
comput. complex. 13 (2004), 91 – 130

1016-3328/04/030091–40

DOI 10.1007/s00037-004-0185-3

c© Birkhäuser Verlag, Basel 2004

computational complexity

ON THE COMPLEXITY OF COMPUTING

DETERMINANTS

Erich Kaltofen and Gilles Villard

To B. David Saunders
on the occasion of his 60th birthday

Abstract. We present new baby steps/giant steps algorithms of
asymptotically fast running time for dense matrix problems. Our al-
gorithms compute the determinant, characteristic polynomial, Frobe-
nius normal form and Smith normal form of a dense n × n matrix A

with integer entries in (n3.2 log ‖A‖)1+o(1) and (n2.697263 log ‖A‖)1+o(1)

bit operations; here ‖A‖ denotes the largest entry in absolute value
and the exponent adjustment by “+o(1)” captures additional factors
C1(log n)C2(loglog ‖A‖)C3 for positive real constants C1, C2, C3. The
bit complexity (n3.2 log ‖A‖)1+o(1) results from using the classical cubic
matrix multiplication algorithm. Our algorithms are randomized, and
we can certify that the output is the determinant of A in a Las Vegas
fashion. The second category of problems deals with the setting where
the matrix A has elements from an abstract commutative ring, that is,
when no divisions in the domain of entries are possible. We present
algorithms that deterministically compute the determinant, character-
istic polynomial and adjoint of A with n3.2+o(1) and O(n2.697263) ring
additions, subtractions and multiplications.
Keywords. integer matrix, matrix determinant, characteristic poly-
nomial, Smith normal form, bit complexity, division-free complexity,
randomized algorithm, multivariable control theory, realization, matrix
sequence, block Wiedemann algorithm, block Lanczos algorithm
Subject classification. 68W30 symbolic computation and algebraic
computation, 15A35 matrices of integers

1. Introduction

The computational complexity of many problems in linear algebra has been
tied to the computational complexity of matrix multiplication. If the result
is to be exact, for example the exact rational solution of a linear system, the

92 Kaltofen & Villard cc 13 (2004)

lengths of the integers involved in the computation and the answer affect the
running time of the used algorithms. A classical methodology is to compute
the results via Chinese remaindering. Then the standard analysis yields a
number of fixed radix, i.e. bit operations for a given problem that is essentially
(within polylogarithmic factors) bounded by the number of field operations for
the problem times the maximal scalar length in the output. The algorithms
at times use randomization, because not all modular images may be usable.
For the determinant of an n × n integer matrix A one thus gets a running
time of (n4 log ‖A‖)1+o(1) bit operations (von zur Gathen & Gerhard 1999,
Chapter 5.5), because the determinant can have at most (n log ‖A‖)1+o(1) digits;
by ‖A‖ we denote the largest entry in absolute value. Here and throughout
this paper the exponent adjustment by “+o(1)” captures additional factors
C1(log n)C2(loglog ‖A‖)C3 for positive real constants C1, C2, C3 (“soft-O”). Via
an algorithm that can multiply two n×nmatrices inO(nω) scalar operations the
time is reduced to (nω+1 log ‖A‖)1+o(1). We can set ω = 2.375477 (Coppersmith
& Winograd 1990).

First, it was recognized that for the problem of computing the exact rational
solution of a linear system the process of Hensel lifting can accelerate the bit
complexity beyond the Chinese remainder approach (Dixon 1982), namely to
cubic in n without using fast matrix multiplication algorithms. For the deter-
minant of an n × n integer matrix A, an algorithm with (n3.5 log ‖A‖1.5)1+o(1)

bit operations is given by Eberly et al. (2000).1 Their algorithm computes the
Smith normal form via the binary search technique of Villard (2000).

Our algorithms combine three ideas.

i) The first is an algorithm by Wiedemann (1986) for computing the determi-
nant of a sparse matrix over a finite field. Wiedemann finds the minimum
polynomial for the matrix as a linear recurrence on a corresponding Krylov
sequence. By preconditioning the input matrix, that minimum polynomial
is the characteristic polynomial and the determinants of the original and
preconditioned matrix have a direct relation.

ii) The second is by Kaltofen (1992) where Wiedemann’s approach is applied to
dense matrices whose entries are polynomials over a field. Kaltofen achieves
speedup by employing Shank’s baby steps/giant steps technique for the
computation of the linearly recurrent scalars (cf. (Paterson & Stockmeyer
1973)). For integer matrices the resulting randomized algorithm is of the

1Eberly et al. (2000) give an exponent for log ‖A‖ of 2.5, but the improvement to 1.5
based on fast Chinese remaindering (Aho et al. 1974) is immediate.

cc 13 (2004) Complexity of computing determinants 93

Las Vegas kind—always correct, probably fast—and has worst case bit com-
plexity (n3.5 log ‖A‖)1+o(1) and again can be speeded with sub-cubic time
matrix multiplication (Kaltofen & Villard 2001). A detailed description
of this algorithm, with an early termination strategy in case the determi-
nant is small (cf. (Brönnimann et al. 1999; Emiris 1998)), is presented by
Kaltofen (2002).

iii) By considering a bilinear map using two blocks of vectors rather than a
single pair of vectors, Wiedemann’s algorithm can be accelerated (Copper-
smith 1994; Kaltofen 1995; Villard 1997a,b). Blocking can be applied to
our algorithms for dense matrices and further reduces the bit complexity.

The above ingredients yield a randomized algorithm of the Las Vegas kind
for computing the determinant of an n × n integral matrix A in (n3+1/3×
log ‖A‖)1+o(1) expected bit operations, that with a standard cubic matrix mul-
tiplication algorithm. If we employ fast FFT-based Padé approximation algo-
rithms for matrix polynomials, for example the so-called half-GCD algorithm
(von zur Gathen & Gerhard 1999) and fast matrix multiplication algorithms,
we can further lower the expected number of bit operations. Under the as-
sumption that two n×n matrices can be multiplied in O(nω) operations in the
field of entries, and an n× n matrix by an n× nζ matrix in n2+o(1) operations,
we obtain an expected bit complexity for the determinant of

(1.1) (nη log ‖A‖)1+o(1) with η = ω +
1− ζ

ω2 − (2 + ζ)ω + 2
.

The best known values ω = 2.375477 (Coppersmith & Winograd 1990) and
ζ = 0.2946289 (Coppersmith 1997) yield η = 2.697263. For ω = 3 and ζ = 0
we have η = 3 + 1/5 as given in the abstract above.

Our techniques can be further combined with the ideas by Giesbrecht (2001)
to produce a randomized algorithm for computing the integer Smith normal
form of an integer matrix. The method becomes Monte Carlo—always fast
and probably correct—and has the same bit complexity (1.1). In addition,
we can compute the characteristic polynomial of an integer matrix by Hensel
lifting (Storjohann 2000b). Again the method is Monte Carlo and has bit
complexity (1.1). Both results utilize the fast determinant algorithm for matrix
polynomials (Storjohann 2002, 2003).

The algorithm by Kaltofen (1992) (see case ii above) was originally put to
a different use, namely that of computing the characteristic polynomial and
adjoint of a matrix without divisions, counting additions, subtractions, and
multiplications in the commutative ring of entries. Serendipitously, blocking

94 Kaltofen & Villard cc 13 (2004)

(see case iii above) can be applied to our original 1992 division-free algorithm,
and we obtain a deterministic algorithm that computes the determinant and
characteristic polynomial of a matrix over a commutative ring in nη+o(1) ring
additions, subtractions and divisions, where η is given by (1.1). The exponent
η = 2.697263 seems to be the best that is known today for the division-free
determinant problem. By the technique of Baur and Strassen (1983) we obtain
the adjoint of a matrix in the same division-free complexity.

Kaltofen and Villard (2004) have identified other algorithms for computing
the determinant of an integer matrix. Those algorithms often perform at cubic
bit complexity on what we call propitious inputs, but they have a worst case
bit complexity that is higher than our methods. One such method is Clarkson’s
algorithm (Brönnimann & Yvinec 2000; Clarkson 1992), where the number of
mantissa bits in the intermediate floating point scalars that are necessary for
obtaining a correct sign depends on the orthogonal defect of the matrix. If the
matrix has a large first invariant factor, Chinese remaindering can be employed
in connection with computing the solution of a random linear system via Hensel
lifting (Abbott et al. 1999; Pan 1988).

Notation: By Sm×n we denote the set of m×n matrices with entries in the
set S. The set Z are the integers. For A ∈ Zn×n we denote by ‖A‖ the matrix
height (Kaltofen & May 2003, Lemma 2):

‖A‖ = ‖A‖∞,1 = max
x6=0
‖Ax‖∞/‖x‖1 = max

1≤i,j≤n
|ai,j|.

Hence the maximal bit length of all entries in A and their signs is, depending
on the exact representation, at least 2 + blog2 max{1, ‖A‖}c. In order to avoid
zero factors or undefined logarithms, we shall simply define ‖A‖ > 1 whenever
it is necessary.

Organization of the paper. Section 2 introduces Coppersmith’s block Wiede-
mann algorithm and establishes all necessary mathematical properties of the
computed matrix generators. In particular, we show the relation of the de-
terminants of the generators with the (polynomial) invariant factors of the
characteristic matrix (Theorem 2.12), which essentially captures the block ver-
sion of the Cayley-Hamilton property. In addition, we characterize when short
sequences are insufficient to determine the minimum generator. Section 3 deals
with the computation of the block generator. We give the generalization of
the Knuth/Schönhage/Moenck algorithm for polynomial quotient sequences to
matrix polynomials and show that in our case by randomization all leading
coefficients stay non-singular (Lemma 3.10). Section 4 presents our new de-
terminant algorithm for integer matrices and gives the running time analysis

cc 13 (2004) Complexity of computing determinants 95

when cubic matrix multiplication algorithms are employed (Theorem 4.2). Sec-
tion 5 presents the division-free determinant algorithm. Section 6 contains the
analysis for versions of our algorithms when fast matrix multiplication is intro-
duced. The asymptotically best results are derived there. Section 7 presents
the algorithms for the Smith normal form and the characteristic polynomial of
an integer matrix. We give concluding thoughts in Section 8.

2. Generating polynomials of matrix sequences

Coppersmith (1994) first has introduced blocking to the Wiedemann method.
In our description we also take into account the interpretation by Villard (1997a;
1997b), where the relevant literature from linear control theory is cited. Our
algorithms rely on the notion of minimum linear generating polynomials (gen-
erators) of matrix sequences. This notion is introduced below in Section 2.1.
We also see how generators are related to block Hankel matrices and recall
some basic facts concerning their computation. In Section 2.2 we then study
determinants and Smith normal forms of generators and see how they will be
used for solving our initial problem. All the results are given over an arbitrary
commutative field K .

2.1. Generators and block Hankel matrices. For the “block” vectors
X ∈ Kn×l and Y ∈ Kn×m consider the sequence of l ×m matrices

(2.1) B[0] = XTrY, B[1] = XTrAY, B[2] = XTrA2Y, . . . , B[i] = XTrAiY, . . .

As in the unblocked Wiedemann method, we seek linear generating polyno-
mials. A vector polynomial

∑d
i=0 c

[i]λi, where c[i] ∈ Km, is said to linearly
generate the sequence (2.1) from the right if

(2.2) ∀ j ≥ 0:
d∑

i=0

B[j+i]c[i] =
d∑

i=0

XTrAi+jY c[i] = 0l.

For the minimum polynomial of A, fA(λ), and for the µ-th unit vector in Km,
e[µ], fA(λ)e[µ] ∈ K [λ]m is such a generator because it already generates the
Krylov sequence {AiY [µ]}i≥0, where Y [µ] is the µ-th column of Y . We can now
consider the set of all such right vector generators. This set forms a K [λ]-
submodule of the K [λ]-module K [λ]m and contains m linearly independent
(over the field of rational functions K(λ)) elements, namely all fA(λ)e[µ]. Fur-
thermore, the submodule has an (“integral”) basis over K [λ], namely any set of
m linearly independent generators such that the degree in λ of the determinant

96 Kaltofen & Villard cc 13 (2004)

of the matrix formed by those basis vector polynomials as columns is minimal.
The matrices corresponding to all integral bases clearly are right equivalent with
respect to multiplication from the right by any unimodular matrix in K [λ]m×m,
whose determinant is by definition of unimodularity a non-zero element in K .
Thus we can pick a matrix canonical form for this right equivalence, say the
Popov form (Popov 1970) (see also Kailath 1980, §6.7.2) to get the following
definition.

Definition 2.3. The unique matrix generating polynomial for (2.1) in Popov
form, denoted by FA,Y

X ∈ K [λ]m×m, is called the minimum matrix generating
polynomial (generator).

As we will show below, deg(detFA,Y
X) ≤ n. The computation of the min-

imum matrix generating polynomial from the matrix sequence (2.1) can be
accomplished by several interrelated approaches. One is a sophisticated gen-
eralization of the Berlekamp/Massey algorithm (Coppersmith 1994; Dickinson
et al. 1974; Rissanen 1972). Another generalizes the theory of Padé approx-
imation (Beckermann & Labahn 1994; Forney, Jr. 1975; Giorgi et al. 2003;
Van Barel & Bultheel 1992). The interpretation of the Berlekamp/Massey al-
gorithm as a specialization of the extended Euclidean algorithm (Dornstetter
1987; Sugiyama et al. 1975) can be carried over to matrix polynomials (Cop-
persmith 1994; Thomé 2002) (see also Section 3 below). All approaches solve
the classical Levinson-Durbin problem, which for matrix sequences becomes a
block Toeplitz linear system (Kaltofen 1995). The relation to Toeplitz/Hankel
matrices turns out to be a useful device for establishing certain properties.

For a degree d and a length e we consider the l ·e by m ·(d+1) block Hankel
matrix

(2.4) Hke,d+1(A,X, Y) =




B[0] B[1] . . . B[d−1] B[d]

B[1] B[2] B[d] B[d+1]

...
. . .

...
...

B[e−1] B[d+e−1]




For any vector generator
∑d

i=0 c
[i]λi ∈ Km[λ] we must have

Hke,d+1 ·



c[0]

...

c[d]


 = 0 for all e > 0.

cc 13 (2004) Complexity of computing determinants 97

By considering the rank of (2.4) we can infer the reverse. If

(2.5) Hkn,d+1 ·



c[0]

...

c[d]


 = 0

then
∑d

i=0 c
[i]λi is a vector generator of (2.1). The claim follows from the fact

that rank Hkn,d+1 = rank Hkn+e′,d+1 for all e′ > 0. The latter is justified by
observing that any row in the (n + e′)th block row of Hkn+e′,d+1 is linearly
dependent on corresponding previous rows via the minimum polynomial fA,
which has degree deg(fA) ≤ n.

We observe that rank(Hke,d) ≤ n for all d > 0, e > 0 by considering the
factorization

Hke,d =




XTr

XTrA
XTrA2

...
XTrAe−1



·
[
Y AY A2Y . . . Ad−1Y

]

and noting that either matrix factor has rank at most n.

Therefore, when d ≥ deg(FA,Y
X), the module over K [λ] generated from solu-

tions to (2.5) is the module of vector generators, with the columns of F A,Y
X (λ)

as basis. In this case, if the column degrees of the minimum generator are
δ1 ≤ · · · ≤ δm, the dimension of the right nullspace of Hk e,d+1 in (2.5) over K

is (d− δ1 + 1) + · · ·+ (d− δm + 1). Hence for d ≥ degFA,Y
X and e ≥ n we have

rank(Hke,d+1) = δ1 + · · ·+ δm = deg(detFA,Y
X) ≤ n, the latter because FA,Y

X (λ)

is in Popov from. Since the last block column in Hk e,d+1 with d ≥ deg(FA,Y
X)

is generated by previous block columns, via shifting lower degree columns of
FA,Y
X (λ) as necessary by multiplying with powers of λ, we have

(2.6) rank(Hke,d) = deg(detFA,Y
X) for d ≥ degFA,Y

X and e ≥ n.

One may now define the minimum emin such that the matrix Hkemin,d for

d = degFA,Y
X has full rank deg(detFA,Y

X). Any algorithm for computing
the minimum generator requires the first deg(FA,Y

X) + emin elements of the
sequence (2.1).

98 Kaltofen & Villard cc 13 (2004)

We give an example over Q (Turner 2002). Let

A =




0 1 0 0
0 0 1 0
0 0 0 1
2 0 0 0


 , X = Y =




1 0
0 0
0 0
0 0




Then

B[0] =

[
1 0
0 0

]
, B[1] =

[
0 0
0 0

]
, B[2] =

[
0 0
0 0

]
, B[3] =

[
0 0
0 0

]
,

B[4] =

[
2 0
0 0

]
, B[5] =

[
0 0
0 0

]
, B[6] =

[
0 0
0 0

]
, B[7] =

[
0 0
0 0

]
.

Therefore

Hk4,5(A,X, Y) =




1 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




,

and from

nullspace Hk4,5(A,
X,

Y) = span(




−2
0
0
0
0
0
0
0
1
0




,




0
1
0
0
0
0
0
0
0
0




,




0
0
0
1
0
0
0
0
0
0




,




0
0
0
0
0
1
0
0
0
0




,




0
0
0
0
0
0
0
1
0
0




,




0
0
0
0
0
0
0
0
0
1




)

we get FA,Y
X (λ) =

[
1 0
0 0

]
λ4 +

[
−2 0
0 1

]
=

[
λ4 − 2 0

0 1

]
.

cc 13 (2004) Complexity of computing determinants 99

Now let X as above and let Y =

[
1 0 0 0
0 0 1 0

]Tr

. Then

B
[0]

=

[
1 0
0 0

]
, B

[1]
=

[
0 0
0 0

]
, B

[2]
=

[
0 1
0 0

]
,

B
[3]

=

[
0 0
0 0

]
, B

[4]
=

[
2 0
0 0

]
, B

[5]
=

[
0 0
0 0

]
.

Therefore

Hk4,3(A,X, Y) =




1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 0 2 0
0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0




,

and from

nullspace Hk4,3(A,X, Y) = span(




0
−2
0
0
1
0



,




−1
0
0
0
0
1




)

we get FA,Y
X (λ) =

[
1 0
0 1

]
λ2 −

[
0 1
2 0

]
=

[
λ2 −1
−2 λ2

]
. Note that in both cases

the determinant of the minimum generator is λ4 − 2, which is det(λI − A).
The second above example, where emin = 4 > deg(FA,Y

X) = 2, shows that
more than 2 deg(FA,Y

X) sequence elements may be necessary to compute the
generator, in contrast to the scalar Berlekamp/Massey theory. The last block
row of Hk4,3(A,X, Y) is required to restrict the right nullspace to the two
generating vectors.

However, for random X and Y both deg(FA,Y
X) and emin are small. Let us

define, for fixed l and m,

(2.7) ν = max
d≥1,e≥1,X∈Kn×l,Y ∈Kn×m

{rank Hke,d(A,X, Y)}.

Indeed, the probabilistic analysis in (Kaltofen 1995, Section 5) and (Villard
1997b, Corollary 6.4) shows the existence of matrices W ∈ Kn×l and Z ∈

100 Kaltofen & Villard cc 13 (2004)

Kn×m such that the corresponding rank Hke0,d0(A,W,Z) = ν with d0 = dν/me
and e0 = dν/le. Moreover, ν is equal to the sum of the degrees of the first
min{l,m} invariant factors of λI − A (see Theorem 2.12 below), and hence
X,Y can be taken from any field extension of K . Then due to the existence
of W,Z, for symbolic entries in X,Y and therefore, by (DeMillo & Lipton
1978; Schwartz 1980; Zippel 1979), for random entries, the maximal rank is
preserved for block dimensions e0, d0. Note that the degree of the minimum
matrix generating polynomial is now deg(FA,Y

X) = d0 < n/m + 1 and the
number of sequence elements required to compute the minimum generator is
d0+e0 = dν/le+dν/me < n/l+n/m+2. If K is a small finite field, Wiedemann’s
analysis has been generalized by Villard (1997b) (see also Brent et al. 2003).

As with the unblocked Wiedemann projections, unlucky projection block
vectors X and Y may cause a drop in the determinantal degree deg(detF A,Y

X).
They may also increase the length of the sequence required to compute the
generator FA,Y

X .

2.2. Smith normal forms of matrix generating polynomials. In this
section we study how the invariant structure of FA,Y

X partly reveals the structure
of A and λI − A. Our algorithms in Section 4 and Section 5 pick random
block vectors X,Y or use special projections and compute a generator from
the first d0 + e0 elements of (2.1). Under the assumption that the rank of
Hke,d = ν (see (2.7)) for sufficiently large d, e, we prove here that det(F A,Y

X)
is the product of the first min{l,m} invariant factors of λI − A. These are
well-studied facts in the theory of realizations of multivariable control theory,
for instance see Kailath (1980). The basis is the matrix power series

XTr(λI − A)−1Y = XTr

(∑

i≥0

Ai

λi+1

)
Y =

∑

i≥0

B[i]

λi+1
.

Lemma 2.8. One has the fraction description

(2.9) XTr(λI − A)−1Y = N(λ)D(λ)−1

if and only if there exists T ∈ K [λ]m×m such that D = FA,Y
X T .

Proof. For the necessary condition, since every polynomial numerator in
XTr(λI − A)−1Y has degree strictly less than the corresponding denominator,
then every column of N has degree strictly less than that of the corresponding
column of D. Thus it can be checked that the columns of D satisfy (2.2) and

cc 13 (2004) Complexity of computing determinants 101

D must be a multiple of FA,Y
X . Conversely, let D = FA,Y

X T in K [λ]m×m be an
invertible matrix generator for (2.1). Using (2.2) for its m columns it can be
seen that we have

XTr(λI − A)−1Y D(λ) = N(λ) ∈ K [λ]l×m

where the column degrees of N are lower than those of D. This yields the
matrix fraction description (2.9). �

Clearly, for D = FA,Y
X , the minimum polynomial fA(λ) is a common de-

nominator of the rational entries of the matrices on both sides of (2.9). If the
least common denominator of the left side matrix is actually the character-
istic polynomial det(λI − A), then it follows from degree considerations that
detFA,Y

X = det(λI − A). Our algorithm uses the matrix preconditioners dis-
cussed in Section 4 and random or ad hoc projections (Section 5) to achieve
this determinantal equality. We shall make the relationship between λI − A
and FA,Y

X more explicit in Theorem 2.12 whose proof will rely on the structure
of the matrix denominator D in (2.9) and on the following.

For a square matrix M over K [λ] we consider the Smith normal form (New-
man 1972), which is an equivalent diagonal matrix over K [λ] with diagonal
elements s1(λ), . . ., sφ(λ), 1, . . ., 1, 0, . . . , 0, where the si’s are the nontrivial
invariant factors of M , that is, non-constant monic polynomials with the prop-
erty that si is a (trivial or nontrivial) polynomial factor of si−1 for all 2 ≤ i ≤ φ.
Because the Smith normal form of the characteristic matrix λI−A corresponds
to the Frobenius canonical form of A for similarity, the largest invariant factor
of λI − A, s1(λ), equals the minimum polynomial fA(λ).

Lemma 2.10. Let M ∈ K [λ]µ×µ be non-singular and let U ∈ K [λ]µ×µ be
unimodular such that

(2.11) MU =

[
H H12

0 H22

]

where H is a square matrix, then the i-th invariant factor of H divides the i-th
invariant factor of M .

Proof. Identity (2.11) may be rewritten as

MU =

[
I H12

0 H22

] [
H 0
0 I

]
.

Since the invariant factors of two non-singular matrices divide the invariant
factors of their product (Newman 1972, Theorem II.14), the largest invariant

102 Kaltofen & Villard cc 13 (2004)

factors of diag(H, I) that are those of H, divide the corresponding invariant
factors of MU and thus M . �

We can now see how the Smith form of FA,Y
X is related to that of λI − A.

Essentially, the result may be obtained, for instance, following the lines in
(Kailath 1980, §6.4.2). Here we give a statement and a proof better suited to
our purposes.

Theorem 2.12. Let A ∈ Kn×n, X ∈ Kn×l, Y ∈ Kn×m and let s1, . . . , sφ
denote all invariant factors of λI−A. The i-th invariant factor of F A,Y

X divides
si. Furthermore, there exist matrices W ∈ Kn×l and Z ∈ Kn×m such that for
all i, 1 ≤ i ≤ min{l,m, φ}, the i-th invariant factor of F A,Z

W is equal to si and
the m−min{l,m, φ} remaining ones are equal to 1. Moreover, for fixed l and
m,

(2.13)





degλ(det(FA,Z
W (λ))) = maxX,Y deg(det(FA,Y

X (λ)))
= deg(s1) + · · ·+ deg(smin{l,m,φ})
= ν, which is defined in (2.7).

Proof. We prove the first statement for a particular denominator matrix D
of a fraction description of XTr(λI−A)−1Y . Indeed, if the i-th invariant factors
of D divide si then, by Lemma 2.8 and using the product argument given in the
proof of Lemma 2.10, the same holds by transitivity of division for F A,Y

X . When
Y has rank r < m, one may introduce an invertible transformation Q ∈ Km×m

such that Y Q = [Y1 0] with Y1 ∈ Kn×r. From there, if XTr(λI − A)−1Y1 =
N1D

−1
1 then

XTr(λI − A)−1Y =
[
N1(λ) 0

] [
D1(λ) 0

0 I

]−1

Q−1

and the invariant factors of the denominator matrix Q diag(D1, I) are those
of D1. We can thus without loss of generality assume that Y has full column
rank. Let us now construct a fraction description of XTr(λI − A)−1Y with D
as announced. Choose Yc ∈ Kn×(n−m) such that T = [Y Yc] is invertible in
Kn×n and let D ∈ K [λ]m×m be defined from a unimodular triangularization of
T−1(λI − A), that is:

(2.14) T−1(λI − A)U(λ) =

[
D(λ) H12(λ)

0 H22(λ)

]

with U unimodular. If V is the matrix formed by the first m columns of U we
have the fraction descriptions (λI − A)−1Y = V D−1 and XTr(λI − A)−1Y =

cc 13 (2004) Complexity of computing determinants 103

(
XTrV

)
D−1. Thus D is a denominator matrix for XTr(λI −A)−1Y . By (2.14)

and Lemma 2.10, its i-th invariant factor divide the i-th invariant factor si of
λI − A and the first assertion is proven.

To establish the rest of the theorem we work with the associated block
Hankel matrix Hke,d(A,X, Y). By definition of the invariant factors we know
that

dim span(X,ATrX, (ATr)2X, . . .) ≤ deg(s1) + · · ·+ deg(smin{l,φ})

and

dim span(Y,AY,A2Y, . . .) ≤ deg(s1) + · · ·+ deg(smin{m,φ})

thus

rank Hke,d(A,X, Y) ≤ rank (




XTr

XTrA
XTrA2

...


 ·

[
Y AY A2Y . . .

]
) ≤ ν̄,

where ν̄ = deg(s1) + · · · + deg(smin{m,l,φ}). Hence, from the specializations W
and Z of X and Y given in (Villard 1997b, Corollary 6.4), we get

(2.15) rank Hke0,d0(A,W,Z) = max
X,Y,d,e

rank Hke,d+1(A,X, Y) = ν̄

with d0 = dν̄/me and e0 = dν̄/le and thus ν̄ = ν. Using (2.6) we also have

(2.16) degλ(det(FA,Z
W (λ))) = max

X,Y
degλ(det(FA,Y

X (λ))) = ν̄.

With (2.15) and (2.16) we have proven the two maximality assertions. In
addition, since the i-th invariant factor s̄i of FA,Z

W must divide si, the only way
to get degλ(detFA,Z

W) = ν, is to take s̄i = si for 1 ≤ i ≤ min{m, l, φ} and s̄i = 1
for min{m, l, φ} < i ≤ m. �

As already noticed, the existence of such W,Z establishes maximality of the
matrix generator for symbolic X and Y and, by the Schwartz/Zippel lemma,
for random projection matrices. In next sections we will use detF A,Z

W (λ) =
det(λI − A) for computing the determinant and the characteristic polynomial
of matrices A with the property φ ≤ min{l,m}. For general matrices we will
use FA,Z

W to determine the first min{l,m} invariant factors of A.

104 Kaltofen & Villard cc 13 (2004)

3. Normal matrix polynomial remainder sequences

As done for a scalar sequence (Brent et al. 1980; Dornstetter 1987; Sugiyama
et al. 1975), the minimum matrix generating polynomial of a sequence can be
computed via a specialized matrix Euclidean algorithm (Coppersmith 1994;
Thomé 2002). Taking advantage of fast matrix multiplication algorithms re-
quires to extend these approaches. In Section 3.1 we propose a matrix Euclidean
algorithm which combines fast matrix multiplication with the recursive Knuth/
Schönhage half-GCD algorithm (von zur Gathen & Gerhard 1999; Knuth 1970;
Moenck 1973; Schönhage 1971). This is applicable to computing the matrix
minimum polynomial of a sequence {XTrAY }i≥0 if the latter leads to a nor-
mal matrix polynomial remainder chain. We show in Section 3.2 that this is
satisfied, with high probability, by our random integer sequences. This will be
satisfied by construction by the sequence in the division-free computation. For
simplicity we work in the square case l = m thus with a sequence {B [i]}i≥0 of
matrices in Km×m.

3.1. Minimum polynomials and half Euclidean algorithm. If F =∑d
i=0 F

[i]λi ∈ K [λ]m×m is a generating matrix polynomial for {B [i]}i≥0 then, as
we have seen with (2.5), we have

(3.1)




B[0] B[1] . . . B[d]

B[1] B[2] . . . B[d+1]

...
...

. . .
...

B[d−1] B[d+1] . . . B[2d−1]







F [0]

F [1]

...
F [d]


 =




0
0
...
0


 .

The left side matrix was denoted by Hkd,d+1 in (2.4). We define B̂ in K [λ]m×m

by B̂ =
∑2d−1

i=0 B[2d−i−1]λi. Identity (3.1) is satisfied if and only if there exists
matrices S and T of degree less than d− 1 in K [λ]m×m such that

(3.2) λ2dS(λ) + B̂(λ)F (λ) = T (λ).

Thus λ2dI and B̂ may be considered as the inputs of an extended Euclidean
scheme. In the scalar case, the remainder sequence of the Euclidean algorithm
is said to be normal when at each step the degree is decreased by 1 exactly. By
the theorem of subresultants, the remainder sequence is normal if and only if
the subresultants are non-zero (Brown & Traub 1971). In an analogous way we
will identify normal matrix remainder sequences related to the computation of
matrix generating polynomials. We use these remainder sequences to establish
a recursive algorithm based on fast matrix polynomial multiplication.

cc 13 (2004) Complexity of computing determinants 105

For two matrices M =
∑2d

i=0M
[i]λi and N =

∑2d−1
i=0 N [i]λi in K [λ]m×m, if

the leading matrix N [2d−1] is invertible in Km×m then one can divide M by N
in an obvious way to get:

(3.3)

{
M = NQ+R, with degQ = 1, degR ≤ 2d− 2,
Q = (N [2d−1])−1

(
M [2d]λ+M [2d−1] −N [2d−2](N [2d−1])−1M [2d]

)
.

If the leading matrix coefficient of R is invertible (matrix coefficient of de-
gree 2d − 2), then the process can be continued. The remainder sequence is
normal if all matrix remainders have invertible leading matrices, if so we define:

(3.4)

{
M−1 = M, M0 = N
Mi = Mi−2 −Mi−1Qi, 1 ≤ i ≤ d

with degMi = 2d − 1 − i. The above recurrence relations define matrices Si
and Fi in K [λ]m×m such that

(3.5) M−1(λ)Si(λ) +M0(λ)Fi(λ) = Mi(λ), 1 ≤ i ≤ d,

Si has degree i−1 and Fi has degree i. We also define S−1 = I, S0 = 0, F−1 = 0
and F0 = I. As shown below, the choice M−1 = λ2dI and M0 = B̂ leads to
a minimum matrix generating polynomial F = Fd for the sequence {B[i]}i≥0

(compare (3.5) and (3.2)).

Theorem 3.6. Let B̂ be the matrix polynomial
∑2d−1

i=0 B[2d−i−1]λi ∈ Km×m[λ].
If for all 1 ≤ k ≤ d we have det(Hkk,k) 6= 0, then the half matrix Euclidean

algorithm with M−1 = λ2dI and M0 = B̂ works as announced. In particular:

i) Mi has degree 2d − 1 − i (0 ≤ i ≤ d) and its leading matrix M
[2d−1−i]
i is

invertible (1 ≤ i ≤ d− 1);

ii) Fi has degree i and its leading matrix F
[i]
i is invertible (0 ≤ i ≤ d); Si

has degree i− 1 (1 ≤ i ≤ d).
The algorithm produces a minimum matrix generating polynomial Fd(λ) for

the sequence {B[i]}0≤i≤2d−1 and F = (F
[d]
d)−1Fd(λ) is the unique one in Popov

normal form.
Furthermore, if in the half matrix Euclidean algorithm the conditions i-ii

are met for all i with 1 ≤ i ≤ d, then det(Hkk,k) 6= 0 for all 1 ≤ k ≤ d.

Proof. We prove the assertions by induction. For i = 0, since by assumption
B[0] is invertible, M0 satisfies i). By definition F0 = I and starting at i = 1,
S1 = I. Now assume that the properties are true for i−1. Then, following (3.3),

Qi = Q̃iλ+ Q̄i =
(
M

[2d−i]
i−1

)−1

M
[2d−i+1]
i−2 λ+ Q̄i ,

106 Kaltofen & Villard cc 13 (2004)

Q̃i is invertible by i) at previous steps and Q̄i is in Km×m. The leading matrix
of Fi is

F
[i]
i = −F

[i−1]
i−1 Q̃i

thus Fi satisfies ii). The same argument holds for Si (i − 1 ≥ 1). By con-
struction Mi has a degree lower than 2d− 1− i hence, looking at the right side
coefficient matrices of (3.5), we know that

(3.7)




B[0] B[1] . . . B[i]

B[1] B[2] . . . B[i+1]

...
...

. . .
...

B[i] B[i+1] . . . B[2i]




︸ ︷︷ ︸
Hk i+1,i+1




F
[0]
i

F
[1]
i
...

F
[i]
i


 =




0
0
...

M
[2d−1−i]
i


 .

By assumption of non-singularity of Hk i+1,i+1 and since we have proved that

F
[i]
i is invertible, the columns in the right side matrix of (3.7) are linearly

independent, thusM
[2d−1−i]
i is invertible. This proves i). Identity (3.5) for i = d

also establishes (3.1) which means that Fd is a matrix generating polynomial

for {B[i]}0≤i≤2d−1 whose leading matrix F
[d]
d its invertible. It follows that F =

(F
[d]
d)−1Fd(λ) is in Popov normal form. The minimality comes from the fact

that Hkd,d is invertible and hence no vector generator (column of a matrix
generator) can be of degree less than d.

We finally prove that invertible leading coefficient matrices in the Euclidean
algorithm guarantee non-singularity for all Hkk,k. To that end, we consider the
range of Hk i+1,i+1 in (3.7). Clearly, the block vector [0 Im]Tr is in the range,

since M
[2d−1−i]
i is invertible. By induction hypothesis for Hk i,i, we see that the

first i block columns of Hk i+1,i+1 can generate [Imi 0]Tr, where the block zero
row at the bottom is achieved by subtraction of appropriate linear combinations
of the previous block vector [0 Im]Tr. Hence the range of Hk i+1,i+1 has full
dimension. �

For B[i] = XTrAY , i ≥ 0, the next corollary shows that F is as expected.

Corollary 3.8. Let A be in Kn×n, let B[i] = XTrAiY ∈ Km×m, i ≥ 0, and
let ν = md be the determinantal degree degλ(detFA,Y

X). If the block Hankel
matrix Hkd,d(A,X, Y) satisfies the assumption of Theorem 3.6 then F = FA,Y

X .

Proof. We know from (2.6) that ν is the maximum possible rank for the
block Hankel matrices associated to the sequence, thus the infinite one Hk∞,d+1

cc 13 (2004) Complexity of computing determinants 107

satisfies

rank Hk∞,d+1 = rank(



B[0] B[1] . . . B[d]

B[1] B[2] . . . B[d+1]

...
...

...


) = rank Hkd,d+1 = ν.

It follows that Hk∞,d+1 and Hkd,d+1 have the same nullspace and F , which by
Theorem 3.6 is a matrix generator for the truncated sequence {B [i]}0≤i≤2d−1, is
a generator for the whole sequence. The argument used for the minimality of
F remains valid hence F = FA,Y

X . �

Remark 3.9. In Theorem 3.6 and Corollary 3.8 we have only addressed the
case where the target determinantal degree is an exact multiple md of the
blocking factor m. This can be assumed with no loss of generality for the
algorithms in Section 4 and Section 5 and the corresponding asymptotic costs
in Section 6. Indeed, we will work there with ν = n and the input matrix A
may be padded to diag (A, I).

In the general case or in practice to avoid padding, the Euclidean algorithm
leads to rank (M

[d]
d−1) = ν mod m ≤ m and requires a special last division step.

The minimum generator F = FA,Y
X has degree d = dν/me, with column degrees

[δ1, . . . , δm] = [d − 1, . . . , d − 1, d, . . . , d] where d − 1 is repeated mdν/me − ν
times (Villard 1997b, Proposition 6.1).

The above method can be combined with the recursive Knuth (1970)/Schön-
hage (1971)/Moenck (1973) algorithm. If ω is the exponent of matrix multipli-
cation then, as soon as the block Hankel matrix has the required rank profile,
FA,Y
X may be computed with (nωd)1+o(1) operations in K . The required FFT-

based multiplication algorithms for matrix polynomials are described by Cantor
and Kaltofen (1991).

3.2. Normal matrix remainder sequences over the integers. The nor-
mality of the remainder sequence associated to a given matrix A essentially
comes from the genericity of the projections. This may be partly seen in the
scalar case for Lanczos algorithm from (Eberly & Kaltofen 1997, Lemma 4.1),
(Eberly 2002) or (Kaltofen et al. 2000; Kaltofen & Lee 2003) and in the block
case from (Kaltofen 1995, Proposition 3) or (Villard 1997b, Proposition 6.1).

We show here that the block Hankel matrix has generic rank profile for
generic projections, and then the integer case follows by randomization. We
let X and Y be two n×m matrices with indeterminates entries ξi,j and υi,j for
1 ≤ i ≤ n and 1 ≤ j ≤ m. Let also ν be the maximum determinantal degree
defined by (2.13) in Theorem 2.12.

108 Kaltofen & Villard cc 13 (2004)

Lemma 3.10. With d = dν/me, the block Hankel matrix Hkd,d(A,X ,Y) has
rank ν and its principal minors of order i are non-zero for 1 ≤ i ≤ ν.

Proof. For simplifying the presentation we only detail the case where ν is
a multiple of m (see Remark 3.9). Let Kr i(A,Z) ∈ Kn×i be the block Krylov
matrix formed by the i first columns of [Z AZ . . . Ad−1Z] for 1 ≤ i ≤ ν. The
specialization Z ∈ Kn×m of Y given in (Villard 1997b, Proposition 6.1) satisfies

(3.11) rank Kr i(A,Z) = i, 1 ≤ i ≤ ν.

We now argue, by specializing X and Y , that the target principal minors are
non-zero. If i ≤ m, using (3.11) one can find X ∈ Kn×i such that the rank
of XTrKr i(A,Z) equals i. If m < i ≤ ν then one can find X ∈ Kn×m such
that XTrKr i(A,Z) = [0 Jm] where Jm is the m ×m reversion matrix. Hence
Hkd,d(A,X,Z) has ones on its ith anti-diagonal and zeros above, the corre-
sponding principal minor of order i is (−1)bi/2c. �

The polynomial
∏d

k=1 det(Hkk,k(A,X ,Y)) is non-zero of degree no more
md(d+ 1) in K [. . . , ξi,j , . . . , υi,j , . . .]. If the entries of X and Y are chosen uni-
formly and independently from a finite set S ⊂ Z then, by the Schwartz/Zippel
lemma and Theorem 3.6, the associated matrix remainder sequence is normal
with probability at least 1−md(d+ 1)/|S|.

4. The block baby steps/giant steps determinant

algorithm

We shall present our algorithm for integer matrices. Generalizations to other
domains, such as polynomial rings, are certainly possible. The algorithm fol-
lows the Wiedemann paradigm (Wiedemann 1986, Chapter V) and uses a
baby steps/giant steps approach for computing the sequence elements (Kaltofen
1992). In addition, the algorithm blocks the projections (Coppersmith 1994).
A key ingredient is that from the theory of realizations described in Section 2,
it is possible to recover the characteristic polynomial of a preconditioning of
the input matrix.

Algorithm Block Baby Steps/Giant Steps Determinant.

Input: a matrix A ∈ Zn×n.
Output: an integer that is the determinant of A, or “failure;” the algorithm
fails with probability no more than 1/2.

cc 13 (2004) Complexity of computing determinants 109

Step 0. Let h = log2 Hd(A), where Hd(A) is a bound on the magnitude of the
determinant of A, for instance, Hadamard’s bound (see, for example, von
zur Gathen & Gerhard 1999). For purpose of guaranteeing the probability
of a successful completion, the algorithm uses positive constants γ1, γ

′
1 ≥

1.
Choose a random prime integer p0 ≤ γ′1h

γ1 and compute det(A) mod p0

by LU-decomposition over Zp0 .
If the result is zero, A is most likely singular, and the algorithm calls an
algorithm for computing x ∈ Zn \ {0} with Ax = 0, see Remark 4.7 on
page 115 below. Note that the following steps would fail, for example, to
certify the determinant of the zero matrix.

Step 1. Precondition A such that with high probability det(λI−A) = s1(λ) · · ·
smin{m,φ}, where s1, . . . , sφ are the invariant factors of λI − A and where
m is the blocking factor that will be chosen in Step 2. We have two very
efficient preconditioners at our disposal. The first is A← DA where D is
a random diagonal matrix with the diagonal entries chosen uniformly and
independently from a set S of integers (Chen et al. 2002, Theorem 4.3).
The second by Turner (2001) is A← EA where

E =




1 w1 0 . . . 0

0
.

...
...

. . . 1 wn−1

0 . . . 0 1


 , wi ∈ S.

The product DA is slightly cheaper than EA, but recovery of det(A)
requires division by det(D). Thus, all moduli that divide det(D) would
have to be discarded from the Chinese remainder algorithm below for the
first preconditioner. Both preconditioners achieve s1(λ) = det(λI − A)
with probability 1 − O(n2/|S|). Note that A is non-singular. We shall
choose S = {i | −bγ ′2n

γ2c ≤ i ≤ dγ′2n
γ2e}, where γ2 ≥ 2, γ′2 ≥ 1 are real

constants.

Step 2. Let the blocking factors be l = m = dnσ e where σ = 1/3.
Select random X,Y ∈ Sn×m.
We will compute the sequence B [i] = XTrAiY for all 0 ≤ i < d2n/me =
O(n1−σ) by utilizing our baby steps/giant steps technique (Kaltofen 1992).
Let the number of giant steps be s = dnτ e, where τ = 1/3, and let the
number of baby steps be r = d2dn/me/se = O(n1−σ−τ).

110 Kaltofen & Villard cc 13 (2004)

Substep 2.1 for j = 0, 1, . . . , r − 1 Do V [j] ← AjY ;

Substep 2.2 Z ← Ar;

Substep 2.3. For k = 1, 2, . . . , s− 1 Do (U [k])Tr ← XTrZk;

Substep 2.4. For j = 0, 1, . . . , r − 1 Do
For k = 0, 1, . . . , s− 1 Do B [kr+j] ← (U [k])TrV [j].

Step 3. Compute the minimum matrix generator FA,Y
X (λ) from the initial

sequence segment {B[i]}0≤i<2dn/me. Here we can use the method from
Section 3, padding the matrix so that m divides n (see Remark 3.9 on

page 107), and return failure whenever the coefficient F
[i]
i of the matrix

remainder polynomial is singular. For alternative methods, we refer to
the Remark 4.1 below the algorithm.

Step 4. If deg(detFA,Y
X) < n return “failure” (this check may be redun-

dant, depending on which method was used in Step 3). Otherwise, since
FA,Y
X (λ) is in Popov form we know that its determinant is monic and by

Theorem 2.12 we have detFA,Y
X (λ) = det(λI−A). Return det(A) = ∆(0),

or a value adjusted according to the used preconditioner in Step 1. �

Remark 4.1. As we have seen in Section 2.1 there are several alternatives for
carrying out Step 3 (Beckermann & Labahn 1994; Coppersmith 1994; Dickin-
son et al. 1974; Forney, Jr. 1975; Giorgi et al. 2003; Kaltofen 1995; Rissanen
1972; Thomé 2002; Van Barel & Bultheel 1992). In Step 4 we require that
detFA,Y

X (λ) = det(λI − A). In order to achieve the wanted bit complexity,
we must stop any of the algorithms after having processed the first 2dn/me
elements of (2.1). The used algorithm then must return a candidate matrix

polynomial F̃ . Clearly, if Step 4 exposes deg(det F̃) < n one knows that the

randomizations were unlucky. However, if deg(det F̃) = n there still may be the

possibility that F̃ 6= FA,Y
X due to a situation where the first 2dn/me elements

do not determine the generator, as would be the case in the two examples
given in Section 2. In order to achieve the Las Vegas model of randomized
algorithmic complexity, verification of the computed generator is thus neces-
sary here. For example, the used algorithm could do so by establishing that
rankHkdn/me,dn/me(A,X, Y) = n. Our algorithm from Section 3 implicitly does
so via Theorem 3.6 on page 105. One could do so explicitly by computing the
rank of Hkdn/me,dn/me modulo a random prime number.

cc 13 (2004) Complexity of computing determinants 111

We remark that the arithmetic cost of verifying that the candidate for F A,Y
X

is a generator for the block Krylov sequence {AiY }i≥0 is the same as step 2.
The reduction is seen by applying the transposition principle (Kaltofen 2000,
Section 6): note that computing all B [i] amounts to computing the block diag-
onal left product

[
(XTr)1,∗ | (X

Tr)2,∗ | . . .
]
·




. . . AiY . . . 0 0 · · · 0
0 . . . AiY . . . 0 · · · 0
...

. . .
...

0 0 · · · . . . AiY . . .


 ,

where (XTr)i,∗ denotes the i-th row of XTr. Computing
∑

iA
iY c[i], where c[i] ∈

Km×m are the coefficients of FA,Y
X , amounts to computing the block diagonal

right product




. . . AiY . . . 0 0 · · · 0
0 . . . AiY . . . 0 · · · 0
...

. . .
...

0 0 · · · . . . AiY . . .


 ·




(c[0])∗,1
(c[1])∗,1

...
(c[0])∗,2
(c[1])∗,2

...




,

where (c[i])∗,j denotes the j-th column of the matrix c[i]. One may also develop
an explicit baby steps/giant steps algorithm for computing

∑
iA

iY c[i]. How-
ever, because the integer lengths of the entries in c[i] are much larger than those
of X and Y , we do not know how to keep the bit complexity low enough to
allow verification of the candidate generator via verification as a block Krylov
space generator.

We shall first give the bit complexity analysis for our block algorithm under
the assumption that no subcubic matrix multiplication à la Strassen or sub-
quadratic block Toeplitz solver/greatest common divisor algorithm à la Knuth/
Schönhage is employed. We will investigate those best theoretically possible
running times in Section 6.

Theorem 4.2. Our algorithm computes the determinant of any non-singular
matrix A ∈ Zn×n with (n3+1/3 log ‖A‖)1+o(1) bit operations. Our algorithm
utilizes (n1+1/3 + n log ‖A‖)1+o(1) random bits and either returns the correct
determinant or it returns “failure,” the latter with probability of no more than
1/2.

112 Kaltofen & Villard cc 13 (2004)

In our analysis, we will use modular arithmetic. The following lemma will
be used to establish the probability of getting a good reduction with prime
moduli.

Lemma 4.3. Let γ ≥ 1, γ ′ ≥ 1 be positive real constants. Then for all in-
tegers H ∈ Z≥2 that with h = 2 loge(H) ≤ 1.89 log2(H) satisfy 10 ≤ h,
h 6∈ [113, 113.6] and γ ′ ≤ hγ, we have the probability estimate

(4.4) Prob(p divides H | p a prime integer, 2 ≤ p ≤ γ ′hγ) ≤
25

8

γ

γ′hγ−1
.

Proof. We have the following estimates for the distribution of prime num-
bers: ∏

p prime
p≤x

p > eC1x, π(x) =
∑

p prime
p≤x

1 >
C2x

loge x
, π(x) <

C3x

loge x

where C1, C2 and C3 are positive constants. Explicit values for C1, C2 and C3

have been derived. We may choose C1 = 0.5 for x ≥ 10 (Rosser & Schoenfeld
1962, Theorem 10 + explicit estimation for 10 ≤ x < 101), C2 = 0.8 for x ≥ 5
(Rosser & Schoenfeld 1962, Corollary 1 to Theorem 2 and explict estimation for
10 ≤ x < 17), and C3 = 1.25 for x < 113 and x ≥ 113.6 (Rosser & Schoenfeld
1962, Corollary 2 to Theorem 2).

Since we have
∏

p≤h p > eC1h = H, there are at most π(h) < C3h/(loge h)
distinct prime factors in H. The number of primes ≤ γ ′hγ is more than
C2γ

′hγ/(γ loge h+ loge γ
′), because from our assumptions we have that γ ′hγ ≥

10. Therefore the probability for a random p to divide H is no more than,
using loge γ

′ ≤ γ loge h,

C3h/(loge h)

C2γ′hγ/(γ loge h+ loge γ
′)
≤

C3h/(loge h)

C2γ′hγ/(2γ loge h)
≤

2C3

C2

γ

γ′hγ−1
. �

In the above Lemma 4.3 we have introduced the constant γ ′ so that it is
possible to choose γ = 1 and have a positive probability of avoiding a prime
divisor of H.

Proof of Theorem 4.2. The unblocked version of the algorithm is fully
analyzed by Kaltofen (2002) with the additional modification of early termi-
nation when the determinant is small. That analysis uses a residue number
system (Chinese remaindering) for representing long integers, which we adopt
for the blocked algorithm. This adds the bit cost of generating a stream of
sufficiently large random primes (including p0 in Step 0).

cc 13 (2004) Complexity of computing determinants 113

Step 0 has by h = O(n log(n‖A‖)), which follows from Hadamard’s bound,
the bit complexity (n3 +n2 log ‖A‖)1+o(1), the latter term accounting for taking
every entry of A modulo p0. The failure probability of Step 0, that is when
det(A) ≡ 0 (mod p0) for non-singular A, is bounded by Lemma 4.3. Thus,
for H = det(A) and appropriate choice of γ1 and γ′1 in Step 0 all non-singular
matrices will pass with probability no less than 9/10.

Step 1 increases log ‖DA‖ or log ‖EA‖ to no more than O((log n)2 log ‖A‖)
and has bit cost (n3 log ‖A‖)1+o(1).

Steps 3, and 4 are performed modulo sufficiently many primes pl so that
det(A) can be recovered via Chinese remaindering. Using pl ≥ 2, we obtain
the very loose count

(4.5) 1 ≤ l ≤ 2 log2(Hd A) = 2h = O(n log(n‖A‖)),

the factor 2 accounting for recovery of negative determinants. Modular arith-
metic becomes necessary for the avoidance of length growth in the scalars in
FA,Y
X during Steps 3 and 4. We shall first estimate the probability of success,

and then the bit complexity. The probabilistic analysis will also determine the
size of the prime moduli.

The algorithm fails if

i) the preconditioners D or E in Step 1 do not yield det(λI − A) = s1(λ) · · ·
smin{m,φ}, that with probability ≤ O(1/nγ2−2). As for Step 0, we select the
constant γ2, γ

′
2 so that the preconditioners fail with probability ≤ 1/10.

ii) the projectionsX,Y in Step 2 do not yield rank Hk dn/me,dn/me(A,X, Y) = n.
Since for X = X and Y = Y with variables ξi,j, υi,j as entries full rank is
achieved (see Section 2), we can consider an n× n non-singular submatrix
Γ(X ,Y) of Hkdn/me,dn/me(A,X ,Y). By (DeMillo & Lipton 1978; Schwartz
1980; Zippel 1979) we get

Prob(det Γ(X,Y) = 0 | X,Y ∈ Sn×m) ≤
deg(det Γ)

|S|
≤

2n

|S|
≤

1

γ′2n
γ2−1

.

If we use the matrix polynomial remainder sequence algorithm of Section 3
for Step 3, we also fail if

∏
1≤k<dn/me det(Hkk,k(A,X, Y)) = 0, that with

probability no more than n(n/m+ 1)/|S| ≤ (n1−σ + 1)/(2γ ′2n
γ2−1).

Again, the constant γ2, γ
′
2 are chosen so that the probability is ≤ 1/10.

iii) the computation modulo one of the moduli pl fails for Step 3 or 4. Then pl
divides det Γ(A,X, Y). Since log | det(Γ(A,X, Y)) | = (n2/m log ‖A‖)1+o(1),

114 Kaltofen & Villard cc 13 (2004)

we may select the random moduli in the range

(4.6) 2 ≤ pl ≤ γ′3(n
2−σ log ‖A‖)(1+o(1))γ3 = q

where σ = 1/3 and γ3 ≥ 2, γ′3 ≥ 1 are constants. Note that in (4.6) the
exponent (1+o(1)) captures derivable polylogarithmic factors C1(log n)C2 ×
(log ‖A‖)C3 , where C1, C2, C3 are explicit constants. By Lemma 4.3 the
probability that any one of the≤ 2hmoduli fails, i.e. divides det(Γ(A,X, Y)),
is no more than 2h/(n2−σ log ‖A‖)(1+o(1))(γ3−1). By the Hadamard estimate
(4.5) we can make this probability no larger than 1/10 via selecting the
constants γ3, γ

′
3 sufficiently large.

If we also must avoid divisors of
∏

1≤k<dn/me det(Hkk,k(A,X, Y)) for the

matrix polynomial remainder sequence algorithm, the range (4.6) increases
to pl ≤ γ′3(n

3−2σ log ‖A‖)(1+o(1))γ3 .

iv) the algorithms fails to compute sufficiently many random prime moduli
pl ≤ q (see (4.6)). There is now a deterministic algorithm of bit complex-
ity (log pl)

12+o(1) for primality testing (Agrawal et al. 2002), which is not
required but simplifies the theoretical analysis here. We pick k = 4h log q
positive integers ≤ q. The probability for each to be prime is ≥ 1/ log q =
ψ (provided q ≥ 17 (Rosser & Schoenfeld 1962)). By Chernoff bounds
for the tail of the binomial distribution, the probability that fewer than
2h = (1 − 1/2)ψk are prime is ≤ e−(1/2)2ψk/2 = 1/eh/2. Thus for h ≥ 5 the
probability of failing to find 2h primes is ≤ 1/10.

The cases i-iv together with Step 0 add up to a failure probability of ≤ 1/2.
We conclude by estimating the number of bit operations for Steps 2-4.

Step 2 computes B[i] mod pl for 0 ≤ i < 2dn/me and 1 ≤ l ≤ 2h as follows.
First, all B[i] are computed as exact integers. For substeps 2.1 and 2.2 that re-
quires O(n3 log r) arithmetic operations on integers of length (r log ‖A‖)1+o(1),
in total (n4−σ−τ log ‖A‖)1+o(1) bit operations (recall that σ = τ = 1/3). Sub-
step 2.3 and Substep 2.4 require O(smn2) arithmetic operations on integers
of length (r s log ‖A‖)1+o(1), again (n3+τ log ‖A‖)1+o(1) bit operations. Then
all O((n/m)m2) entries of all B[i] are taken modulo pl with l in the range
(4.5) and pl in (4.6). Straight-forward remaindering would yield a total of
(nmh rs log ‖A‖)1+o(1) bit operations, which is (n3(log ‖A‖)2)1+o(1). The com-
plexity can be reduced to (n3 log ‖A‖)1+o(1) via a tree evaluation scheme (Aho
et al. 1974; Heindel & Horowitz 1971, Algorithm 8.4).2

2Note that this speedup comes at a cost of an extra log-factor.

cc 13 (2004) Complexity of computing determinants 115

Steps 3 and 4 are performed modulo all O(h) prime moduli pl. For each
prime the cost of extended Euclidean algorithm on matrix polynomials is
O(m3(n/m)2) residue operations. Overall, the bit complexity of Steps 3 and 4
is again (n3+σ log ‖A‖)1+o(1). The number of required random bits in D or E,
X and Y , and case iv above is immediate. �

It is possible to derive explicit values for the constants γ1, γ
′
1, γ2, γ

′
2, γ3, and

γ′3 so that Theorem 4.2 holds. However, any implementation of the algorithm
would select reasonably small values. For example, all prime moduli would be
chosen 32 or 64 bit in length. Since the method is Las Vegas, such choice only
effects the probability of not obtaining a result.

If Step 3 uses a Knuth/Schönhage half-GCD approach with FFT-based
polynomial arithmetic for the Euclidean algorithm on matrix polynomials of
Section 3, the complexity for each modulus reduces to (m2n)1+o(1) residue op-
erations. Thus, the overall complexity of Steps 3 and 4 reduces to (n2+2σ×
log ‖A‖)1+o(1) bit operations. For σ = 3/5 and τ = 1/5 the bit complexity of
the algorithm then is (n3+1/5 log ‖A‖)1+o(1).

Remark 4.7. In order to state a Las Vegas bit complexity for the determinant
of a general square matrix, we need to consider the cost of certifying singularity
in Step 0 on page 109 above. In order to meet the complexity of Theorem 4.2
on page 111 above we can use the algorithm by Dixon (1982). Reduction to
a non-singular subproblem can be accomplished by methods of Kaltofen and
Saunders (1991), and the rank is determined in a Monte Carlo manner via a
random prime modulus; see also (Villard 1988, page 102).

5. Improved division-free complexity

Our baby steps/giant steps algorithm with blocking of Section 4 can be em-
ployed to improve Kaltofen’s (1992) division-free complexity of the determinant
(see also Seifullin 2003). Here we consider a matrix A ∈ Rn×n, where R is a
commutative ring with a unit element. At task is to compute the determinant
of A by ring additions, subtractions and multiplications. Blocking can improve
the number of ring operations from n3.5+o(1) (Kaltofen 1992) to n3+1/3+o(1),
that without subcubic matrix multiplication or subquadratic Toeplitz/GCD
algorithms, and best possible from O(n3.0281) (Kaltofen 1992)3 to O(n2.6973).
Our algorithm combines the blocked determinant algorithm with the elimina-
tion of divisions technique of Kaltofen (1992). Our computational model is

3The proceedings paper gives an exponent 3.188; the smaller exponent is in a postnote
added to the version posted on www.kaltofen.us/bibliography.

116 Kaltofen & Villard cc 13 (2004)

either a straight-line program/arithmetic circuit or an algebraic random access
machine (Kaltofen 1988). Further problems are to compute the characteristic
polynomial and the adjoint matrix of A.

The main idea of Kaltofen (1992) follows Strassen (1973) and for the input
matrix A computes the determinant of the polynomial matrix L(z) = C+z(A−
C), where C ∈ Zn×n is a special integral matrix whose entries are independent
of the entries in A (see below). For ∆(z) = det(L(z)) we have det(A) = ∆(1).
All intermediate elements are represented as polynomials inR[z] or as truncated
power series in R[[z]] and the “shift” matrix C determines them in such a
manner that whenever a division by a polynomial or truncated power series is
performed the constant coefficients are ±1. For the algorithm in Section 4 we
not only pick a generalized shift matrix, now denoted by M , but also concrete
projection block vectors X ∈ Zn×m and Y ∈ Zn×m. No randomization is
necessary, as M is a “good” input matrix (φ = m) and X and Y are “good”

projections, we have detF
L(z),Y
X (λ) = det(λI − L(z)).

The matrices M , X and Y are block versions of the ones constructed by
Kaltofen (1992). Suppose that the blocking factor m is a divisor of n, the

dimension of A. This we can always arrange by padding A to

[
A 0
0 I

]
. Let

d = n/m and let

ai =

(
i

bi/2c

)
, ci = −(−1)b(d−i+1)/2c

(
b(d+ i)/2c

i

)
,

and let

C =




0 1 0 . . . 0

0 0 1
. . . 0

...
...

. 0
0 0 0 1
c0 c1 . . . cd−2 cd−1



, v =




a0

a1
...

ad−1



.

We have shown (Kaltofen 1992) that for the sequence ai = eTr

1 C
iv, where

eTr

1 =
[
1 0 . . . 0

]
∈ Z1×d is the first d-dimensional unit (row) vector, then

the Berlekamp/Massey algorithm divides by only ±1. We now define

M =




C 0 . . . 0

0 C
. . . 0

... 0
. . .

...
0 . . . 0 C


 ∈ Zn×n,

cc 13 (2004) Complexity of computing determinants 117

X =




e1 0 . . . 0

0 e1
. . . 0

... 0
. . .

...
0 . . . e1


 ∈ Zn×m, Y =




v 0 . . . 0

0 v
. . . 0

... 0
. . .

...
0 . . . v


 ∈ Zn×m.

By construction, the algorithm for computing the determinant of Section 4 per-
formed now with the matrices X,M, Y results in a minimum matrix generator

FM,Y
X (λ) = (λd − cd−1λ

d−1 − · · · − c0)Im,

where Im is an m × m identity matrix. Furthermore, this generator can be
computed from the sequence of block vectors B [i] = aiIm by a matrix Euclidean
algorithm (see Section 3) in which all leading coefficient matrices are equal to
±Im.

The arithmetic cost for executing the block baby steps/giant steps algorithm
on the polynomial matrix L(z) = M+z(A−M) is related to the bit complexity
of Section 4. Now the intermediate lengths are the degrees in z of the com-
puted polynomials in R[z]. Therefore, the matrices XTrL(z)iY ∈ R[z]m×m can
be computed for all 0 ≤ i < 2d in n3+1/3+o(1) ring operations. In the matrix
Euclidean algorithm for Step 3 we perform truncated power series arithmetic
modulo zn+1. The arithmetic cost is (d2m3n)1+o(1) ring operations for the
classical Euclidean algorithm with FFT-based power series arithmetic. For
the latter, we employ a division-free FFT-based polynomial multiplication al-
gorithm (Cantor & Kaltofen 1991). Finally, for obtaining the characteristic
polynomial, we may slightly extend Step 4 on page 110 and compute the entire
determinant of F

L(z),Y
X (λ) division-free in truncated power series arithmetic over

R[z, λ] mod (zn+1, λn+1) (a different approach is given at the end of Section 6).
For this last step we can use our original division-free algorithm (Kaltofen 1992)
and achieve arithmetic complexity (m3.5n2)1+o(1). We have proven the following
theorem.

Theorem 5.1. Our algorithm computes the characteristic polynomial of any
matrix A ∈ Rn×n with (n3+1/3)1+o(1) ring operations in R. By the results
of Baur and Strassen (1983) the same complexity is obtained for the adjoint
matrix, which can be symbolically defined as det(A)A−1.

6. Using fast matrix multiplication

As stated in the Introduction, by use of sub-cubic matrix multiplication algo-
rithms the worst case bit complexity of the block algorithms in Section 4 and

118 Kaltofen & Villard cc 13 (2004)

Section 5 can be brought below cubic complexity in n. We note that taking
the n2 entries of the input matrix modulo n prime residues is already a cubic
process in n; our algorithms therefore proceed differently.

Now let ω by the exponent for fast matrix multiplication. By Coppersmith
and Winograd (1990) we may set ω = 2.375477. The considerations in this
section are of a purely theoretical nature.

Substep 2.1 in Section 4 is done by repeated doubling as in

[
A2µ

Y A2µ+1Y . . . A2µ+1−1Y
]

= A2µ [
Y AY . . . A2µ−1

Y
]

for µ = 0, 1, . . .

Therefore the bit complexity for Substeps 2.1 and 2.2 is (nωr log ‖A‖)1+o(1) with
an exponent ω + 1 − σ − τ for n. Note that σ and τ determine the blocking
factor and number of giant steps, and will be chosen later so as to minimize
the complexity.

Substep 2.3 both splits the integer entries in U [k] into chunks of length
(r log ‖A‖)1+o(1), which is the bit length of the entries in Z. There are at most
s1+o(1) such chunks. Thus each block vector times matrix product (U [k])TrZ is
a rectangular matrix product of dimensions (ms)1+o(1) × n by n× n. We now
appeal to fast methods for rectangular matrices (Coppersmith 1997) (we seem
not to need the results of Huang & Pan 1998), which show how to multiply an
n× n matrix by an n× ν matrix in nω−θ+o(1)νθ+o(1) arithmetic operations (by
blocking the n × n matrix into (t × t)-sized blocks and the n × ν matrix into
(t×tζ)-sized blocks such that n/t = ν/tζ and that the individual block products
only take t2+o(1) arithmetic steps each), where θ = (ω − 2)/(1− ζ) with ζ =
0.2946289. There are s such products on integers of length (r log ‖A‖)1+o(1),
so the bit complexity for Substep 2.3 is (snω−θ(ms)θr log ‖A‖)1+o(1) with an
exponent ω + 1− σ + (σ + τ − 1)θ for n.

Step 3 for each individual modulus can be performed by the method pre-
sented in Section 3 in (mωn/m)1+o(1) residue operations. For all ≤ 2h moduli
we get a total bit complexity for Step 3 of (mω−1n2 log ‖A‖)1+o(1) with an ex-
ponent 2 + σ(ω − 1) for n.

The bit complexities of Substep 2.4 and Step 4 are dominated by the com-
plexities of other steps.

All of the above bit costs lead to total bit complexity of (nη log ‖A‖)1+o(1)

where the exponent η depends on the use matrix multiplication exponents ω
and ζ. Table 6.1 displays the optimal values of η for selected exponents together
with the exponents for the blocking factor and giant stepping that achieve the
optimum. Line 1 is the symbolic solution, Line 2 gives the best exponent that
we have achieved. Line 3 is the solution without appealing to faster rectangular

cc 13 (2004) Complexity of computing determinants 119

ω ζ η σ τ

1 ω ζ ω + 1−ζ
ω2−(2+ζ)ω+2

1− ω−(1+ζ)
ω2−(2+ζ)ω+2

ω−2
ω2−(2+ζ)ω+2

2 2.375477 0.2946289 2.697263 0.506924 0.171290

3 ω 0 ω + 1
(ω−1)2+1

1− ω−1
(ω−1)2+1

ω−2
(ω−1)2+1

4 3 0 3 + 1
5

3
5

1
5

5 log2(7) 0 3.041738 0.576388 0.189230

6 2.375477 0 2.721267 0.524375 0.129836

7 2 0 2 + 1
2

1
2

0

Table 6.1: Determinantal bit/division-free complexity exponent η.

matrix multiplication schemes. Line 4 corresponds to the comments before Re-
mark Remark 4.7 on page 115, and Line 5 uses Strassen’s original subquadratic
matrix multiplication algorithm. Line 6 exhibits the slowdown without faster
rectangular matrix multiplication algorithms. Line 7 is our complexity for a
hypothetical quadratic matrix multiplication algorithm.

An issue arises whether the singularity certification in Step 0 of our algo-
rithm can be accomplished at a matching or lower bit complexity than the ones
given above for the determinant. We refer to possible approaches by Mulders
and Storjohann (2004) and Storjohann (2004).

The above analysis applies to our algorithm in Section 5 and yields for the
determinant and adjoint matrix a division-free complexity of O(n2.697263) ring
operations. To our knowledge, this is the best-known to-date. For the division-
free computation of the characteristic polynomial the homotopy in z is altered,
because the computation of detF

L(z),Y
X (λ) mod (zn+1, λn+1) in Step 4 (see Sec-

tion 5) seems to require too many ring operations. One instead computes

det(M − zAM) = det(I − zA) det(M) = ±zn det(1/zI − A)

by replacing A − M by AM in the original determinant algorithm. Since
det(M) = ±1 one thus gets (the reverse of) the characteristic polynomial in
O(n2.697263) ring operations as well.

A Maple 7 worksheet that contains our exponent calculations is posted at
http://www.kaltofen.us/bibliography.

120 Kaltofen & Villard cc 13 (2004)

7. Integer characteristic polynomial and normal forms

As already seen in Section 5 and Section 6 over an abstract ring R, our de-
terminant algorithm also computes the adjoint matrix and the characteristic
polynomial. In the case of integer matrices, although differently from the alge-
braic setting, the algorithm of Section 4 may also be extended to solving other
problems. We briefly mention two extensions in the following. For A ∈ Zn×n

we shall first see that the algorithm leads to the characteristic polynomial of
a preconditioning of A and consequently to the Smith normal form of A. We
shall then see how FA,Y

X may be used for computing the Frobenius normal form
of A and hence its characteristic polynomial. Note that the exponents in our
bit complexity are of the same order than those discussed for the determinant
problem in Table 6.1.

7.1. Smith normal form of integer matrices. A randomized Monte Carlo
algorithm for computing the Smith normal form S ∈ Zn×n of an integer matrix
A ∈ Zn×n of rank r may be designed by combining the algorithm of Section 4
with the approach of Giesbrecht (2001). Here we improve on the best previously
known randomized algorithm of Eberly et al. (2000). The current estimate for
a deterministic computation of the form is (nω+1 log ‖A‖)1+o(1) (Storjohann
1996).

The Smith normal form over Z is defined in a way similar to what we have
seen in Section 2.2 for polynomial matrices. The Smith form S is an equivalent
diagonal matrix in Zn×n, with diagonal elements s1, s2, . . . , sr, 0, . . . , 0 such that
si divides si−1 for 2 ≤ i ≤ r. The si’s are the invariant factors of A (Newman
1972).

Giesbrecht’s approach reduces the computation of S to the computation
of the characteristic polynomials of matrices D

(i)
1 T (i)D

(i)
2 A for l = (log n +

log log ‖A‖)1+o(1) random choices of diagonal matrices D
(i)
1 and D

(i)
2 and of

Toeplitz matrices T (i), 1 ≤ i ≤ l. The invariant factors may be computed
from the coefficients of these characteristic polynomials. The preconditioning
B ← D

(i)
1 T (i)D

(i)
2 A ensures that the minimum polynomial fB of B is squarefree

(Giesbrecht 2001, Theorem 1.4) (see also Chen et al. 2002 for such precondi-
tionings). Hence if f̄B denotes the largest divisor of fB such that f̄B(0) 6= 0,
we have r = rankB = deg f̄B which is −1 + deg fB if A is singular. By
Theorem 2.12, for random X and Y we shall have, with high probability,
∆(λ) = det(FB,Y

X (λ)) = λk1fB(λ) = λk2 f̄B(λ) for two positive integers k1

and k2 that depend on the rank and on the blocking factor m. The needed
characteristic polynomials λn−rf̄B and then the Smith form are thus obtained
from the determinants of l matrix generating polynomials.

cc 13 (2004) Complexity of computing determinants 121

To ensure a high probability of success, the computations are done with
D

(i)
1 , D

(i)
2 and T (i) chosen over a ring extension RZ of degree O((log n)2) of Z, in

combination with Chinese remaindering modulo (n log ‖A‖)1+o(1) primes (Gies-
brecht 2001, Theorem 4.2). For one choice of B(i), the cost overhead compared
to Step 4 in Section 4 is the one for computing the entire determinant of the

m × m matrix polynomial FB(i),Y
X of degree d = dn/me. Over a field, by

(Storjohann 2002, Proposition 24) or (Storjohann 2003, Proposition 41) such
a determinant is computed in (mωd)1+o(1) arithmetic operations. Using the
(n log ‖A‖)1+o(1) primes and the fact that the ring extension RZ has degree

O((log n)2), detFB(i),Y
X ∈ RZ[λ] is thus computed in (n2+σ(ω−1) log ‖A‖)1+o(1)

bit operations.
From there we see that the cost for computing the l characteristic polyno-

mials, which is the dominant cost for computing the Smith form, corresponds
to the estimate already taken into account for Steps 3 of the determinant algo-
rithm. Hence the values of η in Table 6.1 remain valid for the computation of
the Smith normal form using a randomized Monte Carlo algorithm.

7.2. Integer characteristic polynomial and Frobenius normal form.
As used above, a direct application of Section 4 leads to the characteristic poly-
nomial of a preconditioning of A. For computing the characteristic polynomial
of A itself, we extend our approach using the Frobenius normal form and the
techniques of Storjohann (2000b). The Frobenius normal form of A ∈ Zn×n is
a block diagonal matrix in Zn×n similar to A. Its diagonal blocks are the com-
panion matrices for the invariant factors s1(λ), . . ., sφ(λ) of λI −A. Hence the

characteristic polynomial det(λI − A) =
∏φ

i=1 si(λ) is directly obtained from
the normal form. Our result is a randomized Monte Carlo algorithm which im-
proves on previous complexity estimates for computing the characteristic poly-
nomial or the Frobenius normal form over Z (Storjohann 2000a, Table 10.1).
The certified randomized algorithm of Giesbrecht and Storjohann (2002) uses
(nω+1 log ‖A‖)1+o(1) bit operations.

By Theorem 2.12 on page 102, if we avoid the preconditioning step (Step 1)
in the determinant algorithm of on page 108 in Section 4, the computation
leads to FA,Y

X (λ) and to

det(FA,Y
X (λ)) =

min{m,φ}∏

i=1

si(λ).

The first invariant factor s1(λ) is the minimum polynomial fA of A, hence
det(FA,Y

X) is a multiple of fA and a factor of the characteristic polynomial in

122 Kaltofen & Villard cc 13 (2004)

Z[λ]. Following the cost analysis of the previous Section 7.1 for the determinant
of the matrix generating polynomial, the exponents in Table 6.1 are thus valid
for the computation of det(FA,Y

X). The square free part fAsqfr of det(FA,Y
X) may

be deduced in (n2 log ‖A‖)1+o(1) bit operations (Gerhard 2001, Theorem 11).

From the Frobenius normal form of A modulo a random prime p, fAsqfr

allows a multifactor Hensel lifting for recontructing the form over Z (Storjohann
2000b). With high probability, λI − A also has φ invariant factors modulo p.
We denote them by s̄1, . . ., s̄φ. They can be decomposed into φ products

s̄i = t̄ei1
1 . . . t̄eim

m , 1 ≤ i ≤ φ,

for a GCD-free family {t̄1, . . . , t̄m} of square free polynomials in Fp[λ] and for
indices (ei1, . . . , eim) ∈ Zm

>0, 1 ≤ i ≤ φ. This decomposition is computed in
(n2 log p)1+o(1) bit operations (Bach & Shallit 1996, Section 4.8). With high
probability we also have

t̄1t̄2 . . . t̄m = fAsqfr mod p.

The latter factorization can be lifted, for instance using the algorithm of (von
zur Gathen & Gerhard 1999, §15.5), into a family {t1, . . . , tm} of polynomials
modulo a sufficiently high power k of p. With high probability, the invariant
factors of λI −A over Z and the Frobenius form of A may finally be obtained
as the following combinations of the ti’s:

si = tei1
1 . . . teim

m mod pk, 1 ≤ i ≤ φ,

with coefficients reduced in the symmetric range.

In addition to the computation of FA,Y
X (λ), the dominant cost is the cost of

the lifting. Any divisor of the characteristic polynomial has a coefficient size of
(n log ‖A‖)1+o(1) (for instance see Giesbrecht & Storjohann 2002, Lemma 2.1)
hence one can take k = (n log ‖A‖)1+o(1). The polynomials t1, . . ., tm are
thus computed in (n2 log ‖A‖)1+o(1) bit operations (von zur Gathen & Gerhard
1999, Theorem 15.18). We may conclude that the values of the exponent of η
in Table 6.1 are valid for the randomized computation of the Frobenius normal
form and the characteristic polynomial of an integer matrix.

Theorem 5.4 by Pan (2002) states a Las Vegas bit complexity of (n16/5×
log ‖A‖)1+o(1) for the Frobenius factors of a matrix A ∈ Zn×n by a different
method. Victor Pan has told us on May 13, 2004 that his proof of his claim
currently has a flaw.

cc 13 (2004) Complexity of computing determinants 123

8. Concluding Remarks

Our baby steps/giant steps and blocking techniques apply to entry domains
other than the integers, like polynomial rings and algebraic number rings. We
would like to add that if the entries are polynomials over a possibly finite
field, there are additional new techniques possible (Jeannerod & Villard 2004;
Mulders & Storjohann 2003; Storjohann 2002, 2003). Storjohann (2004) has
extended his 2003 techniques to construct a Las Vegas algorithm that computes
det(A) where A ∈ Zn×n in (nω log ‖A‖)1+o(1) bit operations, when n×nmatrices
are multiplied in O(nω) algebraic operations. The best known division-free
complexity of the determinant remains at O(n2.697263) as stated in Section 5 and
Section 6. Furthermore, the best known bit-complexity of the characteristic
polynomial of an integer matrix is to our knowledge the one in Section 7.2,
namely (n2.697263 log ‖A‖)1+o(1).

For the classical matrix multiplication exponent ω = 3, the bit complexity
of integer matrix determinants is thus proportional to nη+o(1) as follows: η =
3 + 1

2
(Eberly et al. 2000; Kaltofen 1992, 2002), η = 3 + 1

3
(Theorem 4.2 on

page 111), η = 3+ 1
5

(Line 4 in Table 6.1 on page 119), η = 3 (Storjohann 2004).
Together with the algorithms discussed in Section 1 on page 94 that perform
well on propitious inputs, such a multitude of results poses a problem for the
practitioner: which of the methods can yield faster procedures in computer
algebra systems? With William J. Turner we have implemented our baby
steps/giant steps algorithm (Kaltofen 1992, 2002) in Maple 6 with mixed results
in comparison to Gaussian elimination and Chinese remaindering. The main
problem seems the overhead hidden in the no(1)-factor. For example, for n1 =
10000 one has (log2 n1)/n

1/3
1 > 0.616, which means that saving a factor of

n1/3 at the cost of a factor log2 n may for practical considerations be quite
immaterial. In addition, one also needs to consider other properties, such as
the required intermediate space and whether the algorithm is easily parallelized.
We believe that the latter may be the most important advantage in practice of
our block approach (cf. Coppersmith 1994; Kaltofen 1995).

The reduction of the bit complexity of an algebraic problem below that of
its known algebraic complexity times the bit length of the answer should raise
important considerations for the design of generic algorithms with abstract
coefficient domains (Jenks et al. 1988) and for the interpretation of algebraic
lower bounds for low complexity problems (Strassen 1990). We demonstrate
that the interplay between the algebraic structure of a given problem and the
bits of the intermediately computed numbers can lead to a dramatic reduction
in the bit complexity of a fundamental mathematical computation task.

124 Kaltofen & Villard cc 13 (2004)

Acknowledgements

We thank William J. Turner for his observations made on the practicality of
our method, Mark Giesbrecht for reporting to us the value of the smallest
exponent in (Eberly et al. 2000) prior to its publication, Elwyn Berlekamp for
comments on the Berlekamp/Massey algorithm, and the three referees for their
comments.

This material is based on work supported in part by the National Science
Foundation (USA) under Grants Nos. DMS-9977392, CCR-9988177 and CCR-
0113121 (Kaltofen) and by CNRS (France) Actions Incitatives No 5929 et Stic
LinBox 2001 (Villard).

An extended abstract of this paper is (Kaltofen & Villard 2001).

References

Note: many of the authors’ publications cited below are accessible through
links in their webpages listed under their addresses.

J. Abbott, M. Bronstein & T. Mulders (1999). Fast Deterministic Computation
of Determinants of Dense Matrices. In ISSAC 99 Proc. 1999 Internat. Symp. Symbolic
Algebraic Comput., S. Dooley, editor, 181–188. ACM Press, New York, N. Y. ISBN
1-58113-073-2.

Manindra Agrawal, Neeraj Kayal & Nitin Saxena (2002). PRIMES is in P.
Manuscript. Available from http://www.cse.iitk.ac.in/news/primality.pdf.

A. Aho, J. Hopcroft & J. Ullman (1974). The Design and Analysis of Algo-
rithms. Addison and Wesley, Reading, MA.

E. Bach & J. Shallit (1996). Algorithmic Number Theory Volume 1: Efficient
Algorithms. The MIT Press, Cambridge, Massachusetts, USA.

W. Baur & V. Strassen (1983). The complexity of partial derivatives. Theoretical
Comp. Sci. 22, 317–330.

B. Beckermann & G. Labahn (1994). A uniform approach for fast computation
of matrix-type Padé approximants. SIAM J. Matrix Anal. Applic. 15(3), 804–823.

R. P. Brent, F. G. Gustavson & D. Y. Y. Yun (1980). Fast solution of Toeplitz
systems of equations and computation of Padé approximants. J. Algorithms 1, 259–
295.

cc 13 (2004) Complexity of computing determinants 125

Richard P. Brent, Shuhong Gao & Alan G. B. Lauder (2003). Random
Krylov spaces over finite fields. SIAM J. Discrete Math. 16(2), 276–287.

H. Brönnimann, I. Emiris, V. Pan & S. Pion (1999). Sign determination in
residue number systems. Theoretical Comput. Sci. 210(1), 173–197. Special issue on
real numbers and computers.

H. Brönnimann & M. Yvinec (2000). Efficient exact evaluation of signs of deter-
minant. Algorithmica 27, 21–56.

W. S. Brown & J. F. Traub (1971). On Euclid’s algorithm and the theory of
subresultants. J. ACM 18, 505–514.

D. G. Cantor & E. Kaltofen (1991). On fast multiplication of polynomials over
arbitrary algebras. Acta Inform. 28(7), 693–701.

L. Chen, W. Eberly, E. Kaltofen, B. D. Saunders, W. J. Turner & G. Vil-
lard (2002). Efficient Matrix Preconditioners for Black Box Linear Algebra. Linear
Algebra and Applications 343–344, 119–146. Special issue on Structured and Infinite
Systems of Linear Equations, edited by P. Dewilde, V. Olshevsky and A. H. Sayed.

Kenneth L. Clarkson (1992). Safe and Efficient Determinant Evaluation. In Proc.
33rd Annual Symp. Foundations of Comp. Sci., 387–395. IEEE Computer Society
Press, Los Alamitos, California.

D. Coppersmith (1994). Solving homogeneous linear equations over GF(2) via
block Wiedemann algorithm. Math. Comput. 62(205), 333–350.

D. Coppersmith (1997). Rectangular matrix multiplication revisited. J. Complexity
13, 42–49.

D. Coppersmith & S. Winograd (1990). Matrix multiplication via arithmetic
progressions. J. Symbolic Comput. 9(3), 251–280. Special issue on complexity theory.

R. A. DeMillo & R. J. Lipton (1978). A probabilistic remark on algebraic
program testing. Information Process. Letters 7(4), 193–195.

Bradley W. Dickinson, Martin Morf & Thomas Kailath (1974). A minimal
realization algorithm for matrix sequences. IEEE Trans. Automatic Control AC-

19(1), 31–38.

J. Dixon (1982). Exact solution of linear equations using p-adic expansions. Numer.
Math. 40(1), 137–141.

J. L. Dornstetter (1987). On the equivalence between Berlekamp’s and Euclid’s
algorithms. IEEE Trans. Inf. Theory it-33(3), 428–431.

126 Kaltofen & Villard cc 13 (2004)

W. Eberly (2002). Avoidance of look-ahead in Lanczos by random projections.
Manuscript in preparation.

W. Eberly, M. Giesbrecht & Gilles Villard (2000). On Computing the
Determinant and Smith Form of an Integer Matrix. In Proc. 41stAnnual Symp.
Foundations of Comp. Sci., 675–685. IEEE Computer Society Press, Los Alamitos,
California.

W. Eberly & E. Kaltofen (1997). On Randomized Lanczos Algorithms. In
Küchlin (1997), 176–183.

I. Z. Emiris (1998). A complete implementation for computing general dimensional
convex hulls. Int. J. Comput. Geom. Appl. 8(2), 223–254.

G. David Forney, Jr. (1975). Minimal bases of rational vector spaces, with ap-
plications to multivariable linear systems. SIAM J. Control 13(3), 493–520.

J. von zur Gathen & J. Gerhard (1999). Modern Computer Algebra. Cambridge
University Press, Cambridge, New York, Melbourne. ISBN 0-521-64176-4. Second
edition 2003.

Jürgen Gerhard (2001). Fast modular algorithms for squarefree factorization and
Hermite integration. Applic. Algebra Engin. Commun. Comput. 11(3), 203–226.

M. Giesbrecht (2001). Fast computation of the Smith form of a sparse integer
matrix. Computational Complexity 10, 41–69.

Mark Giesbrecht & Arne Storjohann (2002). Computing rational forms of
integer matrices. J. Symbolic Comput. 34(3), 157–172.

Pascal Giorgi, Claude-Pierre Jeannerod & Gilles Villard (2003). On the
complexity of polynomial matrix computations. In Sendra (2003), 135–142.

L. E. Heindel & E. Horowitz (1971). On decreasing the computing time for
modular arithmetic. In Conference Record, IEEE 12th Annual Symp. on Switching
and Automata Theory, 126–128.

Xiaohan Huang & Victor Y. Pan (1998). Fast rectangular matrix multiplication
and applications. J. Complexity 14, 257–299.

Claude-Pierre Jeannerod & Gilles Villard (2004). Essentially optimal com-
putation of the inverse of generic polynomial matrices. J. Complexity, to appear.
Available from http://perso.ens-lyon.fr/gilles.villard.

cc 13 (2004) Complexity of computing determinants 127

R. D. Jenks, R. S. Sutor & S. M. Watt (1988). Scratchpad II: An abstract
datatype system for mathematical computation. In Mathematical Aspects of Scien-
tific Software, J. R. Rice, editor, volume 14 of The IMA Volumes in Mathematics
and its Application, 157–182. Springer Verlag, New York.

T. Kailath (1980). Linear systems. Prentice Hall.

E. Kaltofen (1988). Greatest common divisors of polynomials given by straight-
line programs. J. ACM 35(1), 231–264.

E. Kaltofen (1992). On computing determinants of matrices without divisions. In
Proc. 1992 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’92), P. S. Wang,
editor, 342–349. ACM Press, New York, N. Y.

E. Kaltofen (1995). Analysis of Coppersmith’s block Wiedemann algorithm for
the parallel solution of sparse linear systems. Math. Comput. 64(210), 777–806.

E. Kaltofen (2000). Challenges of Symbolic Computation My Favorite Open Prob-
lems. J. Symbolic Comput. 29(6), 891–919. With an additional open problem by R.
M. Corless and D. J. Jeffrey.

E. Kaltofen, W.-s. Lee & A. A. Lobo (2000). Early termination in Ben-
Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm. In Proc. 2000
Internat. Symp. Symbolic Algebraic Comput. (ISSAC’00), C. Traverso, editor,
192–201. ACM Press, New York, N. Y. ISBN 1-58113-218-2.

E. Kaltofen & B. D. Saunders (1991). On Wiedemann’s method of solving sparse
linear systems. In Proc. AAECC-9, H. F. Mattson, T. Mora & T. R. N. Rao,
editors, volume 539 of Lect. Notes Comput. Sci., 29–38. Springer Verlag, Heidelberg,
Germany.

E. Kaltofen & G. Villard (2001). On the complexity of computing determinants.
In Proc. Fifth Asian Symposium on Computer Mathematics (ASCM 2001), Kiyoshi
Shirayanagi & Kazuhiro Yokoyama, editors, volume 9 of Lecture Notes Series
on Computing, 13–27. World Scientific, Singapore. ISBN 981-02-4763-X. Invited
contribution; extended abstract.

E. Kaltofen & G. Villard (2004). Computing the sign or the value of the
determinant of an integer matrix, a complexity survey. J. Computational Applied
Math. 162(1), 133–146. Special issue: Proceedings of the International Conference
on Linear Algebra and Arithmetic 2001, Rabat, Morocco, 28–31 May 2001, S. El
Hajji, N. Revol, P. Van Dooren (guest eds.).

Erich Kaltofen (2002). An output-sensitive variant of the baby steps/giant steps
determinant algorithm. In Mora (2002), 138–144.

128 Kaltofen & Villard cc 13 (2004)

Erich Kaltofen & Wen-shin Lee (2003). Early Termination in Sparse Interpo-
lation Algorithms. J. Symbolic Comput. 36(3–4), 365–400. Special issue Internat.
Symp. Symbolic Algebraic Comput. (ISSAC 2002). Guest editors: M. Giusti & L.
M. Pardo.

Erich Kaltofen & John May (2003). On Approximate Irreducibility of Polyno-
mials in Several Variables. In Sendra (2003), 161–168.

D. E. Knuth (1970). The analysis of algorithms. In Congrès int. Math., Nice,
France, volume 3, 269–274.

W. Küchlin (editor) (1997). ISSAC 97 Proc. 1997 Internat. Symp. Symbolic Alge-
braic Comput. ACM Press, New York, N. Y. ISBN 0-89791-875-4.

R. T. Moenck (1973). Fast computation of GCDs. In Proc. 5th ACM Symp. Theory
Comp., 142–151.

T. Mora (editor) (2002). ISSAC 2002 Proc. 2002 Internat. Symp. Symbolic Alge-
braic Comput. ACM Press, New York, N. Y. ISBN 1-58113-484-3.

T. Mulders & A. Storjohann (2003). On lattice reduction for polynomial ma-
trices. J. Symbolic Comput. 35(4), 377–401.

T. Mulders & A. Storjohann (2004). Certified dense linear system solving. J.
Symbolic Comput. 37(4), 485–510.

M. Newman (1972). Integral Matrices. Academic Press.

Victor Pan (1988). Computing the determinant and the characteristic polynomial
of a matrix via solving linear systems of equations. Information Process. Lett. 28,
71–75.

Victor Y. Pan (2002). Randomized acceleration of fundamental matrix compu-
tations. In Proc. STACS 2002, volume 2285 of Lect. Notes Comput. Sci., 215–226.
Springer Verlag, Heidelberg, Germany.

M. S. Paterson & L. J. Stockmeyer (1973). On the number of nonscalar mul-
tiplications necessary to evaluate polynomials. SIAM J. Comp. 2, 60–66.

V. M. Popov (1970). Some properties of control systems with irreducible matrix
transfer functions. In Lecture Notes in Mathematics, volume 144, 169–180. Springer
Verlag, Berlin.

Jorma Rissanen (1972). Realizations of matrix sequences. Technical Report RJ-
1032, IBM Research, Yorktown Heights, New York.

cc 13 (2004) Complexity of computing determinants 129

J. Barkley Rosser & Lowell Schoenfeld (1962). Approximate formulas of
some functions of prime numbers. Illinois J. Math. 6, 64–94.

A. Schönhage (1971). Schnelle Berechnung von Kettenbruchentwicklungen. Acta
Inform. 1, 139–144. In German.

J. T. Schwartz (1980). Fast probabilistic algorithms for verification of polynomial
identities. J. ACM 27, 701–717.

T. R. Seifullin (2003). Acceleration of Computation of Determinants and Char-
acteristic Polynomials without Divisions. Cybernetics and Systems Analysis 39(6),
805–815.

J. R. Sendra (editor) (2003). ISSAC 2003 Proc. 2003 Internat. Symp. Symbolic
Algebraic Comput. ACM Press, New York, N. Y. ISBN 1-58113-641-2.

Arne Storjohann (1996). Near optimal algorithms for computing Smith normal
forms of integer matrices. In ISSAC 96 Proc. 1996 Internat. Symp. Symbolic Al-
gebraic Comput., Lakshman Y. N., editor, 267–274. ACM Press, New York, N.
Y.

Arne Storjohann (2000a). Algorithms for matrix canonical forms. Dissertation,
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

Arne Storjohann (2000b). Computing the Frobenius form of a sparse integer
matrix. Paper to be submitted.

Arne Storjohann (2002). Higher-order lifting. In Mora (2002), 246–254.

Arne Storjohann (2003). High-order lifting and integrality certification. J. Sym-
bolic Comput. 36(3-4), 613–648. Special issue Internat. Symp. Symbolic Algebraic
Comput. (ISSAC 2002). Guest editors: M. Giusti & L. M. Pardo.

Arne Storjohann (2004). The shifted number system for fast linear algebra on
integer matrices. Technical Report CS-2004-18, School of Computer Science, Univer-
sity of Waterloo, http://www.scg.uwaterloo.ca/~astorjoh/publications.html.

V. Strassen (1973). Vermeidung von Divisionen. J. reine u. angew. Math. 264,
182–202. In German.

V. Strassen (1990). Algebraic complexity theory. In Handbook of Theoretical
Computer Science, Algorithms and Complexity, J. van Leeuwen, editor, volume A,
633–672. Elsevier Science Publ., Amsterdam.

Y. Sugiyama, M. Kasahara, S. Hirasawa & T. Namekawa (1975). A method
for solving key equation for decoding Goppa codes. Information & Control 27, 87–99.

130 Kaltofen & Villard cc 13 (2004)

E. Thomé (2002). Subquadratic Computation of Vector Generating Polynomials
and Improvements of the Block Wiedemann Method. J. Symbolic Comput. 33(5),
757–775.

William J. Turner (2001). A note on determinantal divisors and matrix precon-
ditioners. Paper to be submitted.

William J. Turner (2002). Black box linear algebra with the LINBOX library.
Ph.D. thesis, North Carolina State Univ., Raleigh, North Carolina. 193 pages.

M. Van Barel & A. Bultheel (1992). A general module theoretic framework for
vector M-Padé and matrix rational interpolation. Numerical Algorithms 3, 451–462.

G. Villard (1988). Calcul Formel et Parallélisme : Résolution de Systèmes
Linéaires. Ph.D. thesis, Institut National Polytechnique de Grenoble, France.

G. Villard (1997a). Further analysis of Coppersmith’s block Wiedemann algorithm
for the solution of sparse linear systems. In Küchlin (1997), 32–39.

G. Villard (1997b). A study of Coppersmith’s block Wiedemann algorithm using
matrix polynomials. Rapport de Recherche 975 IM, Institut d’Informatique et de
Mathématiques Appliquées de Grenoble, www.imag.fr.

Gilles Villard (2000). Computing the Frobenius Normal Form of a Sparse Matrix.
In CASC 2000 Proc. the Third International Workshop on Computer Algebra in
Scientific Computing, V. G. Ganzha, E. W. Mayr & E. V. Vorozhtsov, editors,
395–407. Springer Verlag.

D. Wiedemann (1986). Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theory it-32, 54–62.

R. Zippel (1979). Probabilistic algorithms for sparse polynomials. In Proc. EU-
ROSAM ’79, volume 72 of Lect. Notes Comput. Sci., 216–226. Springer Verlag, Hei-
delberg, Germany.

Manuscript received August 23, 2003

Erich Kaltofen
Department of Mathematics
North Carolina State University
Raleigh, North Carolina 27695-8205
kaltofen@math.ncsu.edu

http://www.kaltofen.us

Gilles Villard
Laboratoire LIP
École Normale Supérieure de Lyon
46, Allée d’Italie
69364 Lyon Cedex 07, France
Gilles.Villard@ens-lyon.fr

http://perso.ens-lyon.fr/gilles.villard/

