Click on pi1.c to get source.
/*
* Computation of the n'th decimal digit of pi with very little memory.
* Written by Fabrice Bellard on February 26, 1997.
*
* We use a slightly modified version of the method described by Simon
* Plouffe in "On the Computation of the n'th decimal digit of various
* transcendental numbers" (November 1996). We have modified the algorithm
* to get a running time of O(n^2) instead of O(n^3log(n)^3).
*
* This program uses a variation of the formula found by Gosper in 1974 :
*
* pi = sum( (25*n-3)/(binomial(3*n,n)*2^(n-1)), n=0..infinity);
*
* This program uses mostly integer arithmetic. It may be slow on some
* hardwares where integer multiplications and divisons must be done by
* software. We have supposed that 'int' has a size of at least 32 bits. If
* your compiler supports 'long long' integers of 64 bits, you may use the
* integer version of 'mul_mod' (see HAS_LONG_LONG).
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
/* uncomment the following line to use 'long long' integers */
/* #define HAS_LONG_LONG */
#ifdef HAS_LONG_LONG
#define mul_mod(a,b,m) (( (long long) (a) * (long long) (b) ) % (m))
#else
#define mul_mod(a,b,m) fmod( (double) a * (double) b, m)
#endif
/* return the inverse of x mod y */
int inv_mod(int x,int y) {
int q,u,v,a,c,t;
u=x;
v=y;
c=1;
a=0;
do {
q=v/u;
t=c;
c=a-q*c;
a=t;
t=u;
u=v-q*u;
v=t;
} while (u!=0);
a=a%y;
if (a<0) a=y+a;
return a;
}
/* return the inverse of u mod v, if v is odd */
int inv_mod2(int u,int v) {
int u1,u3,v1,v3,t1,t3;
u1=1;
u3=u;
v1=v;
v3=v;
if ((u&1)!=0) {
t1=0;
t3=-v;
goto Y4;
} else {
t1=1;
t3=u;
}
do {
do {
if ((t1&1)==0) {
t1=t1>>1;
t3=t3>>1;
} else {
t1=(t1+v)>>1;
t3=t3>>1;
}
Y4:
} while ((t3&1)==0);
if (t3>=0) {
u1=t1;
u3=t3;
} else {
v1=v-t1;
v3=-t3;
}
t1=u1-v1;
t3=u3-v3;
if (t1<0) {
t1=t1+v;
}
} while (t3 != 0);
return u1;
}
/* return (a^b) mod m */
int pow_mod(int a,int b,int m)
{
int r,aa;
r=1;
aa=a;
while (1) {
if (b&1) r=mul_mod(r,aa,m);
b=b>>1;
if (b == 0) break;
aa=mul_mod(aa,aa,m);
}
return r;
}
/* return true if n is prime */
int is_prime(int n)
{
int r,i;
if ((n % 2) == 0) return 0;
r=(int)(sqrt(n));
for(i=3;i<=r;i+=2) if ((n % i) == 0) return 0;
return 1;
}
/* return the prime number immediatly after n */
int next_prime(int n)
{
do {
n++;
} while (!is_prime(n));
return n;
}
#define DIVN(t,a,v,vinc,kq,kqinc) \
{ \
kq+=kqinc; \
if (kq >= a) { \
do { kq-=a; } while (kq>=a); \
if (kq == 0) { \
do { \
t=t/a; \
v+=vinc; \
} while ((t % a) == 0); \
} \
} \
}
int main(int argc,char *argv[])
{
int av,a,vmax,N,n,num,den,k,kq1,kq2,kq3,kq4,t,v,s,i,t1;
double sum;
if (argc<2 || (n=atoi(argv[1])) <= 0) {
printf("This program computes the n'th decimal digit of pi\n"
"usage: pi n , where n is the digit you want\n"
);
exit(1);
}
N=(int)((n+20)*log(10)/log(13.5));
sum=0;
for(a=2;a<=(3*N);a=next_prime(a)) {
vmax=(int)(log(3*N)/log(a));
if (a==2) {
vmax=vmax+(N-n);
if (vmax<=0) continue;
}
av=1;
for(i=0;i<vmax;i++) av=av*a;
s=0;
den=1;
kq1=0;
kq2=-1;
kq3=-3;
kq4=-2;
if (a==2) {
num=1;
v=-n;
} else {
num=pow_mod(2,n,av);
v=0;
}
for(k=1;k<=N;k++) {
t=2*k;
DIVN(t,a,v,-1,kq1,2);
num=mul_mod(num,t,av);
t=2*k-1;
DIVN(t,a,v,-1,kq2,2);
num=mul_mod(num,t,av);
t=3*(3*k-1);
DIVN(t,a,v,1,kq3,9);
den=mul_mod(den,t,av);
t=(3*k-2);
DIVN(t,a,v,1,kq4,3);
if (a!=2) t=t*2; else v++;
den=mul_mod(den,t,av);
if (v > 0) {
if (a!=2) t=inv_mod2(den,av);
else t=inv_mod(den,av);
t=mul_mod(t,num,av);
for(i=v;i<vmax;i++) t=mul_mod(t,a,av);
t1=(25*k-3);
t=mul_mod(t,t1,av);
s+=t;
if (s>=av) s-=av;
}
}
t=pow_mod(5,n-1,av);
s=mul_mod(s,t,av);
sum=fmod(sum+(double) s/ (double) av,1.0);
}
printf("Decimal digits of pi at position %d: %09d\n",n,(int)(sum*1e9));
return 0;
}