{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 2 1 2 0 0 0 1 }{CSTYLE "2D Output" -1 20 "Times" 0 1 0 0 255 1 0 0 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle1" -1 205 "Times" 1 18 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle2" -1 206 "Courier" 1 12 255 0 0 1 2 1 2 2 1 2 0 0 0 1 }{CSTYLE "_cstyle4" -1 208 "Times" 1 14 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle5" -1 209 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle6" -1 210 "Times" 1 12 0 0 0 1 1 1 2 2 2 2 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Line Print ed Output" -1 6 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 0 0 0 2 2 1 0 0 0 1 }1 0 0 -1 -1 -1 1 0 1 0 2 2 -1 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }3 3 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle1" -1 202 1 {CSTYLE "" -1 -1 " Times" 1 18 0 0 0 1 2 1 2 2 2 2 1 0 0 1 }1 1 0 0 8 4 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle2" -1 203 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle4" -1 205 1 {CSTYLE "" -1 -1 "Times" 1 14 0 0 0 1 2 1 2 2 2 2 1 0 0 1 }1 1 0 0 8 2 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle5" -1 206 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 1 1 2 2 2 2 1 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle8" -1 208 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 2 2 2 0 0 0 1 }0 0 0 -1 -1 -1 1 0 1 0 2 2 -1 1 }} {SECT 0 {EXCHG {PARA 202 "" 0 "" {TEXT 205 69 "Worksheet to execute th e examples in Gao, Kaltofen, May, Yang, & Zhi:" }{TEXT 205 1 "\n" } {TEXT 205 83 "\n'Approximate Factorization of Multivariate polynomials via differential Equations'" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 25 "# Factorization routines:" }{MPLTEXT 1 206 26 "\nread(\"mult ifac_1.3.mpl\"):" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 57 "# r and_path:=\"debug_exs\\/\": # for debugging the worksheet" }{MPLTEXT 1 206 49 "\nrand_path:=\"examples\\/\": # examples in the paper" }}} {EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 23 "infolevel[multifac]:=2; " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%*infolevelG6#%)multifacG\"\"#" }}}{EXCHG {PARA 203 "" 0 "" {TEXT 208 42 "A note about backward_error( F, G, [vars]):" }{TEXT 208 98 "\nWe compute c so that ||F-c*G||_2 is a s small as possible. The output is ||F - c*G||_2 / ||F||_2." }{TEXT 208 1 "\n" }{TEXT 208 49 "\nExample 16 has been moved to it's own work sheet." }}}{SECT 0 {PARA 205 "" 0 "" {TEXT 209 105 "Examples 10, 11 & \+ 12: One polynomial (12, 7, 5) with perturbations of different orders ( -5 and -1) added:" }}{SECT 0 {PARA 206 "" 0 "" {TEXT 210 75 "Example 1 0: Three Factors (12, 7, 5), Large Noise -5, very sparse noise: 5%" }} {EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 29 "read(cat(rand_path,\"exF 10\")):" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 42 "F10 := expan d(evalf(cleanF10 + noiseF10)):" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 38 "norm(evalf(noiseF10),2) / norm(F10,2);" }{MPLTEXT 1 206 16 "\nceil(log10(%));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+a_* *****!#:" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#!\"&" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 12 "t10:=time():" }{MPLTEXT 1 206 27 "\nfacF1 0:=appfac(F10,[x,y]):" }{MPLTEXT 1 206 17 "\nt10:=time()-t10;" }} {PARA 6 "" 1 "" {TEXT -1 108 "` the biggest gap, the last r-th singula r values and the number of factors `, 658.3729016, .8558217297e-6, 3" }}{PARA 6 "" 1 "" {TEXT -1 60 "` The time for computing the number of \+ factors*****`, 59.605" }}{PARA 6 "" 1 "" {TEXT -1 54 "`The time for th e entire factorization******`, 968.022" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$t10G$\"'#4o*!\"$" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 13 "nops(facF10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"$" }}} {EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 59 "berror10:=backward_error (F10, convert(facF10, `*`), [x,y]);" }{MPLTEXT 1 206 16 "\nceil(log10( %));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/%\"cG$!+P%p[1\"!\"'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)berror10G$\"+@ " 0 "" {MPLTEXT 1 206 59 "save facF10, t10, berror10, cat(rand_path,\"exF10-factors\");" }}} }{SECT 0 {PARA 206 "" 0 "" {TEXT 210 52 "Example 11: Three Factors (12 , 7, 5), Large Noise -5" }}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 29 "read(cat(rand_path,\"exF11\")):" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 42 "F11 := expand(evalf(cleanF11 + noiseF11)):" }}} {EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 38 "norm(evalf(noiseF11),2) \+ / norm(F11,2);" }{MPLTEXT 1 206 16 "\nceil(log10(%));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+Z'f=-\"!#9" }}{PARA 11 "" 1 "" {XPPMATH 20 "6# !\"%" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 12 "t11:=time():" } {MPLTEXT 1 206 27 "\nfacF11:=appfac(F11,[x,y]):" }{MPLTEXT 1 206 17 " \nt11:=time()-t11;" }}{PARA 6 "" 1 "" {TEXT -1 108 "` the biggest gap, the last r-th singular values and the number of factors `, 833.536703 1, .6758979173e-6, 3" }}{PARA 6 "" 1 "" {TEXT -1 60 "` The time for co mputing the number of factors*****`, 49.741" }}{PARA 6 "" 1 "" {TEXT -1 55 "`The time for the entire factorization******`, 1559.803" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$t11G$\"(t)f:!\"$" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 13 "nops(facF11);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"$" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 59 "berror11:=backward_error(F11, convert(facF11, `*`), [x,y]);" } {MPLTEXT 1 206 16 "\nceil(log10(%));" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#/%\"cG$\"+>qou[!\"'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)berror11G$ \"+pK3$>$!#8" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#!\"$" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 59 "save facF11, t11, berror11, cat(rand_ path,\"exF11-factors\");" }}}}{SECT 0 {PARA 206 "" 0 "" {TEXT 210 53 " Example 12: Three Factors (12, 7, 5), Larger Noise -3" }}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 15 "#read(\"exF12\"):" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 48 "F12 := expand(evalf(cleanF11 + 10.^2* noiseF11)):" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 45 "norm(eva lf(10.^2.*noiseF11),2) / norm(F12,2);" }{MPLTEXT 1 206 16 "\nceil(log1 0(%));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+3_#=-\"!#7" }}{PARA 11 " " 1 "" {XPPMATH 20 "6#!\"#" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 12 "t12:=time():" }{MPLTEXT 1 206 27 "\nfacF12:=appfac(F12,[x,y]): " }{MPLTEXT 1 206 17 "\nt12:=time()-t12;" }}{PARA 6 "" 1 "" {TEXT -1 108 "` the biggest gap, the last r-th singular values and the number o f factors `, 8.340144257, .6756157841e-4, 3" }}{PARA 6 "" 1 "" {TEXT -1 60 "` The time for computing the number of factors*****`, 49.951" } }{PARA 6 "" 1 "" {TEXT -1 55 "`The time for the entire factorization** ****`, 4337.458" }}{PARA 6 "" 1 "" {TEXT -1 108 "` the biggest gap, th e last r-th singular values and the number of factors `, 16.13526528, \+ .4085967167e-3, 2" }}{PARA 6 "" 1 "" {TEXT -1 59 "` The time for compu ting the number of factors*****`, 1.583" }}{PARA 6 "" 1 "" {TEXT -1 53 "`The time for the entire factorization******`, 31.315" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$t12G$\"(:-P%!\"$" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 13 "nops(facF12);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"$" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 59 "berror12:=b ackward_error(F12, convert(facF12, `*`), [x,y]);" }{MPLTEXT 1 206 16 " \nceil(log10(%));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/%\"cG$!+oMrAL!\" '" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)berror12G$\"+E#z.U)!#7" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#!\"#" }}}{EXCHG {PARA 203 "> " 0 "" {MPLTEXT 1 206 59 "save facF12, t12, berror12, cat(rand_path,\"exF12-f actors\");" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 203 "" 0 "" {TEXT -1 0 "" }}}}}{PARA 208 "" 0 "" {TEXT -1 0 "" }}}{MARK "5 3 8 0 0" 0 } {VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }