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Abstract

A new algorithm is introduced which computes the multivariate leading coefficients of
polynomial factors from their univariate images. This algorithm is incorporated into a sparse
Hensel lifting scheme and only requires the factorization of a single univariate image. The algo-
rithm also provides the content of the input polynomial in the main variable as a by-product. We
show how we can take advantage of this property when computing the GCD of multivariate poly-
nomials by sparse Hensel lifting.
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1. Introduction

Various problems on multivariate polynomials such as exact division, factorization, and
greatest common divisor computation, can be solved by lifting a univariate factorization by a
Hensel algorithm of some sort. Four major problems can greatly impede the efficiency of the
lifting process when applied to sparse polynomials. For sake of clarity we shall discuss those
problems in the context of sparse factorization, f (x1 , . . . ,  xv) being the polynomial to be fac-
tored. The first problem is referred to as bad zeros problem which is observed when the univari-
ate polynomial f (x1, 0 , . . . , 0) either drops in degree compared to f (x1 , . . . ,  xv) or has, unlike f ,
multiple roots. Both events make lifting virtually impossible. One is forced to consider in place
of f the polynomial f (x1, x2 + a2 , . . . ,  xv + av), ai non-zero elements from the coefficient
domain. The disadvantage of this transformation is that the latter polynomial will have many
more terms than f , in case f originally was sparse. It is Zippel’s [19] contribution to show how
sparseness can be preserved during the lifting of the translated polynomial. The second problem
is referred to as extraneous factors problem which occurs when f (x1, a2 , . . . ,  av) has more fac-
tors than f (x1 , . . . ,  xv) does. Then the lifted factors tend to be very dense. For certain coefficient
domains such as the rationals this is unlikely to happen, in practice, though theoretical justifica-
tion has only been obtained recently, cf. von zur Gathen [6] and Kaltofen [8]. The third problem
is what we shall call the abundant factors problem, which has been recognized only very recently
[7].† The problem arises when the factorization of f to be lifted consists of many polynomials.
Then the intermediate linear systems created by the standard Hensel lifting techniques, described
e.g. in [15], [18], and [19], have exponentially many equations in polynomially many unknowns.
Von zur Gathen’s clever solution to this problem shows how polynomially many equations still
“strong enough” to determine all unknowns can by selected in advance. The fourth problem is
called the leading coefficient problem which results from an ambiguity in the lifting process.
One can essentially impose any leading coefficient on the factors and lift, but only the correct
leading coefficients will keep the intermediate results sparse. Until now, no complete algorithm
seems to be described, except the heuristic by Wang [15] for rational coefficients. The main
result of this paper fills this gap. Our algorithm is surprising in that it works with just the factor-
ization of f (x1, a2 , . . . ,  av) and does not require, unlike Wang’s method, the factorization of the
leading coefficient of f .

Before we discuss further properties of our leading coefficient determination procedures,
we wish to point out that von zur Gathen’s [7] algorithm by-passes the leading coefficient prob-
lem. However, von zur Gathen’s resolution compares, in most cases, unfavorably to ours because
of two reasons. First, his algorithm needs to lift a univariate polynomial whose degree is the
total degree of f whereas our algorithm works with a univariate polynomial whose degree is the
minimum of the degrees in the individual variables. Second, von zur Gathen substitutes a linear
form in three variables for the minor variable that is lifted, thus possibly cubing the number of
monomials, whereas we can use a standard scheme that substitutes a linear form in just one vari-
able.

† Thanks go to Joachim von zur Gathen for bringing this problem to my full attention.
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Our leading coefficient determination algorithm is a probabilistic algorithm in the sense
that the correct leading coefficients are returned only if the original evaluations are lucky, that is
they do not nullify a certain polynomial derived from f . The algorithm invokes the sparse lifting
algorithm recursively. Therefore, we will describe the sparse lifting process as well, including
additional conditions on the evaluations under which this procedure will return the correct
results. We will also prove that we only need to select the evaluations from a moderately large
set in order to ensure that all recursive calls of our algorithms succeed with high chance. It is not
an easy task to prove the correctness of the sparse lifting algorithm even if we hav e the leading
coefficients correctly. We will also supply an entirely different and simpler proof than that given
in [7].

Our leading coefficient determination algorithm has another interesting property. The con-
tent of f in the main variable can be determined along with the leading coefficients. This feature
allows another important application of our algorithms. We can use it for substantially improv-
ing Moses’s and Yun’s EZ-GCD algorithm. Instead of computing the GCD of the contents of the
input polynomials, we can do away with one single recursive call to the GCD procedure.

Notation: We will use wi... j as a short-hand for the vector (wi, wi+1 , . . . ,  w j), i ≤ j. Thus F[x1...v]
is the domain of polynomials in x1 , . . . ,  xv over F . The degree of f ∈ F[x1...v] in xi, 1 ≤ i ≤ v, is
denoted by degxi

( f ), the total degree of f by deg( f ); ldcfx1
( f ) ∈ F[x2...v] denotes the leading

coefficient of f in x1, contx1
( f ) ∈ F[x2...v] the content of f in x1 (which makes sense only if F

is a GCD domain). The content decomposition of f ,

f = f (x1) ⋅ ⋅ ⋅ f (xv), f (xi) ∈ F[xi...n], 1 ≤ i ≤ v,

requires

contxi
( f (xi) ⋅ ⋅ ⋅ f (xv)) = f (xi+1) ⋅ ⋅ ⋅ f (xv), 1 ≤ i ≤ v − 1.

Notice that f (x1) is the primitive part of f in x1. If F is a field, the content decomposition is
unique except for association, that is multiplication with elements in F \ {0} itself. In general,
we write a ∼ b if a and b from a unique factorization domain (UFD) are associates. By mon( f )
we denote the number of non-zero monomials in f ∈ F[x1...v], that is

mon( f ) = card(I ) with f =
i1...v ∈I
Σ ci1...v

xi1
1 ⋅ ⋅ ⋅ xiv

v , ci1...v
∈ F \ {0}.

By Z we denote the integers and by Z+ = {1, 2, 3, ⋅ ⋅  ⋅}.
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2. The Newton-Hensel Lemma

In this section we present another version of the Hensel lemma. The factorization to be
lifted in this lemma is allowed to have multiple factors. The special case of one multiple factor
becomes Newton iteration for computing roots, which explains the choice for our title. In allow-
ing multiplicities greater than one we have, howev er, weakened the Hensel lemma significantly.
Existence of a lifted factorization is, in general, not guaranteed any longer, only uniqueness. It
requires the deep Hilbert irreducibility theorem and its effective versions to realize that in the
multivariate case we do not need that aspect of the Hensel lemma, which in the univariate case is
such a crucial one.

Lemma 2.1: Let k ∈ Z+, φ , γ 1 , . . . , γ r ∈ K [y, x] \ K [y], λ0, λ1 , . . . , λ r ∈ K [y], K a field,
degy(γ i) < k, e1 , . . . ,  er not divisible by the characteristic of K . Assume that

i) λ(y) = ldcfx(φ ) = λ0λ e1
1 ⋅ ⋅  ⋅ λ er

r , λ(0) ≠ 0,

ii) λ0γ e1
1 ⋅ ⋅  ⋅ γ er

r ≡ φ mod yk ,

iii) ldcfx(γ i) ≡ λ i mod yk , 1 ≤ i ≤ r,

iv) GCD(γ i(0, x), γ j(0, x)) = 1 for 1 ≤ i < j ≤ r.

Furthermore assume that there exist γ i ∈ K [y, x] with degy(γ i) < k + 1 such that

v) λ0 γ e1
1 ⋅ ⋅  ⋅ γ er

r ≡ φ mod yk+1,

vi) ldcfx(γ i) ≡ λ i mod yk+1, 1 ≤ i ≤ r,

vii) γ i ≡ γ i mod yk , 1 ≤ i ≤ r.

Then the γ i are uniquely determined.

Proof: Let

γ̃ i = γ i + λ i,k+1 yk+1 xdi , 1 ≤ i ≤ r,

where λ i,k+1 ∈ K is the coefficient of yk+1 in λ i, di = degx(γ i). By assumption vi) and vii) we can
write

γ i = γ̃ i + γ̂ i yk+1, γ̂ i ∈ K [x], deg( ̂γ i) < di. (A)

It suffices to prove that the γ̂ i are uniquely determined. Plugging (A) into v) we get

λ0

v

i=1
Π γ̃ ei−1

i (γ̃ i + ei γ̂ i yk) ≡ φ mod yk+1

or
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λ0 γ̃ e1−1
1 ⋅ ⋅ ⋅ γ̃ er−1

r

r

i=1
Σ(ei γ̂ i yk

r

j=1

j≠i

Π γ̃ j) ≡ φ − λ0

r

i=1
Π γ̃ ei

i mod yk+1. (B)

Since γ̃ i ≡ γ i mod yk , it follows from ii) that

φ − λ0

r

i=1
Π γ̃ ei

i ≡ τ (x) yk mod yk+1, τ (x) ∈ K [x].

Furthermore, since by iii) and (A) ldcfx(γ̃ i) ≡ λ i mod yk+1 it follows that deg(τ ) < degx(φ ). Let

η i(x) = γ i(0, x), η*
i =

r

j=1

j≠i

Π η j , 1 ≤ i ≤ r.

Notice that by iv) GCD(η i, η j) = 1, 1 ≤ i < j ≤ r. Now (B) is satisfied only if

λ0(0) ηe1−1
1 ⋅ ⋅ ⋅ ηer−1

r

v

i=1
Σ ei η*

i γ̂ i = τ .

Thus ηe1−1
1 ⋅ ⋅ ⋅ ηer−1

r must divide τ , and let the quotient be ρ ∈ K [x]. By i) Σr
i=1 eideg(η i) =

degx(φ ), therefore deg(ρ) < deg(η1) + ⋅  ⋅  ⋅ + deg(ηr) and we have

ρ
η1 ⋅ ⋅ ⋅ ηr

=
λ0(0)e1γ̂ 1

η1
+ ⋅  ⋅ ⋅ +

λ0(0)er γ̂ r

ηr
.

From this we conclude that γ̂ i is the numerator of the ith term in the partial fraction decomposi-
tion of ρ/(η1 ⋅ ⋅ ⋅ ηr) divided by λ0(0) ei ≠ 0, and therefore it is uniquely determined.
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3. GCD-Free Basis Construction

In the Newton-Hensel lemma we needed the assumption of pairwise relative primality on
the factors we lift. If one wants to lift a factorization g1 ⋅ ⋅  ⋅ gr ≡ f mod y, where GCD(gi, g j) |∼
1, one has to refine the factorization by repeated GCD computation. We introduce the notion of
GCD-free basis for this problem. We shall, however, formulate our definitions and lemmas over
general unique factorization domains, though we have polynomial domains in mind.

Definition 3.1: Let A = {a1 , . . . ,  ar} ⊂ D \ {0}, D a UFD. A set B = {b1 , . . . ,  bs} is called a
GCD-free basis for A if

i) For all 1 ≤ i < j ≤ s: GCD(bi, b j) ∼ 1.

ii) For all 1 ≤ i ≤ r, 1 ≤ j ≤ s there exist eij ∈ Z, eij ≥ 0: ai ∼
s

j=1
Π b

eij

j .

Lemma 3.1: Let A, B as above, g = GCD(a1, a2). Then

g =
s

j=1
Π b

min(e1 j , e2 j)
j .

Proof: By considering the factorization of b j into primes.

The question arises whether GCD-free bases with a minimum number of elements are
unique. Of course, we exclude distinctions introduced by multiplying with units. Since {b1,
b2, ⋅ ⋅  ⋅ } is a basis provided {b2

1, b2, ⋅ ⋅  ⋅ } was one, we necessarily need an additional condition.

Definition 3.2: A GCD-free basis B for A ⊂ D \ {0} is called standard if

i) s = card(B) = min {card(C) | C is a GCD-free basis for A},

ii) For all 1 ≤ j ≤ s, m > 1: {b1 , . . . ,  b j−1, bm
j , b j+1 , . . . ,  bs} is not a GCD-free basis for A.

Lemma 3.2: A standard GCD-free basis B for A ⊂ D \ {0} is uniquely determined (except for
association).

Proof: By induction on the number of prime factors in Πv
i=1 ai.

Case 1: For all i ≠ j, GCD(ai, a j) ∼ 1. It is easy to see that A \ U(D), U(D) the units of D, must
be the standard GCD-free basis for A.

Case 2: There exist i ≠ j, such that GCD(ai, a j) ∼ g |∼ 1. Consider

A′ = {a1, . . . ,
ai

g
,.. . ,

a j

g
,.. . ,ar , g}.

By lemma 3.1, B is a GCD-free basis for A if and only if B is a GCD-free basis for A′. This
condition remains true for standard bases. Since (Πv

i=1 ai)/g, the product of all elements in A′,
has fewer prime factors than Πv

i=1 ai, the induction hypothesis implies the uniqueness.
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The above proof also supplies the following algorithm.

Standard GCD-free basis algorithm

Input: A = {a1 , . . . ,  ar} ⊂ D \ ({0} ∪ U(D)), D a UFD, U(D) its units.

Output: B = {b1 , . . . ,  bs} such that B is a standard GCD-free basis for A.

t ← r; ci ← ai for i = 1 , . . . ,  r; I = {1 , . . . ,  r}.
FOR i ← 1, 2, ⋅ ⋅  ⋅ WHILE (i < t) DO

FOR j ← i + 1, i + 2 , . . . , WHILE ( j ≤ t) DO
IF i ∈ I and j ∈ I THEN

ct+1 ← GCD(ci, c j).
IF ct+1 |∼ 1 THEN ci ← ci/ct+1; c j ← c j/ct+1.

IF ci ∼ 1 THEN I ← I \ {i }.

IF c j ∼ 1 THEN I ← I \ { j}.

I ← I ∪ {t + 1}; t ← t + 1.
RETURN {bi ← ci}i∈I .

We will compute standard GCD-free bases of univariate polynomials obtained from multi-
variate polynomials by evaluation. The question arises under which condition these bases are
just the evaluated multivariate bases. The following lemma answers this question in the general
setting.

Lemma 3.3: Let A = {a1 , . . . ,  ar} ⊂ D \ ({0} ∪ U(D)), D a UFD, B = {b1 , . . . ,  bs} a standard
GCD-free basis for A. Let E be a UFD, φ : D → E a ring homomorphism. Assume that

i) For all 1 ≤ i ≤ s: φ bi ≠ 0, φ bi ∈/ U(E), the units in E.

ii) For all 1 ≤ i < j ≤ s: GCD(φ bi, φ b j) ∼ 1.

Then φ B = {φ b1 , . . . , φ bs} is a standard GCD-free basis for φ A = {φ a1 , . . . , φ ar}.

Proof: We show that the following is a loop invariant for our algorithm.

φ (GCD(ci, c j)) ∼ GCD(φ ci, φ c j) for i, j ∈ I . (A)

Since {b1 , . . . ,  bs} is a GCD-free basis for {ci}i∈I there exist integers eik , e jk ≥ 0 such that

ci =
s

k=1
Π beik

k , c j =
s

k=1
Π b

e jk

k .

Therefore

φ ci =
s

k=1
Π (φ bk)eik , φ c j =

s

k=1
Π (φ bk)e jk .

By lemma 3.1 and the assumption we must have
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GCD(ci, c j) =
s

k=1
Π b

min(eik , e jk )
k , GCD(φ ci, φ c j) =

s

k=1
Π (φ bk)min(eik , e jk ),

which proves (A). But (A) implies that our algorithm when applied to φ A will compute φ B
which is thus a standard GCD-free basis for φ A.

Historical Note: GCD-free bases have been used by Epstein [5] to determine pseudo-multiplica-
tive independence of sets of polynomials. Epstein insists, however, that the bi are squarefree,
which in retrospect is an unnecessary condition. Also Epstein does not establish uniqueness of
the bases. Furthermore, lemma 3.3 gives a probabilistic algorithm to determine the multiplica-
tive relationship among polynomials, using evaluation for φ . We shall not go into the details.
Finally, the standard GCD-free basis algorithm can be viewed as another instance of the so-called
critical-pair completion algorithms (cf. Buchberger and Loos [3]). We hav e not used this notion
because our results turn out to be obtainable quite straight-forwardly.
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4. The Sparse Lifting Algorithm

We now present our version of the sparse Hensel lifting procedure. The algorithm com-
bines essentially three ideas. The first is Zippel’s [19] on the preservation of sparseness by
assuming that any zero coefficient in the randomly evaluated polynomial indicates a zero polyno-
mial. The second idea is von zur Gathen’s [7] on lifting factors with high multiplicities and on
restricting the number of equations in the arising linear systems. The third idea is ours on com-
puting the leading coefficients and contents by recursive application of the sparse lifting algo-
rithm. We also prove that under certain assumptions the algorithm computes the correct result.
Our proof, based on lemma 2.1, not only seems simpler than von zur Gathen’s [7] but also leads
to a factorization procedure for polynomials given by straight-line programs [11].

Sparse Hensel Lifting Algorithm

Input: f ∈ F[x1...v], F a field, a2 , . . . ,  av ∈ F , and g1 , . . . ,  gr ∈ F[x1] \ F , e1 , . . . ,  er ∈ Z+ such
that

ldcfx1
( f )(a2...v) ≠ 0

and

ge1
1 ⋅ ⋅ ⋅ ger

r = f (x1, a2...v), GCD(gi, g j) = 1, 1 ≤ i < j ≤ r.

We make the following assumptions on a2 , . . . ,  av:

True Factors Assumptions: There exist polynomials h0 , . . . ,  hr ∈ F[x1...v] such that

h0 ∼ contx1
( f ), h0he1

1 ⋅ ⋅ ⋅ her
r = f , hi(x1, a2...v) = gi, 1 ≤ i ≤ r. (†)

Notice that the hi are uniquely determined.

Zero Preservation Assumption: Let q( j1...n)
i ∈ F[xn+1...v] be the coefficient of x j1

1 ⋅ ⋅ ⋅ x jn
n in hi, 1 ≤

i ≤ r, 1 ≤ n < v. Then for all i, n, and j1...n ∈ (Z+ ∪ {0})n

q( j1...n)
i ≠ 0 implies q( j1...n)

i (an+1...v) ≠ 0.

Third, we assume that the call to the Leading Coefficient algorithm in step 1 produces the correct
result. This will add more conditions for the a2 , . . . ,  av.

Output: h0 , . . . ,  hr ∈ F[x1...v] satisfying (†).

Step 1: Call the Leading Coefficient Determination Algorithm of §5 with the above inputs. We
will get back h0, li = ldcfx1

(hi) and gi2 = hi(x1, x2, a3...v), 1 ≤ i ≤ r. If r = e1 = 1 then return h0,
h1 ← f /h0.

Step 2: Special handling for positive characteristic.
If char(F) = p > 0 then do for all i with p | ei:
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Compute µ i, ν i ∈ Z+ such that ei = pν i µ i, GCD(p, µ i) = 1.

Set gi2 ← g pν i

i2 , ei ← µ i.

Step 3: FOR n ← 3 , . . . ,  v DO Step 4.

Step 4: Lift a single variable. At his moment we have polynomials gi,n−1 ∈ F[x1...n] with gi,n−1 =
hi(x1...n−1, an...v).

Let g(1)
i,n = gi,n−1 for i = 1 , . . . ,  r.

FOR k ← 1, 2, ⋅ ⋅  ⋅ WHILE (degxn
( f ) > degxn

(h0) + Σr
i=1 ei degy(g(k)

i,n )) DO Step 5.

Step 5: Lift y = xn − an by one degree. At this moment we have polynomials g(k)
i,n ∈ F[x1...n−1, y]

such that

g(k)
i,n = hi(x1...n−1, y + an, an+1...v) mod yk . (‡)

5.1: For 1 ≤ i ≤ r set ĝi = Σ c( j1...n−1)
i x j1

1 ⋅ ⋅ ⋅ x jn−1
n−1 where the c( j1...n−1)

i are unknown coefficients and

the summation is taken over all vectors j1...n−1 such that the coefficient of the monomial x j1
1 ⋅ ⋅  ⋅

x jn−1
n−1 in gi,n−1 is not zero.

5.2: For each exponent vector j1...n−1 such that x j1
1 ⋅ ⋅  ⋅ x jn−1

n−1 yk occurs as a monomial in li(x1...n−1,

y + an, an+1...v) with non-zero coefficient, replace c( j1...n−1)
i by this non-zero field element.

5.3: In the following we use the set E (k)
n−1 of n − 1-dimensional exponent-vectors whose initializa-

tion we shall discuss in a moment. For all m1...n−1 ∈ E (k)
n−1 collect the coefficients of the monomi-

als xm1
1 ⋅ ⋅  ⋅ xmn−1

n−1 yk in

f (x1...n−1, y + an, an+1...v) − h0(x1...n−1, y + an, an+1...v)
r

i=1
Π 


g(k)

i,n + ĝi yk


ei

. (*)

We will prove in theorem 4.1 that these coefficients are linear forms in the c( j1...n−1)
i which have a

unique solution in F . Now we concern ourselves with the initialization of E (1)
2 . In that case we

simply collect all non-zero monomials occurring in the expansion of (*), whose exponent-vectors

constitute E (1)
2 . Notice that the expansion of (*) can contain exponentially many non-zero mono-

mials. The set E (k)
n−1 will restrict us to polynomially many equations which are still “strong

enough” (in the terminology of [7]) to determine all unknowns.

5.4: Compute the solution for the arising linear system, evaluate the ĝi at that solution and set

g(k+1)
i,n ← g(k)

i,n + ĝi y
k .

5.5: If k = 1 we compute E (2)
n−1 = E (3)

n−1 = ⋅ ⋅  ⋅ as follows. Determine in the linear system solved in

step 5.4 a maximal set of linearly independent homogeneous equations. Assign to E (κ )
n−1, κ ≥ 2,

the set of the exponent-vectors m1...n−1 of the monomials xm1
1 ⋅ ⋅  ⋅ xmn−1

n−1 yk corresponding to those
equations.
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Step 4 cont.: Back translate: gi,n ← g(k)
i,n (x1...n−1, xn − an).

Set E (1)
n = {(m1...n−1, d) | m1...n−1 ∈ E (k)

n−1, 0 ≤ d ≤ degxn
( f )}.

Step 2 cont.: For each i with ei = µ i replace gi,v = Σ b( j1...v)
i x j1

1 ⋅ ⋅ ⋅ x jv
v , b( j1...v)

i ∈ F , by

Σ(b( j1...v)
i x j1

1 ⋅ ⋅ ⋅ x jv
v )1/pν i

. It follows from our assumptions that pν i | jn, 1 ≤ n ≤ v, and that

(b( j1...v)
i )1/pν i ∈ F . Here we must also assume that we can effectively compute p-th roots in F .

Step 6: Return h0, hi ← gi,v for 1 ≤ i ≤ r.

Remark 1: It might be unclear why we do not factor out the content h0 of f before lifting or
why we do not compute the squarefree factors of gi and lift them with respect to the squarefree
part of f . The answer is that then some intermediately needed polynomials such as the primitive
or squarefree part of f or a squarefree factor of gi may become dense, although the final hi still
turn out to be sparse. Following are some examples in which these intermediate factors have
super-polynomially more non-zero monomials.

Example: Let

f1 (x1, . . . ,xv) =
v

i=2
Π (xi − 1)

v

i=2
Π (x1 −

d

j=0
Σ x j

i ).

Then mon( f1) ≤ 4v−1 whereas mon( f (x1)
1 ) ≥ (d + 1)v−1. Let

f2(x1, . . . ,xv) =
v

i=2
Π(

d

j=0
Σ x j

1 xd− j
i )

v

i=2
Π (x1 − xi)

2.

Then mon( f2) ≤ 4v−1 whereas the squarefree factor with multiplicity 1 has (d + 1)v−1 monomials.
Finally, let

f3(x1, . . . ,xv) =
v

i=2
Π ((

d

j=0
Σ x j

1 xd− j
i )2 + x1)

v

i=2
Π (x1 − xi)

2.

Then mon( f3) ≤ 5v−1 whereas the squarefree part of f3 has at least (d + 1)v−1 monomials.

One could argue, however, that the above cases are pathological and normally factors tend
to have fewer monomials. Under that hypothesis it is, of course, more efficient to lift the square-
free factors of the gi. Finally, we wish to remark that we conjecture that powers of dense polyno-
mials must be dense.

Remark 2: We described our algorithm for coefficients from a field. If we wish to lift over a
unique factorization domain, such as the integers, it is possible to avoid working in the quotient
field, e.g., the rationals. First we note the following version of Gauss’s lemma, a generalization
of which to algebraic number fields is proven in [9].

Lemma 4.1: We call a polynomial f = Σi1...v ∈I ci1...v
xi1

1 ⋅ ⋅ ⋅ xiv
v ∈ D[x1...v], D a UFD, coefficient

primitive iff its coefficient content GCDi1...v ∈I (ci1...v
) ∼ 1. Then the product of two coefficient
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primitive polynomials is coefficient primitive.

Thus, we can first make f coefficient primitive and then compute coefficient primitive h0

, . . . ,  hi such that hi(xi, a2...v) ∼ gi, 1 ≤ i ≤ r. This means, of course, that the leading coefficient
algorithm can only determine the coefficient primitive parts of ldcfx1

(hi). Using these parts the
solution to (*) can become a vector of quotients. However, Bareiss’s [1] exact division algorithm
for solving linear systems can be modified, using the coefficient content of ldcfx1

( f ), to compute
the hi by ring operations in D and exact divisions. We hope the reader will not find it too diffi-
cult to work out the details.

Remark 3: A special case of our algorithm occurs when r = 1. Then the algorithm computes the
sparse e1-st root of a sparse polynomial polynomial f . Closer inspection reveals that then the
algorithm performs a sparse version of Newton iteration, which is normally explicitly coded for
various other problems.

Remark 4: Though it is quite unlikely that our assumptions are violated provided the ai are ran-
domly selected from a sufficiently large sample set, as we will establish in §6, we want to note
how such an exceptional situation can be detected. It is clear that one always can check the final
answer by multiplying the results together. Von zur Gathen [7] even suggests to randomly evalu-
ate the results to get great confidence in the correctness of the answer, but to avoid the sometimes
costly multiplication. It is also clear that if the linear system computed in Step 5.3 turns out to be
singular, an assumption, most probably the zero preservation assumption, must be violated. If
we use the exact division version (see remark 2) and an arising division is not exact, most proba-
bly we do not lift true factors. Finally, if the intermediate gl,n are not sparse, as we might suspect
they should be, we either have the wrong leading coefficients or false factor images.

Now we prove the correctness of the sparse lifting algorithm.

Theorem 4.1 (Main Theorem on Sparse Lifting): In the Sparse Hensel Lifting algorithm the

coefficients of all monomials xm1
1 ⋅ ⋅  ⋅ xmn−1

n−1 yk in (*) are linear forms in the unknowns c( j1...n−1)
i .

Furthermore, under the true factors and zero preservation assumptions and the provision that Step
2 computes the correct leading coefficients, the derived linear system has a unique solution.

Proof: The linearity of the forms is easy to see. Any monomial containing a product of the

c( j1...n−1)
i has degree at least 2k in y. From this we also conclude that the homogeneous parts of

these forms do not change as k increases in step 4, thus justifying step 5.5. The arising system

obviously has a solution for c( j1...n−1)
i , namely the coefficients b( j1...n−1)

i of x j1
1 ⋅ ⋅  ⋅ x jn−1

n−1 yk in
hi(x1...n−1, y + an, an+1...v). The hard part is to prove that the solution is unique. We prove this by
showing that (‡) is a loop invariant. First we prove the theorem for the algorithm using the fol-
lowing modification in step 5.

Step 5’: Version of step 5 for the sake of the proof.
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5.1’: For 1 ≤ i ≤ r set ĝi = Σ c( j1...n−1)
i x j1

1 ⋅ ⋅ ⋅ x jn−1
n−1 where the c( j1...n−1)

i are unknown coefficients
and the summation is taken over all vectors j1...n−1 such that 0 ≤ jt ≤ dt = degxt

(gi,n−1), 1 ≤ t ≤
n − 1.

5.2’: For each exponent vector (d1, j2...n−1) replace c(d1, j2...n−1)
i by the coefficient of the correspond-

ing monomial in li(x1...n−1, y + an, an+1...v), be it zero or not.

5.3’: Collect the coefficients of all monomials xm1
1 ⋅ ⋅  ⋅ xmn−1

n−1 yk in

f (x1...n−1, y + an, an+1...v) − h0(x1...n−1, y + an, an+1...v)
r

i=1
Π 


g(k)

i,n + ĝi yk


ei

. (*)

5.4’: Compute the solution for the arising linear system, evaluate the ĝi at that solution and set

g(k+1)
i,n ← g(k)

i,n + ĝi y
k .

5.5’: This step is empty in the modified version.

We now can apply lemma 2.1 to Step 5’ with K = F(x2...n−1), x = x1, φ = f (x1...n−1, y + an,

an+1...v), γ i = g(k)
i,n , λ0 = h0(x2...n−1, y + an, an+1...v), λ i = li(x1...n−1, y + an, an+1...v), γ i = g(k+1)

i,n = g(k)
i,n

+ ĝi yk . The assumptions to lemma 2.1 are satisfied as follows: i) because we have the correct
content and leading coefficients, ii) and iii) because of the hypothesis, that is (‡) for k; v) follows

from the fact that we constructed g(k+1)
i,n from a solution of (*); vi) and vii) follow from the way

we constructed ĝi in step 5.2’ and g(k+1)
i,n in step 5.4’. Finally iv) is checked easily: The γ i(0, x) =

hi(x1...n−1, an...v) are pairwise relatively prime in F(x2...n−1)[x1] because the hi(x1, a2...v) = gi(x1)

are. The conclusion is that g(k+1)
i,n are uniquely determined.

We now consider the restrictions of step 5 itself. The linear system constructed in step 5.3

has both fewer variables and fewer equations than that of step 5.3’. We first show that all c( j1...n−1)
i

considered in step 5.1’ but not in step 5.1 are solved as 0 in step 5’. This means that we have
deprived the linear system in step 5 of variables which become 0 in the solution. It is clear that
this restriction by itself cannot turn the system into a singular one. We shall proceed by assum-

ing that the solution for some c( j1...n−1)
i in step 5.4’ is non-zero and x j1

1 ⋅ ⋅  ⋅ x jn−1
n−1 does not occur

gi,n−1. Continuing the loop on step 5’ with k + 1, k + 2, ⋅ ⋅  ⋅ we already know that for some k0

we will get g(k0)
i,n = hi(x1...n−1, y + an, an+1...v). Let q( j1...n−1)

i,n (y) ∈ F[y] be the coefficient of x j1
1 ⋅ ⋅  ⋅

x jn−1
n−1 in g(k0)

i,n . Since c( j1...n−1)
i ≠ 0, q( j1...n−1)

i (y) ≠ 0. Thus the coefficient of x j1
1 ⋅ ⋅  ⋅ x jn−1

n−1 in gi,n =

g(k0)
i,n (x1...n−1, xn − an, an+1...v) is q( j1...n−1)

i,n (xn − an) ≠ 0, hence the coefficient g( j1...n−1)
i (xn...v) of x j1

1 ⋅ ⋅  ⋅
x jn−1

n−1 in hi is non-zero, in violation to the zero presentation assumption.

We finally prove that restricting the linear system of step 5.3’ to equations corresponding

to monomials derived via their exponent vectors in E (k)
n−1 does not yield multiple solutions. By

step 5.5 this is clearly true for E (k)
n−1, k ≥ 2, provided it was true for E (1)

n−1. The latter follows by
considering the next execution of step 5 for
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f (x1...n−1, xn, y + an+1, an+2...v) ∈ F(xn)[x1...n−1, y].

Instead of working over the field F we now work over F(xn). The arising linear system can still

be solved uniquely when restricted to E (k)
n−1. But we know that the entries in the unique solution

are, in fact, in F[xn]. Therefore we can set these entries up as polynomials of maximum degree
degxn

( f ) and still must get a unique solution. This is, of course, equivalent to restricting our-
selves to E (1)

n as determined in the continuation of step 4.
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5. The Leading Coefficient Algorithm

It is crucial for the sparse lifting algorithm to work properly that the correct leading coeffi-
cients are know beforehand. In this section we show how they can be computed using the sparse
lifting algorithm recursively on polynomials in one less variable. The main idea is quite simple.
We determine a bivariate factorization of f (x1, x2, a3...v) and lift the leading coefficients of that
factorization with respect to the leading coefficient of f . Two problems arise. First, the leading
coefficients of the factors may not contain x2 at all. Thus we must try all factorizations of f (x1,
a2...n−1, xn, an+1...v). Second, the leading coefficients of the bivariate factors may have common
GCDs. Thus we must compute a standard GCD-free basis for them. It is more or less incidental
that the whole mechanism also produces the content of f .

Leading Coefficient and Content Determination Algorithm

Input: As in algorithm 1.

In addition to the true factors assumption we make the following assumptions on a2 , . . . ,  av.

True leading terms assumption: Let λ0 = h0, λ i = ldcfx1
(hi), 1 ≤ i ≤ r, where h0 , . . . ,  hr are the

outputs of the Sparse Hensel Lifting algorithm. Let

λ (x2)
i ⋅ ⋅ ⋅ λ (xv)

i = λ i, 0 ≤ i ≤ r,

be the content decomposition of λ i and let

{β n1, . . . , β n,sn
}, 2 ≤ n ≤ v,

be a standard GCD-free basis for {λ (xn)
0 , . . . , λ (xn)

r }. We assume that for all 2 ≤ n ≤ v

i) degxn
(λ i) = degxn

(λ i(a2...n−1, xn, an+1...v)) for all 0 ≤ i ≤ r,

ii) λ0(a2...n−1, xn, an+1...v) ∼ contx1
( f (x1, a2...n−1, xn, an+1...v)),

iii) (GCD(β ni, β nj))(xn, an+1...v) ∼ GCD(β ni(xn, an+1...v), β nj(xn, an+1...v)) for all 1 ≤ i < j ≤
sn.

Second, we assume that the calls to Sparse Lifting in step 3 return the correct results. Notice that
the true factors assumption is guaranteed already by previous assumptions.

Output: h0, l1 , . . . ,  lr ∈ F[x2 , . . . ,  xn] such that h0 ∼ contx1
( f ) and li = ldcfx1

(hi), 1 ≤ i ≤ r. Fur-
thermore, g12 , . . . ,  gr2 ∈ F[x1, x2] such that gi2 = hi(x1, x2, a3...v), 1 ≤ i ≤ r.

Step 1: This step drives the iteration.

Initialization: l ← ldcfx1
( f ); li ← 1 for i = 0 , . . . ,  r.

FOR n ← 2, . . . ,  v WHILE l ∈/ F DO
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IF degxn
(l) > 0 THEN Perform step 2.

IF I ≠ ∅ THEN perform step 3.

Step 2: At this point the following is always true.

li ∼
n−1

j=2
Π λ (x j)

i , 0 ≤ i ≤ r, l ∼
ldcfx1

( f )

l0l1 ⋅ ⋅ ⋅ lr
. (†)

Lift f̃ (x1, xn) = f (x1, a2...n−1, xn, an+1...v) into g̃0 , . . . ,  g̃r ∈ F[x1, xn] such that

g̃0 = contx1
( f̃ ), g̃i(x1, an) = gi, 1 ≤ i ≤ r, g̃0 g̃e1

1 ⋅ ⋅ ⋅ g̃er
r = f̃ .

This amounts to a standard lifting step (see remark 2 below for improvements).
IF n = 2 THEN set gi2 ← g̃i for i = 1, . . . ,  r.

Compute the images of λ (xn)
i :

FOR i ← 0, . . . ,  r DO

IF degxn
(li) > 0  THEN l̃ i ← ldcfx1

(g̃i)/li(a2...n−1, xn, an+1...v)

ELSE l̃ i ← ldcfx1
(g̃i).

At this point

l̃ i ∼ λ (xn)
i (xn, an+1...v), degxn

(l̃ i) = degxn
(λ (xn)

i ), 0 ≤ i ≤ r. (‡)

Set I = {i1 , . . . ,  im} ⊂ {0 , . . . ,  r} such that i ∈ I iff l̃ i ∈/ F .

Step 3: Find a standard GCD-free basis {b̃1 , . . . , b̃s} for {l̃ i}i∈I . Let e0 = 1 and l̃ i = Πs
j=1 b̃

uij

j , 0 ≤
i ≤ r.

Call Sparse Lifting recursively with

cl =
s

j=1
Π b̃

(Σi∈I ei uij)
j mod (xn+1 − an+1, . . . ,  xv − av).

where c ∈ F is properly determined. The polynomials b0, b1 , . . . ,  bs are returned.

Set l ← b0; li ← li × Πs
j=1 b

uij

j for all i ∈ I .

Step 1 cont.: Adjust outputs:
l0 ← l0/l0(a2...v). FOR i ← 1, . . . ,  r DO li ← li ldcf(gi)/li(a2...v).
Return h0 ← l0, l1 , . . . ,  lr , gl2 , . . . ,  gr2.

Remark 1: In step 2 we must compute the factorization of f̃ (x1, xn). This amounts to lifting

ge1
1 ⋅ ⋅ ⋅ ger

r ≡ f̃ (x1, xn) mod (xn − an)

similarly to step 4 of the Sparse Hensel Lifting algorithm. However, the content g̃0 and the lead-
ing coefficients of g̃i are unknown and we must use special tricks. The following approach, that
adapts Wang’s [17] early factor detection algorithm in substep 3, appears to be the most efficient.
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Substep 1: Compute g̃0 = contx1
( f̃ ), f̃

(x1)
(x1, xn) and the squarefree factorizations

gi

ldcf(gi)
= gi1 g2

i2 ⋅ ⋅ ⋅ gti
i,ti

, gij monic , 1 ≤ i ≤ r,

by univariate GCD computations. Furthermore, compute the squarefree part f (x1, xn) of

f̃
(x1)

(x1, xn) by a bivariate GCD computation. Here we must assume that we can effectively
determine p-th roots in case F has characteristic p > 0.

Substep 2: Lift

ldcfx1
( f̃ (x1, y + an))

r

i=1
Π

ti

j=1
Π gij ≡ f (x1, y + an) mod y

such that the lifted g(k)
ij ∈ F[x, y] remain monic in x1 and are of sufficiently high degree k in y

(see substep 3).

Substep 3: The g(k)
ij correspond to true factors g̃ij/lij , g̃ij ∈ F[x, y], lij ∈ F[y], of f (x1, y + an) in

F(y)[x]. Let

g(k)
ij = xd + γ d−1(y)xd−1 + ⋅  ⋅ ⋅ + γ 0(y), γ m(y) ∈ F[y].

For 0 ≤ m ≤ d − 1 compute pm(y)/qm(y), the highest order Pad ́e approximation for γ m(y)/yk . We
refer to Czapor and Geddes [4] for a comparison of several Pad ́e approximation algorithms. Set
lij ← LCM0≤m≤d−1(qm(y)). Notice that in practice a few m will already determine the lij cor-
rectly. Also, the degree bound k depends on deg(lij) and thus the g̃ij are correctly detected at dif-
ferent lifting levels k.

Return g̃0, g̃i ← Πti
j=1 g̃ j

ij(x1, xn − an).

Notice that the above method might fail under two different circumstances, namely when
the squarefree factorization of gi is not a true image of that of g̃i and when the GCD of γ m and yk

is of too high a degree. We leave it to the reader to establish the conditions for an such that no
failure can occur. For randomly chosen an this turns out to be very rare. The reason why we
suggest the squarefree factorization in substep 1 whereas we do not unconditionally use it in the
Sparse Hensel Lifting algorithm (see also remark 1 following the algorithm) is because in the
bivariate case the size of the lifting problem is certainly reduced.

Remark 2: In step 1 we processed the minor variables in the order of their subscripts. This order
may by no means be optimal and in practice it appears better to process the minor variable of
maximum individual degree first. It should also be clear that the Leading Coefficient algorithm
applies for the pre-determination of trailing coefficients as well. We recommend to employ this
additional process in step 1 of the Sparse Lifting algorithm if the trailing coefficient of f has
many monomials. Then the linear systems of step 5.4 have a greatly reduced number of
unknowns.
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Remark 3: In step 3 we not only need the standard GCD-free basis {b̃1 , . . . , b̃s} of {l̃ i} but also
the exponent vectors ui,1...s. It is, however, an easy modification of the Standard GCD-Free Basis
algorithm to compute the vectors along with the ct+1. Again the details are left to the reader.

We now establish the correctness of the leading coefficient algorithm.

Theorem 5.1: The true factors and true leading terms assumptions imply that the true factors
assumption is satisfied for the (first level) calls from the Leading Coefficient Determination algo-
rithm to the Sparse Hensel Lifting algorithm. Moreover, the correct content and leading coeffi-
cients are computed provided that the recursive calls have also returned the correct results.

Proof: We show the statements along with providing that (†) is a loop invariant. Following the
execution of steps 2 and 3 with loop index n we first get by the true factors assumption, assump-
tion i), ii) and Gauss’s lemma that

g̃0 ∼ λ0(a2...n−1, xn, an+1...v), ldcfx1
(g̃i) ∼ λ i(a2...n−1, xn, an+1...v), 1 ≤ i ≤ r.

From (†) for n − 1 and i) we thus conclude (‡). By lemma 3.2 and 3.3 (φ being evaluation xn+1 =
an+1 , . . . ,  xv = av) we conclude from iii) that there exist c1 , . . . ,  cs ∈ F such that

{c1 b̃1, . . . ,  cs b̃n} = {β n1(xn, an+1...v), . . . , β n,sn
(xn, an+1...v)}.

Therefore the true factors assumption is satisfied for the lifting process of step 3 and associates of

Πv
j=n+1 f (x j) and β n1 , . . . , β n,sn

are returned provided the called algorithm works correctly. This
depends, of course, on whether the zero preservation assumption is satisfied for the given lifting
problem as well as whether further recursive calls to the leading coefficient algorithm return the

correct results. Therefore, Πs
j=1 b

uij

j ∼ λ (xn)
i and the final updates of li in step 3 imply (†) for n.
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6. Analysis

We first establish a general condition under which all except the true factors assumption
are satisfied.

Theorem 6.1: Consider the sparse Hensel lifting algorithm with the provision that the true fac-
tors assumption is satisfied. Let d = deg(h0 ⋅ ⋅  ⋅ hr). The there exists a polynomial π (h0...r )(x2...v)
∈ F[x2...v] such that

deg (π (h0...r )) < v (2d + 2)v+1

and π (h0...r )(a2...v) ≠ 0 implies that the algorithm returns the correct results.

The proof of this theorem is rather tedious due to the recursive nature of our algorithms
and should be skipped in the first reading of this paper. Part ii) of the true leading terms assump-
tion is guaranteed by the following general lemma which will become important also in §7.

Lemma 6.1: Let f1 , . . . ,  ft , h ∈ D[x], D a UFD, deg( fi) ≤ d , GCD( f1 , . . . ,  ft) ∼ h. Then there
exists an m × m determinant ∆ ∈ D \ {0}, m ≤ 2d , whose entries are coefficients of the fi, such
that for any ring-homomorphism φ : D → E, E a field, φ∆ ≠ 0 implies GCD(φ f1 , . . . , φ ft) ∼ φ h in
E[x]. (For a proof see lemma 3 in [8].)

Proof of theorem 6.1: First consider the zero-preservation assumption on the top level. Let

σ i =
v−1

n=1
Π

j1...n

Π q( j1...n)
i , 1 ≤ i ≤ r.

It is easy to see that for each i there are at most (v − 1) mon(hi) polynomials q( j1...n)
i . Let di =

deg(hi). Then mon(hi) < (di + 1)v, deg(q( j1...n)
i ) ≤ di. (Notice that the first estimate is a worst case

estimate. If the hi are sparse then the degree of π (h0...r ) will turn out much smaller.) Therefore

deg(σ i) < (v − 1) (di + 1)v di ≤ (v − 1) (d + 1)v di.

We set π 1 = Πr
i=1 σ i. Hence

deg(π 1) =
r

i=1
Σ deg(σ i) < (v − 1) (d + 1)v

r

i=1
Σ di < (v − 1) d (d + 1)v.

Now if π 1(a2...v) ≠ 0 then the zero preservation assumption is satisfied. Second, we consider the
true leading terms assumption on the top level. Let f = h0 ⋅ ⋅  ⋅ hr , λ = ldcfx1

( f ). Assumption i)
is equivalent to (ldcfxn

(λ))(a2...n−1, an+1...v) ≠ 0. To guarantee assumption ii) we appeal to lemma
6.1. Let f = Σt

i=1 fi x
i−1
1 , fi ∈ F[x2...v], x = xn, D = F[x2...n−1, xn+1...v], φ evaluation at x2 = a2

, . . . ,  xn−1 = an−1, xn+1 = an+1 , . . . ,  xv = av and ∆n the asserted determinant. Then ∆n(a2...n−1,
an+1...v) ≠ 0 implies that

(contx1
( f ))(a2...n−1, an+1...v) = φ (GCD1≤i≤t( fi)) = GCD1≤i≤t(φ fi)

= contx1
( f (x1, a2...n−1, xn, an+1...v)).
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By Gauss’s lemma it now follows that

r

i=0
Π φ (contx1

(hi)) = φ (contx1
( f )) = contx1

(φ f ) =
r

i=0
Π contx1

(φ hi)

and, since φ (contx1
(hi)) divides contx1

(φ hi), φ (contx1
(hi)) = contx1

(φ hi) for all 0 ≤ i ≤ r. Again
by Gauss’s lemma the last property implies assumption ii). We set π 2 = Πv

n=2 ∆n ldcfxn
(λ) and

observe that

deg(π 2) ≤ (v − 1) (2d2 + d).

We now deal with assumption iii). Let di = degxn
(β ni), d j = degxn

(β nj) and k = degxn
(GCD(β ni,

β nj)). As a special case of lemma 6.1, assumption iii) is satisfied if and only if the leading coeffi-
cient of the k-th subresultant σ ij ∈ F[xn+1...v] of β ni and β nj with respect to xn does not vanish on
evaluation at xn+1 = an+1 , . . . ,  xv = av (cf. Brown [2]). We observe that deg(σ ij) ≤ 2di d j . Let

τ n =
1≤i< j≤sn

Π σ ij with deg(τ n) ≤
1≤i< j≤sn

Σ 2di d j < 


sn

i=1
Σ di




2

.

It is any easy consequence of the standard basis construction algorithm that

sn

i=1
Σ di ≤

r

i=0
Σ deg(λ (xn)

i ) = deg(λ (xn)).

We now set π 3 = Πv
n=2 τ n and note that

deg(π 3) <
v

n=2
Σ deg2(λ (xn)) < 


v

n=2
Σ deg(λ (xn))



2

= deg2(λ) < d2.

We finally set

π (h0...r ) = π 1 π 2 π 3

v

n=2
Π π (bn,0...sn

),

where bnj is b j computed in step 3 of the Leading Coefficient algorithm for loop index n.
Clearly, if π (h0...r )(a2...v) ≠ 0 then the assumptions are satisfied and theorem 4.1 and 5.1 apply. It
remains to estimate the degree of π (h0...r ).

Let dn = deg(bn0 ⋅ ⋅  ⋅ bn,sn
). We now can prove by induction that for any δ ≥ dn and w ≥

ν , ν the number of variables in bn0 , . . . ,  bn,sn
,

deg(π (bn,0...sn
)) < 2ν −1 dn ((v − 1)(δ + 1)w + 3wd).

Following is the induction argument for h0 , . . . ,  hr :

deg(π (h0...r )) < deg(π 1 π 2 π 3) +
v

n=2
Σ deg(π (bn,0...sn

))

< (v − 1) d (d + 1)v + 3vd2 + ((v − 1)(d + 1)v + 3vd)
v

n=2
Σ 2v−n dn
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< ((v − 1)(δ + 1)w + 3wδ ) (d +
v

n=2
Σ 2v−n d)

= 2v−1 d ((v − 1)(δ + 1)w + 3wδ ).

We finally obtain the degree bound from

2v−1 d((v − 1)(d + 1)v + 3vd) < v (2d + 2)v+1.

It now follows from a lemma by Schwartz [13] that if we select the ai randomly from a set
with (deg π (h0...r )) / ε elements then the probability that π (h0...r )(a2...v) = 0 becomes less then ε . It
should be noted, however, that the very high degree bound of theorem 6.1 is only of theoretical
interest. First, because if all intermediately computed hi are sparse, the bound is much smaller.
Second, because even if the degree of π (h0...r ) is of the same order as our estimate, the chance that
we select a zero point of π (h0...r ) is, in practice, much smaller than ε .

The correctness of the true factors assumption must be imported into our algorithm. In
factorization applications effective Hilbert irreducibility theorems are needed, cf. von zur Gathen
[6] and Kaltofen [8]. For GCD applications conditions guaranteeing the true factors assumption
are not as difficult to find (see theorem 7.1).

We wish to point out that our sparse Hensel lifting algorithm can have super-polynomial
expected running time in the number of monomials of the result. The reason is that dense factors
might accumulate in li during the execution of the leading coefficient determination algorithm,
e.g., if

λ i =
v

i=2
Π (

d

j=0
Σ x j

i ),

or that the b j might be dense while the li are not. An example for this case is

r = 2, λ0 = 1, λ1 =
v

i=3
Π (xd

2 − xd
i ), λ2 =

v

i=3
Π (x2 − xi),

where mon(λ1) = mon(λ2) = 2v−2 but mon(λ1/λ2) = d v−2.

Note† that also von zur Gathen’s algorithm [7] has super-polynomial running time in terms
of r. The reason is that his as well as our algorithm is based on explicit sparse Hensel lifting.
However, then step 5.3 and the corresponding step in von zur Gathen’s algorithm cannot be car-
ried out in polynomial time. The first polynomial-time solution to the complete sparse factoring,
based on implicit representation, can be found in [11].

† added on December 23, 1988
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7. Application: The Sparse EZ-GCD Algorithm

We now discuss how we can apply our sparse lifting algorithm to computing GCDs of
sparse polynomials. We follow Moses’s and Yun’s [12] E(xtended) - Z(assenhaus) − GCD
approach but incorporate several important changes. First, we do no compute the primitive parts
of the inputs by recursive application of the GCD algorithm. This saves us the task of computing
the GCD of many polynomials in one less variables, namely the coefficients of the inputs with
respect to the main variable. Second, we do not impose any leading coefficient upon the image
GCD before lifting, but determine the correct leading coefficient by our leading coefficient algo-
rithm. The overall improvement to the EZ-GCD algorithm is a substantial reduction in the num-
ber of uni- and multivariate GCD operations performed. It should be clear that the reference to
the Sparse Lifting algorithm by itself speeds up the EZ-GCD process. One major advantage is,
as we shall see below, that we can lift factors with higher multiplicities. We remark that Wang
[16] also suggests assorted improvements to the EZ-GCD algorithm, most significantly the lead-
ing coefficient predetermination method. Since Wang had such a method only for integral coeffi-
cients, this of his improvements to the EZ-GCD algorithm was necessarily restricted to the inte-
gral case.

Sparse EZ-GCD algorithm

Input: f1 , . . . ,  fr ∈ F[x1...v], F a field, a1 , . . . ,  av ∈ F and g ∈ F[x1] \ F such that

ldcfx1
( f1 ⋅ ⋅ ⋅ fr)(a2...v) ≠ 0 and g = GCD1≤i≤r( fi(x1, a2...v)).

We make the following assumptions on a1 , . . . ,  av:

True GCD assumption: Let h = GCD1≤i≤r( fi). Then h(x1, a2...v) ∼ g.

True cofactor assumption: Let {b1 , . . . ,  bs} be a standard GCD-free basis for { f (x1)
1 , h(x1)}. We

assume that

GCD(bi, b j)(x1, a2...v) ∼ GCD(bi(xi, a2...v), b j(x1, a2...v)) for all 1 ≤ i < j ≤ s.

True content assumption: We assume that

GCD(contx1
( f1), f2(a1, x2...v), . . . ,  fr(a1, x2...v)) = contx1

(h).

Finally, we assume that the calls to Sparse Lifting and the recursive calls to Sparse EZ-GCD
return the correct results. Notice, however, that the true factors assumption for the call to Sparse
Lifting follows from assumptions already made.

Output: h ∈ F[x1...v] such that h(x1, a2...v) = g and h ∼ GCD1≤i≤r( fi). Notice that h is uniquely
determined.

Step 1: Compute a standard GCD-free basis {b̃1 , . . . , b̃s} for { f̃1(x1) = f1(x1, a2...v), g}. Let d j ,

e j , 1 ≤ j ≤ s be such that f̃1 = Πs
j=1 b̃

d j

j , g = Πs
j=1 b̃

e j

j .
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Call Sparse Lifting with

f1 ≡
s

j=1
Π b̃

d j

j mod (x2 − a2, . . . ,  xv − av).

The polynomials b0 = contx1
( f1), b1 , . . . ,  bs are returned.

Set h(x1) ← Πs
j=1 b

e j

j .

Step 2: Compute

g̃ = GCD(b0(x2, a3...v), f2(a1, x2, a3...v), . . . ,  fr(a1, x2, a3...v))

by a univariate GCD algorithm (see remark 2).
Call Sparse EZ-GCD recursively with

b0, f2(a1, x2...v), . . . ,  fr(a1, x2...v) and g̃.

The polynomial h ∈ F[x2...v] is returned.

Step 3: Adjust output: Set h ← h h(x1).
Return h ← ldcf(g) / ldcfx1

(h)(a2...v) h.

Remark 1: We arbitrarily chose f1 for the lifting process. However, it can be more efficient to
select the polynomial with the fewest terms among the fi in place of f1.

Remark 2: To provide the input g and to compute g̃ requires a univariate GCD computation of r
polynomials. It can be shown that with high probability

GCD(g1, . . . ,  gr) = GCD(
r

i=1
Σ λ i gi,

r

i=1
Σ µ i gi)

for g1 , . . . ,  gr ∈ F[x], λ1 , . . . , λ r , µ1 , . . . , µr ∈ F randomly selected (cf. [10], Theorem 5.2).
This observation probabilistically reduces the problem to a single univariate GCD computation.
We should add that the univariate GCD problem over Q can also be solved by the EZ-GCD algo-
rithm. The process of lifting with multiplicities still applies because the true factors assumption
can be enforced under these special circumstances.

Remark 3: If one of the assumptions is violated, the algorithm might return an incorrect result.
We can, however, check whether h divides f2 , . . . ,  fr . If that is so h is guaranteed to be the cor-
rect GCD. In order to perform the sparse polynomial division we can make use of Sparse Lifting
again, similarly to the Sparse EZ-GCD algorithm. This check will also produce the co-factors.

We now carry out the analysis.

Theorem 7.1: Let d = max {deg( fi) | 1 ≤ i ≤ r}. Then there exist a polynomial ρ ( f1...r )(x1...v) ∈
F[x1...v] such that

deg(ρ ( f1...r )) < (v2 + 1) (2d + 2)v+1
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and ρ ( f1...r )(a1...v) ≠ 0 implies that all assumptions to the Sparse EZ-GCD algorithm are satisfied.

Proof: We first consider the true GCD assumption. We can apply lemma 6.1 to f1 , . . . ,  fr , x =
x1, D = F[x2...v], φ evaluation at x2 = a2 , . . . ,  xv = av and ∆1 the asserted determinant. Then φ∆1

≠ 0 implies that GCD(φ f1 , . . . , φ fr) ∼ φ h, which is the true GCD assumption, and we observe
that deg(∆1) ≤ 2d2. The true cofactor assumption gives raise to a polynomial σ ∈ F[x2...v] of
degree smaller than deg2( f1) ≤ d2 whose zeros have to be avoided by a2 , . . . ,  av. The construc-
tion of σ is the same as that of π 3 in the proof of theorem 6.1.

In order to guarantee the true content assumption we resort again to lemma 6.1 with f (xn)
1 ,

f2 , . . . ,  fr , x = xn, D = F[x1...n−1, xn+1...v], E = F(x2...n−1, xn+1...v) and φ evaluation at x1 = a1 (2 ≤
n ≤ v). Let ∆n be the determinant asserted in the lemma, τ n ∈ F[x1] \ {0} a coefficient of x j2

2

⋅ ⋅  ⋅ x jn−1
n−1 x jn+1

n+1 ⋅ ⋅  ⋅ x jv
v in ∆n. Then φτ n = τ n(a1) ≠ 0 implies that

GCD( f (x1)
1 , φ f1, . . . , φ fr) ∼ h(xn)

in E[xn]. Since f (x1)
1 is primitive in x1, we get the same GCD in F[x2...v]. We notice that deg(τ n)

≤ 2d2. Now if τ n(a1) ≠ 0 for all 2 ≤ n ≤ v then

GCD(contx1
( f1), φ f2, . . . , φ fr) ∼

v

n=2
Π h(xn) = contx1

(h),

because all f (xn)
1 are relatively prime. We set τ = Πv

n=2 τ n and remark that deg(τ n) ≤ 2(v − 1)d2.

We now can set

ρ ( f1...r ) = ∆1 σ τ  π (b0...s) ρ (b0, f2(a1, x2...v), . . . ,  fr (a1, x2...v)),

where π (b0...s) is defined as in theorem 6.1. Since deg(b0 ⋅ ⋅  ⋅ bs) ≤ deg( f1) ≤ d it follows from
theorem 6.1 and by induction that

deg(ρ ( f1...r )) < v ((2v + 1) d2 + v (2d + 2)v+1) < (v2 + 1) (2d + 2)v+1.

One final remark is in order. The Sparse EZ-GCD algorithm does not run in expected
polynomial-time in the size of the inputs and outputs for similar reasons as the ones given in §6
for the Sparse Lifting algorithm. Our results in [10] have as a consequence a polynomial-time
solution for the sparse GCD problem.
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8. Conclusion

Our results hopefully put the last of the problems for sparse multivariate lifting, the leading
coefficient problem, to rest. We hav e also established, by example of the sparse EZ-GCD algo-
rithm, that content computations can be avoided prior to the lifting process. Finally we have
introduced the notion of standard GCD-free basis and made precise its critical-pair completion
construction, a process that has been used in the folklore of computer algebra in the past.

Our formulation of the Newton-Hensel Lemma has helped us to simplify the proof of the
Main Theorem of Sparse Lifting. The full power of this approach becomes most apparent when
applying it to factoring polynomials given by straight-line programs, such as polynomial deter-
minants. In [10] and [11] we begin to develop a theory for computing with polynomials given by
straight-line programs and established as one of the major results an expected polynomial-time
procedure for factoring a polynomial given by a straight-line program into its sparse factors.
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