{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Text Output" -1 6 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 2 2 2 2 2 1 2 1 3 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 12 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "read \"multifac_1.2.mpl\":\npath:= \"examples\\/\":" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 20 "Zeng's sixth \+ example" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "p1:=x^2+x*y-y^2+ 1;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p1G,**$)%\"xG\"\"#\"\"\"F**&F (F*%\"yGF*F**$)F,F)F*!\"\"F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "p2:=expand((x^3+1)*(y^2-2));" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%#p2G,**&)%\"xG\"\"$\"\"\")%\"yG\"\"#F*F**&F-F*F'F*!\"\"*$F+F*F*F-F /" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "p3:=x^3-y^3-3*x*y^2+2; " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#p3G,**$)%\"xG\"\"$\"\"\"F**$)% \"yGF)F*!\"\"*(F)F*F(F*)F-\"\"#F*F.F1F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 57 "pp:=randpoly([x,y],degree=4,coeffs=rand(-5..5),terms= 10);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#ppG,4\"\"%!\"\"*&\"\"#\"\" \"%\"yGF*F'*&\"\"$F*)%\"xGF)F*F**(F&F*F/F*F+F*F**(F&F*F.F*F+F*F**&F-F* )F+F-F*F'*&F-F*)F/F&F*F'*(F&F*)F/F-F*F+F*F**&F/F*F3F*F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "cleanF14:=p1^4*p2^3*p3:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "noiseF14:='`*`'(10^(-8),pp):" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "save cleanF14, noiseF14, cat (path,\"exF14\");" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "zengex 6:=evalf(expand(cleanF14+noiseF14)):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 68 "The example has univariate multiple factors (x^3+1)^3, (y^2-2 )^3. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 66 "t14:=time():\nres: =multifac_cont(zengex6,[x,y],8);\nt14:=time()-t14;" }}{PARA 6 "" 1 "" {TEXT -1 108 "` the biggest gap, the last r-th singular values and the number of factors `, 19325210.41, .6474953137e-9, 5" }}{PARA 6 "" 1 " " {TEXT -1 58 "` The time for computing the number of factors*****`, . 211" }}{PARA 6 "" 1 "" {TEXT -1 53 "`The time for the entire factoriza tion******`, 17.986" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%$resG7(7$,0$ \"+.h-\\c!\"*\"\"\"*&$\"3[&**GMk#Ghq!#=F+)%\"yG\"\"'F+!\"\"*&$\"3'4X`z c=]G\"!#EF+)F1\"\"&F+F+*&$\"37!)y!RdpnB%!#F7 F+F1F+F+F+7$,6*&^$$!32Md.W9@9%)F/$\"\"!FTF+FCF+F+*(^$$!3JBh\\VMECDF=FS F+%\"xGF+FHF+F+*(^$$\"3)z\")[_J ]-EF7F+F1F+F+*&^$$\"3&)*Q1>A6sK$!#>$!3n57=[7L4:F=F+FYF+F+^$$!+]_vB8F*$ \"+C8^esFhqF+FD7$,(*&^$$!3w$3,GN%yuqF7FSF+F1F+F+*&^$$!3)eKFSV[)yNF=FSF +FYF+F+^$$!+K%[)yNF*FSF+FD7$,.*&^$$\"3mo+O$fyX2\"F=FSF+FHF+F+*(^$$!3E6 t`s$yX2\"F=FSF+FYF+F1F+F+*&^$$!3CBG13'yX2\"F=FSF+FhnF+F+*&^$$!3Sdl*R_! yr5!#CFSF+F1F+F+*&^$$\"3J*>s@)f1=?F^uFSF+FYF+F+^$$!+H&yX2\"F*FSF+F?" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$t14G$\"&;N(!\"$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 84 "result:=expand(res[1][1]*res[2][1]*res[3] [1]^3*res[4][1]^3*res[5][1]^3*res[6][1]^4):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "backward_error(result,zengex6,[x,y]);" }}{PARA 6 " " 1 "" {TEXT -1 50 "Approximate factorization is not a real polynomial " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/%\"cG^$$!+'4C.y%!\")$!+L?'GF%!\"( " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+#)[(z3#!#;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "h1:=res[6][1];" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%#h1G,.*&^$$\"3mo+O$fyX2\"!#<$\"\"!F,\"\"\")%\"yG\"\"# F-F-*(^$$!3E6t`s$yX2\"F*F+F-%\"xGF-F/F-F-*&^$$!3CBG13'yX2\"F*F+F-)F5F0 F-F-*&^$$!3Sdl*R_!yr5!#CF+F-F/F-F-*&^$$\"3J*>s@)f1=?F?F+F-F5F-F-^$$!+H &yX2\"!\"*F+F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "backward_ error(h1,p1,[x,y]);" }}{PARA 6 "" 1 "" {TEXT -1 50 "Approximate factor ization is not a real polynomial" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/% \"cG$!+E&yX2\"!\"*" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+/L?r8!#;" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 58 "h2:=expand(res[1][1]*res[3] [1]^3*res[4][1]^3*res[5][1]^3):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "backward_error(h2,expand(p2^3),[x,y]);" }}{PARA 6 "" 1 "" {TEXT -1 50 "Approximate factorization is not a real polynomial" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#/%\"cG^$$!+6;!3E%!\")$!+*G!\\3Q!\"(" } }{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+)3)yqB!#<" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 14 "h3:=res[2][1];" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%#h3G,6*&^$$!32Md.W9@9%)!#=$\"\"!F,\"\"\")%\"yG\"\"$F-F-*(^$$!3 JBh\\VMECD!#F-F-*&^$$ \"3_6@KGBWd')!#GF+F-F/F-F-*&^$$!334B7.aK[fF=F+F-F6F-F-^$$\"+&HUGo\"!\" *F+F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "backward_error(h3, p3,[x,y]);" }}{PARA 6 "" 1 "" {TEXT -1 50 "Approximate factorization i s not a real polynomial" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/%\"cG$\"+t 9@9%)!#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+/pgIK!#=" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "facF14:=res:" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 44 "save facF14, t14, cat(path,\"exF14-factors\"); " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}}{MARK "23 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 } {PAGENUMBERS 0 1 2 33 1 1 }