{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 257 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 258 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 259 "" 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Headi ng 1" -1 3 1 {CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 2" -1 4 1 {CSTYLE "" -1 -1 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 2 1 0 1 0 2 2 0 1 }{PSTYLE "Heading 3" -1 5 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 1 1 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Out put" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{SECT 0 {PARA 3 "" 0 "" {TEXT 256 53 "The following examples is Jan Verschelde 's examples:" }{TEXT -1 0 "" }}{EXCHG {PARA 0 "" 0 "" {TEXT 257 183 " The purpose of this worksheet is to generate instances of multivariate polynomials with complex coefficients. Executing this worksheet gene rates the files exf1, exf2, exf3, and exf4." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{SECT 0 {PARA 3 "" 0 "" {TEXT -1 41 "The Jacobian for a Ste wart-Gough Platform" }}{PARA 0 "" 0 "" {TEXT -1 58 "We derive the Jaco bian for a platform, first symbolically." }}{SECT 0 {PARA 4 "" 0 "" {TEXT -1 32 "1. The Symbolic Jacobian Matrix." }}{EXCHG {PARA 0 "" 0 " " {TEXT -1 81 "A rotation is represented by a quaternion q, as an elem ent in projective 3-space:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 17 "q := array(0..3):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "Q := sum(q ['i']^2,'i'=0..3):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "Rhat := Matri x(3,3):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "R := Rhat/Q:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "Rhat[1,1] := q[0]^2 + q[1]^2 - q[2]^2 - q[3 ]^2:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "Rhat[2,2] := q[0]^2 - q[1]^ 2 + q[2]^2 - q[3]^2:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "Rhat[3,3] : = q[0]^2 - q[1]^2 - q[2]^2 + q[3]^2:" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "Rhat[1,2] := 2*(q[1]*q[2] + q[0]*q[3]):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "Rhat[2,1] := 2*(q[1]*q[2] - q[0]*q[3]):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "Rhat[1,3] := 2*(q[1]*q[3] - q[0]*q[2]):" } {TEXT -1 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "Rhat[3,1] := 2*(q[1 ]*q[3] + q[0]*q[2]):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "Rhat[2,3] : = 2*(q[2]*q[3] + q[0]*q[1]):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 39 "Rha t[3,2] := 2*(q[2]*q[3] - q[0]*q[1]):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 2 "R;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#*&,**$)&%\"qG6# \"\"!\"\"#\"\"\"F,*$)&F(6#F,F+F,F,*$)&F(6#F+F+F,F,*$)&F(6#\"\"$F+F,F,! \"\"-%'RTABLEG6%\")#\\>u#-%'MATRIXG6#7%7%,*F%F,F-F,F1F:F5F:,&*(F+F,F/F ,F3F,F,*(F+F,F'F,F7F,F,,&*(F+F,F/F,F7F,F,*(F+F,F'F,F3F,F:7%,&*(F+F,F/F ,F3F,F,*(F+F,F'F,F7F,F:,*F%F,F-F:F1F,F5F:,&*(F+F,F3F,F7F,F,*(F+F,F'F,F /F,F,7%,&*(F+F,F/F,F7F,F,*(F+F,F'F,F3F,F,,&*(F+F,F3F,F7F,F,*(F+F,F'F,F /F,F:,*F%F,F-F:F1F:F5F,%'MatrixGF," }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 38 "Next we define the position vector pt:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "pt :=