| logd) digits, we find by the usual method thatO((log d)(Ai + √ |d| logd)) binary steps
are needed for the calculation ofpn, qn.

The logarithms of rational and irrational part ofγ i+1 areO(Ai + √ |d| logd), sinceγ i+1 is an

approximation ofl i+1ρ i−1/ρ i . This ensures the desired complexity boundO((Ai + √ |d| logd)

(S+ √ |d| logd)) for the multiplicationγ i+1ρ i in the computation ofρ i+1. Then the same bound for
the order of magnitude applies to the logarithms ofxi+1, yi+1, p1 ,..., pn. The only step which
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requires further consideration is the division ofρ i+1 by an appropriate power ofε1.

Consider first the value ρ(0)
i+1 of ρ i+1 before this adjustment. Recall thatρ(0)

i+1 = ρ iτ , where

|Rτ |, |Iτ | < 1 (actually ≤ 1/2 if the exact values ofxi , yi are used). This implies size1ρ(0)
i+1 ≤

size1ρ i + C7 for some constantC7 with C7 = O(log |d|). Let ρ(t)
i+1 be the value ofρ i+1 after the

adjustment. Thenφ(ρ(0)
i+1) = φ(ρ(t)

i+1) + kφ(ε1) ≥ (k −1)φ(ε1). Together with the defining equality
for the argument functionφ , this implies k = O(Ai). We can proceed as follows: first, if

Rρ(0)
i+1 < 0, replaceρ(0)

i+1 by −ρ(0)
i+1. Then if I ρ(0)

i+1 > 0, compute ρ( j )
i+1 = ρ( j−1)

i+1 /ε1, j = 1, 2,... until

I ρ( j0)
i+1 ≤ 0, so thatφ ρ( j0−1)

i+1 > 0, φ ρ( j0)
i+1 ≤ 0, then choose amongρ( j0−1)

i+1 and ρ( j0)
i+1 the one for which

the rational part, or, equivalently, the absolute value of the irrational part, is smaller. If i nstead

after the possible replacement ofρ(0)
i+1 by −ρ(0)

i+1 we getI ρ(0)
i+1 < 0, compute similarlyρ( j )

i+1 = ρ( j−1)
i+1 ε1,

j = 1, 2, ..., until I ρ( j0)
i+1 ≥ 0. Thenumber of divisions isO(Ai), and each division has complexity

O((S+ √ |d| logd) √ |d| logd).

We conclude that the highest asymptotic complexity within step 2 occurs for the adjust-

ment ofρ i+1, namelyO(Ai (S+ √ |d| logd) √ |d| logd). Adding this up fori = 1, 2 ,..., we obtain

O(S(S+ √ |d| logd) √ |d| logd). We hav eestablished that this is indeed an upper bound for the
complexity of all operations, including step 3. This completes the proof.

Omitting the adjustment ofρ i+1 does not affect the correctness of the algorithm. In this
case it is not obvious, however, that the complexity O(S2) can still be achieved for fixed d.
Moreover, it is in any case desirable to carry out this normalization at least for the final result.
After all, if GCD(ξ , η) = 1, it would be unsatisfactory to obtain some power ±ε k

1 , k ≠ 0, as out-
put.

We now discuss how the preconditioning for this algorithm can be done.For the calcula-
tion of the fundamental unitε1 in the cased > 0, there exists the well-known algorithm using
continued fractions. An improvement has been provided in Pohst & Zassenhaus [20]. The fac-

torization of the multipliersl < √ |d| will begin by finding their factorization into rational primes
p. Using the sieve of Eratosthenes, the largest prime factor for every l can be found in time

O(√ |d|), which essentially solves the problem. Then it can be determined efficiently, using the
law of quadratic reciprocity, which of these rational primesp split further inOd; see §5. One of
the referees suggests the following algorithm for finding the prime factorsπ1 andπ2, if p splits
further. The idea is to explicitly find the transformation from the quadratic form(1 ,0,− d/4) or
(1 ,1, (1 − d)/4), whichever is integral, to a form(4p, g1, g2), all of discriminantd. Consider first

the cased ≡ 0 (mod 4). Then the transforming matrixM =




α
β

γ
δ





yields the solution

α 2 − dβ 2 = 4p, the wanted factorization. For d ≡ 1 (mod 4), the matrix M yields
(2α + β )2 − dβ 2 = 4p as the solution. In order to computeM one appeals to the theory of reduc-
tion on the principal cycle of reduced quadratic forms of discriminantd (cf [26],. Section 4, pp.
256-261). One starts at a form(4p, g1, g2) or (p, g1, g2) of discriminant d, which is easily
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determined using an algorithm for taking square roots modulop. Then one steps through the
principal cycle by repeated reduction until one detects the forms(1 ,0,− d/4) or (1, 1,(1 − d)/4),
respectively. For each primep the running time depends on the number of forms in in the cycle,

aboutO(d1/2+ε ) such that the procedure for all primes <√ |d| takesO(d1+ε ).

We conclude by briefly discussing the application of this algorithm to domainsOd with h
> 1. The algorithm itself does not change, except that prime ideal factors of(l ) for the multipli-
ers l have to be considered, rather than prime factors ofl in Od. What does it accomplish?Of
course it would be a trivial task to find a representation for the greatest common divisor of the
ideal (ξ) and (η), as(ξ , η) would already be such a representation. Instead, it is desirable to put it
into some normal form.Let {I1 ,..., Ih} be a set of representatives of the ideal classes. As is
well-known, theI i can be chosen such that

I i ≤







√ d

2
2√ |d|

π

for d > 0,

for d < 0,

where I is the number of congruence classes modI . Then every ideal ofOd has a unique rep-
resentation of the form(α )/I i , α ∈ Od, 1 ≤ i ≤ h. The GCD algorithm can now be used to com-
pute the normal form of(ξ , η). Thefollowing preparatory work is needed: one has to compute

the normal forms of the ideal prime factors ofl , l = 2 ,...,  √ |d| and a multiplication table for
the normal forms of the ideal productsI i ⋅ I j . The latter problem is equivalent to the computation
of the class group and can be done in time|d|1/4+o(1 ), see Schoof [26]. The factorization of the
ideals (l ) is at least as difficult as in the caseh(d) = 1. After this preparatory work has been fin-
ished, the complexity bound of theorem 4.1 applies again.
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5. A Constructive Version of a Theorem by A. Thue with Application

A theorem by Axel Thue [30] states that ifa andm are positive relatively prime integers
then there exist integers 0 <x ≤ √ m, 0 <|y| ≤ √ m such thatax+ y ≡ 0 mod m. This theorem and
its generalizations (cf. Brauer and Reynolds [2] and Nagell [19]) are usually proved using the
pigeon hole principle. The following theorem shows how all solutions for the above congruence
can be found in log2 m steps.

Theorem 5.1: Let a ≥ 1, m, e, f ≥ 2 be integers such thata < m, (e−1)( f −1) < m < ef . Then
the problem

m | ax + y, 0 < x < e, |y| < f , y ≠ 0 (5.1)

is solvable in integersx, y if and only if d = GCD(a, m) < f . Furthermore, assuming that this is
the case, let

p0

q0
=

0

1
,

p1

q1
,...,

pN

qN
=

a/d

m/d
, qN ≥

m

f −1
> e−1,

be the continued fraction approximations ofa/m and choosen such thatqn < e≤ qn+1. Thenx1 =
qn, y1 = mpn − aqn is a solution for (5.1). The set of all solutions for (5.1) exclusively either
consists ofλ x1, λ y1, 1 ≤ λ < min(e/x1, f /|y1|) or else consists ofx1, y1 and x2, y2 with y1y2 < 0.
In the latter case we can determinex2, y2 from pn−1/qn−1 or pn+1/qn+1 in O(log2 m) steps.

Before we can prove this theorem we need to establish a lemma from the theory of contin-
ued fraction approximations.Following Hardy and Wright [8], §10, we denote a continued frac-
tion by

[a0, a1,...,an,⋅ ⋅ ⋅] = a0 +
1

[a1,...,an,⋅ ⋅ ⋅]
.

Thenth convergent is given by

pn

qn
= [a0, a1,...,an]

and satisfiespnqn−1 − pn−1qn = (−1)n−1. Notice that

[a0, a1,...,an,1] = [a0, a1,...,an +1] (5.2)

but this is the only ambiguity possible for thesimplecontinued fraction expansion of a real num-
ber whereai , i > 0, are positive integers.

Lemma 5.1 ([8], Theorem 172): If

x =
PZ + R

QZ + S
,

whereZ ≥ 1 and P, Q, R, and S are integers such that
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Q > S > 0, PS− QR= ±1,

thenR/S andP/Q are two consecutive convergents in the simple continued fraction expansion of
x provided we choose the LHS of (5.2) to resolve ambiguity.

Proof: Consider the continued fraction expansion

P

Q
= [a0, a1,..., an] =

pn

qn
.

From (5.2) it follows that we may choosen ev en or odd as we need it. Now let n be such that

PS− QR= (−1)n−1 = pnqn−1 − pn−1qn.

Now GCD(P, Q) = 1 andQ > 0 and henceP = pn andQ = qn and therefore

pn (S − qn−1) = qn (R − pn−1).

This implies thatqn | (S− qn−1) which by virtue ofqn = Q > S > 0 and qn > qn−1 > 0 is only pos-
sible if S − qn−1 = 0. ThereforeR = pn−1 andS = qn−1 and

x =
pnZ + pn−1

qnZ + qn−1
implies x = [a0, a1,..., an, Z].

Proof of Theorem 5.1: Sincem | ax + y there exists an integer z such thaty = mz− ax and thusd
| y which impliesd ≤ |y| < f . For pn/qn we have, as in the proof of lemma 4.1,





a

m
−

pn

qn





≤
1

qn qn+1
≤

1

qn e
,

therefore |y1| = |aqn − mpn| ≤ m/e < f . Notice thaty1 ≠ 0 becausea/m ≠ pn/qn for qn < qN =
m/d.

We prove next that if x̂1, ŷ1 also solve (5.1) andy1 ŷ1 > 0 theny1/x1 = ŷ1/ x̂1. Since x̂1 (ax1

+ y1) ≡ x1 (ax̂1 + ŷ1) ≡ 0 mod m, y1 x̂1 − ŷ1x1 ≡ 0 mod m. But |y1 x̂1|, |ŷ1x1| ≤ (e−1)( f −1) < m,
hencey1 x̂1 = ŷ1x1, which is our claim.Nonetheless it can happen that GCD(x1, y1) = g ≠ 1 and
therefore the assertion ˆx1 = λ x1, ŷ1 = λ y1 needs proof. First we note that

ax1 + y1 = mpn and GCD(pn, x1) = GCD(pn, qn) = 1.

Thus

aλ
x1

g
+ λ

y1

g
=

λ m pn

g
≡ 0 mod m

if and only if g | λ , since GCD(g, pn) = 1.

Assume now that there exists a second solutionx2, y2 to (5.1) such thaty1y2 < 0. Let ax1

+ y1 = mz1, ax2 + y2 = mz2. Again by multiplying the first equation withx2, the second withx1
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and subtracting we getx1y2 − x2y1 ≡ 0 mod m. Since |x1y2|, |x2y1| < m and y1y2 < 0 we must
have |x1y2 − x2y1| = m. Thusm |x1z2 − x2z1| = |x1y2 − x2y1| = m which implies that

|x1z2 − x2z1| = 1. (5.3)

One immediate conclusion from (5.3) is that no solutions proportional to eitherx1, y1 or x2, y2,
the only other possible solutions (as shown before), can occur. For otherwise, for any of these
solutions, saŷx, ŷ, GCD( x̂, ẑ) ≠ 1 where ẑ is the corresponding, also proportional, multiplier of
m.

It is harder to show how this second solutionx2, y2 can be computed in case it exists. Sur-
prisingly, this alternate solution can arise in two different ways. Without loss of generality let us
assume thatx2 < x1. Notice that by this assumption we now only know that eitherx1, y1 or x2,
y2 is the solution found as stated in the theorem.

Case 1: |y2| > |y1|. Let Z = |y2/y1| > 1. ThenZmz1 = Zax1 + Zy1 = Zax1 − y2, henceZmz1 + mz2
= Zax1 + ax2, or

a

m
=

Z z1 + z2

Z x1 + x2
.

All conditions to lemma 5.1 withP = z1, Q = x1, R = z2, and S = x2 are now satisfied (refer in
particular to (5.3)) and we can conclude thatz2/x2 andz1/x1 must be consecutive convergents to
a/m. Thereforex2 = qn−1 andy2 = mpn−1 − aqn−1.

Case 2: |y2| ≤ |y1|. Considerfor an integerk ≥ 0,

x3 = x1 + kx2, y3 = y1 + ky2, z3 = z1 + kz2,

such that

|y2| ≥ |y3| and sign(y3) = − sign(y2).

Now

0 < x2 < x3,
a

m
=

Zz3 + z2

Zx3 + x2
, Z =





y2

y3





≥ 1, z3x2 − z2x3 = ±1,

and lemma 5.1 applies again. Thereforez2/x2 and z3/x3 are consecutive continued fraction
approximations. Noticethat Z = 1 is possible if and only ifz2/x2 is the second to last convergent
of a/m. In that case

z3

x3
= [0, a1,...,aN −1] where

a

m
= [0, a1,...,aN].

In order to computex1 and y1 we must findk. Since |y1| = |y3 − ky2| is monotonicly increasing
with k we choose the smallestk such thatx3 − kx2 ≤ e−1. In other words, the only possible
value is
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k =




x3 − e + 1

x2




.

Observe that x1 = x3 − kx2 ≠ x2 since GCD(x2, x3) = 1 and

ax1 + y1 ≡ 0 mod m for y1 = y3 − ky2.

The following example shows that all three types of solutions, namely either a single one,
or two, or a family of proportional solutions do occur.

Example: Let m = 11, e = f = 4, a = 7. The continued fraction expansion of 7/11 is [0, 1, 1, 1,
3] and the convergents are 0/1, 1/1, 1/2, 2/3, and 7/11.Hencex1 = 3, y1 = 2⋅11 −7⋅3 = 1 and x2

= 2, y2 = 1⋅11 −7⋅ 2 = −3 are the only solutions for (5.1) in this case.For a = 2 the only solution
is 1⋅ 2 − 2 ≡ 0 mod 11 but for a = 1 there are three solutions,1⋅1 − 1 ≡ 2⋅1 − 2 ≡ 3⋅1 − 3 ≡ 0
mod 11.

Next let m = 244, a = 47, e = 7, and f = 39. Thefirst three convergents are 0/1, 1/5, and 5/26.
Thus x2 = 5 and y2 = 244⋅1 − 47⋅ 5 = 9. The second solution is obtained fromk =
(26 − 7 +1) /5 = 4 as x1 = 26 −4⋅ 5 = 6 and y1 = −38.

Finally let m = 56, a = 21, e = 7, and f = 9. The continued fraction expansion of 21/56 = [0, 2,
1, 2] and the convergents are 0/1, 1/2, 1/3, and 3/8.Thusx2 = 3, y2 = −7. We obtain z3/x3 = [0,
2, 1, 1] = 2/5,k =  (5 − 7 +1) /3 = 0, x1 = 5, and y1 = 7.

One application of theorem 5.1, described by P. Wang [31] and others, is to recover ratio-
nal numbers from their modular representations.Set y/x ∈ Q and suppose we have found
boundse and f for the denominator and numerator, respectively. Then having computeda =
y x−1 mod m, GCD(x, m) = 1, (e−1)( f −1) < m, we can findy/x by continued fraction approxi-
mation. Unfortunately, we may get two possible fractionsy1/x1, y2/x2 of opposite sign.One
way to resolve the ambiguity is to choose thee twice the bound of the denominator and select the

solution with x < e/2, |y| < f . Wang, in fact, choosesm such that √ m/2 is a bound for both
numerator and denominator. In this application the existence of a solution is assumed and Thue’s
theorem does not come into play.

We now apply theorem 5.1 to the problem of factoring a rational primep in the UFDOd,
d fixed. We again must precondition our algorithm by factoring all rational primes smaller than

2√ |D| (√ D suffices forD > 0). Firstconsiderp |/ d. From §2 we know that p > √ D factors if and

only if (D/p) = +1. In that case a prime factor ofp is π = GCD(p, l + √ D) wherel2 ≡ D modulo
p. We can computel by either the Tonelli-Shanks algorithm (cf D. Knuth [14], Sec. 4.6.2, Exer-
cise 15) or by R. Schoof’s [27] algorithm. The latter is deterministic and runs inO(log8 p) steps,
since |d| is fixed. TheGCD algorithm of §3 can give us the wanted factorπ but in this special

case theorem 5.1 can be applied to our advantage. Lete = 
√ p/√ |D|


and f = 

√ p √ |D|

. Then

(e−1)( f −1) < p < ef and 2≤ e ≤ f for p > √ |D|. Thenwe compute the continued fraction
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approximation tol /p and get integersx, y such thatp | yl + x, 0 < y < e, |x| < f . This solution
satisfies

0 ≡ (x + l y)(x − l y) ≡ x2 − D y2 mod p,

thus there exists an integerq with x2 − D y2 = q p. By our bounds we get

x2 − D y2 < p √ |D| − D
p

√ |D|
= 2√ |D| p for D < 0,

|x2 − D y2| <  max(x2, D y2) < √ D p for D > 0,

thus |q| < 2√ |D|.

In the other casep | d, p > √ |D|, we have x2 − Dy2 = qp with x = 0, y = 1 and q < √ D. In
both cases the factorization ofq into primesq = γ1 ⋅ ⋅  ⋅ γ k in Od is already known. SinceOd is a
UFD and

(x + √ D y) (x − √ D y) = γ1 ⋅ ⋅ ⋅ γ k p,

γ i must divide x + √ D y or x − √ D y. Let γ be a maximum product ofγ i such thatγ divides

x + √ D y. Then q/γ divides x − √ D y and the prime factors ofp are then(x + √ D y)/γ and

(x − √ D y)/(q/γ ). To prove this, we only have to show that neither quotient is a unit. This fol-
lows from the fact that the division can only decrease the norm of the dividend. If one quotient
became a unit the other one would have to hav ethe norm of their product,p2, which is larger
than its original normqp.

We now discuss how to factorξ ∈ Od with Od a unique factorization domain.We first
factor N ξ = p1 ⋅ ⋅  ⋅ pk over the integers. If(d/pi) = +1 or pi dividesd we split pi = π i π i by the
algorithm discussed above. We thus obtain a factorizationξ ξ = π1 ⋅ ⋅  ⋅ π l and it remains to trial
divideξ by π i , 1 ≤ i ≤ l , to determine which are its prime factors.
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6. Conclusion

We hav edescribed algorithms for taking the greatest common divisor and computing the
prime factorization of numbers in quadratic fields with unique factorization. Themethods also
apply to computing canonical representations of unions of ideals in quadratic number rings with-
out unique factorization. Ouralgorithms are of polynomial running time provided we fix the dis-
criminant. We hav e also shown how to reduce factorization in quadratic number rings with
unique factorization to rational integer factorization. Ifthe discriminant is large, say of order
1010, our algorithms unfortunately become impractical. Future investigations will focus on how
to treat these cases efficiently.

Acknowledgement: We thank Andrew Odlyzko for providing us with many references to the lit-
erature. Thereferee has scrupulously read and corrected two versions of the manuscript, as well
as suggested many improvements and several references unknown to us. For that we are very
grateful.

Note added September 22, 2006: corrected last line of proof of Theorem 5.1: replaced
y1 = y3 − kx2 by y1 = y3 − ky2.
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