Efficient Algorithms for Computing the Nearest Polynomial With Parametrically Constrained Roots and Factors

Erich Kaltofen
North Carolina State University www.math.ncsu.edu/ Kaltofen

Joint work with: Markus Hitz (North Georgia College)
Lakshman Y. N. (Bell Labs)

Factorization of nearby polynomials over the complex numbers

$$
81 x^{4}+16 y^{4}-648 z^{4}+72 x^{2} y^{2}-648 x^{2}-288 y^{2}+1296=0
$$

$$
\left(9 x^{2}+4 y^{2}+18 \sqrt{2} z^{2}-36\right)\left(9 x^{2}+4 y^{2}-18 \sqrt{2} z^{2}-36\right)=0
$$

$$
\begin{aligned}
81 x^{4}+16 y^{4}-648.003 z^{4}+ & 72 x^{2} y^{2}+.002 x^{2} z^{2}+.001 y^{2} z^{2} \\
& -648 x^{2}-288 y^{2}-.007 z^{2}+1296=0
\end{aligned}
$$

Open Problem 1

Given is a polynomial $f(x, y) \in \mathbb{Q}[x, y]$ and $\varepsilon \in \mathbb{Q}$.
Decide in polynomial time in the degree and coefficient size if there is a factorizable $\hat{f}(x, y) \in \mathbb{C}[x, y]$ with $\|f-\hat{f}\| \leq \varepsilon$,

$$
\text { for a reasonable coefficient vector norm }\|\cdot\| \text {. }
$$

Sensitivity analysis: approximate consistent linear system
Suppose the linear system $A x=b$ is unsolvable.
Find \hat{b} "nearest to" b that makes it solvable.
Minimizing Euclidean distance: $\min _{\hat{x}}\|A \hat{x}-b\|_{2}$ (least squares)

Nearest singular matrix (Eckart \& Young 1936, Gastinel 196?): Let $\mathbf{A} \in \mathbb{C}^{n \times n}$:

$$
\delta_{\mathbf{A}}=\min _{\tilde{\mathbf{A}}: \operatorname{det}(\tilde{\mathbf{A}})=0}\|\mathbf{A}-\tilde{\mathbf{A}}\|=\frac{1}{\left\|\mathbf{A}^{-1}\right\|}
$$

where $\|\cdot\|=\|\cdot\|_{p, p}$ is an induced matrix norm.
Example: $\|\mathbf{B}\|_{\infty, \infty}=\max _{i} \sum_{j}\left|b_{i, j}\right|, \quad\|\mathbf{B}\|_{1,1}=\max _{j} \sum_{i}\left|b_{i, j}\right|$

Tchebycheff's nearest consistency: $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$:

$$
\min _{\hat{\mathbf{x}}}\|\mathbf{b}-\mathbf{A} \hat{\mathbf{x}}\|_{\infty}=\min _{\hat{\mathbf{x}}}\left(\max _{1 \leq i \leq m}\left|b_{i}-\sum_{j=1}^{n} a_{i, j} \hat{x}_{j}\right|\right)
$$

Solution by linear programmming:
minimize: δ
linear constraints: $\delta \geq b_{i}-\sum_{j=1}^{n} a_{i, j} \hat{x}_{j}(1 \leq i \leq m)$

$$
\delta \geq-b_{i}+\sum_{j=1}^{n} a_{i, j} \hat{x}_{j}(1 \leq i \leq m)
$$

Backward error-analysis: Oettli \& Prager (1964)
Given: \mathbf{A}, \mathbf{b}, an error matrix \mathbf{E}, an error vector δ, $\tilde{\mathbf{x}}$, which is the approx. solution to $\mathbf{A x}=\mathbf{b}$.
$\exists \tilde{\mathbf{A}}$ with $\left.|\tilde{\mathbf{A}}-\mathbf{A}| \leq_{\text {entry-wise }} \mathbf{E}\right\}$ $\exists \tilde{\mathbf{b}}$ with $\left.|\tilde{\mathbf{b}}-\mathbf{b}| \leq_{\text {entry-wise }} \delta\right\}$

$$
\begin{aligned}
& \tilde{\mathbf{A}} \tilde{\mathbf{x}}=\tilde{\mathbf{b}} \Longleftrightarrow \\
& \quad|\mathbf{A} \tilde{\mathbf{x}}-\mathbf{b}| \leq_{\text {entry-wise }} \mathbf{E}|\tilde{\mathbf{x}}|+\delta .
\end{aligned}
$$

Ill-conditioned example:

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cc}
1 & 1 \\
1 & 1-\varepsilon
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{E}=\left[\begin{array}{ll}
0 & 0 \\
0 & \varepsilon
\end{array}\right], \delta=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \tilde{\mathbf{x}}=\left[\begin{array}{c}
t+1 \\
-t
\end{array}\right] \\
|\mathbf{A} \tilde{\mathbf{x}}-\mathbf{b}|=\left[\begin{array}{c}
0 \\
\varepsilon|t|
\end{array}\right] \leq\left[\begin{array}{c}
0 \\
\varepsilon|t|
\end{array}\right]=\mathbf{E} \tilde{\mathbf{x}}+\boldsymbol{\delta}
\end{gathered}
$$

Any t yields an admissible solution.

Gastinel's nearest singular matrix estimate:

$$
\mathbf{A}+\left[\begin{array}{cc}
0 & -\varepsilon / 2 \\
0 & \varepsilon / 2
\end{array}\right] \text { is singular }(\varepsilon>0)
$$

Sensitivity analysis: component-wise nearest singular matrix
Given are $2 n^{2}$ rational numbers $\underline{a}_{i, j}, \bar{a}_{i, j}$.
Let \mathcal{A} be the interval matrix

$$
\mathcal{A}=\left\{\left.\left[\begin{array}{ccc}
a_{1,1} & \ldots & a_{n, n} \\
\vdots & & \vdots \\
a_{n, 1} & \ldots & a_{n, n}
\end{array}\right] \right\rvert\, \underline{a}_{i, j} \leq a_{i, j} \leq \bar{a}_{i, j} \text { for all } 1 \leq i, j \leq n\right\}
$$

Does \mathcal{A} contain a singular matrix?
This problem is NP-complete (Poljak \& Rohn 1990).

Nearest approximate GCD in the Euclidean norm
(Karmarkar and Lakshman ISSAC'96)

Let $f, g \in \mathbb{C}[z]$, both monic, $\operatorname{deg}(f)=m$ and $\operatorname{deg}(g)=n$. Assuming that $\operatorname{GCD}(f, g)=1$, find $\tilde{f}, \tilde{g} \in \mathbb{C}[z]$ monic of degrees m and n, such that

$$
\begin{aligned}
& \operatorname{GCD}(\tilde{f}, \tilde{g}) \text { is non-trivial and } \\
& \mathcal{N}=\|f-\tilde{f}\|^{2}+\|g-\tilde{g}\|^{2} \text { is minimized. }
\end{aligned}
$$

$\|f\|$ denotes a norm of the coefficient vector of f.

Equivalent formulation:
Compute the nearest singular Sylvester matrix to the Sylvester matrix

$$
\left[\begin{array}{clllllll}
a_{m} & a_{m-1} & \ldots & a_{0} & & & \\
& a_{m} & \ldots & a_{1} & a_{0} & & 0 \\
& & \ddots & & & \ddots & \ddots & \\
& & & & a_{m} & \ldots & \ldots & a_{0} \\
b_{n} & b_{n-1} & \ldots & \ldots & b_{0} & & & \\
& b_{n} & \ldots & b_{1} & b_{0} & & 0 \\
& & \ddots & & & \ddots & \ddots & \\
& & & & b_{n} & \ldots & \ldots & b_{0}
\end{array}\right]
$$

The symbolic minimum of \mathcal{N} with respect to a common root $\alpha \in \mathbb{C}$ can be obtained in closed-form:

$$
\mathcal{N}_{\text {min }}=\frac{\overline{f(\alpha)} f(\alpha)}{\sum_{k=0}^{m-1}(\bar{\alpha} \alpha)^{k}}+\frac{\overline{g(\alpha)} g(\alpha)}{\sum_{k=0}^{n-1}(\bar{\alpha} \alpha)^{k}}
$$

The individual perturbations of the coefficients of f and g are

$$
f_{i}-\tilde{f}_{i}=\frac{(\bar{\alpha})^{i} f(\alpha)}{\sum_{k=0}^{m-1}(\bar{\alpha} \alpha)^{k}} \quad \text { and } \quad g_{j}-\tilde{g}_{j}=\frac{(\bar{\alpha})^{j} g(\alpha)}{\sum_{k=0}^{n-1}(\bar{\alpha} \alpha)^{k}}
$$

($\bar{\alpha}$ is the complex conjugate).

Reduced Problem: Given $f \in \mathbb{C}[z]$ and $\alpha \in \mathbb{C}$.
Find $\tilde{f} \in \mathbb{C}[z]$, such that

$$
\tilde{f}(\alpha)=0, \quad \text { and } \quad\|f-\tilde{f}\|=\min .
$$

$$
\begin{aligned}
& \text { Let } \begin{aligned}
& f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \\
& \qquad \begin{aligned}
\tilde{f}(z) & =(z-\alpha) \sum_{k=0}^{n-1} u_{k} z^{k} \\
& =u_{n-1} z^{n}+\left(u_{n-2}-\alpha\right) z^{n-1}+\left(u_{n-3}-\alpha u_{n-2}\right) z^{n-2}+ \\
& \quad \cdots \quad+\left(u_{0}-\alpha u_{1}\right) z-\alpha u_{0}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

In terms of linear algebra:

$$
\|f-\tilde{f}\|=\min _{\mathbf{u} \in \mathbb{C}^{n}}\|\underbrace{\left[\begin{array}{cccc}
-\alpha & & & 0 \tag{1}\\
1 & -\alpha & & \\
& \ddots & \ddots & \\
0 & & 1 & -\alpha \\
& & & 1
\end{array}\right]}_{\mathbf{P}} \underbrace{\left[\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{n-1}
\end{array}\right]}_{\mathbf{u}}-\underbrace{\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1} \\
a_{n}
\end{array}\right]}_{\mathbf{b}}\|
$$

(1) is an over-determined linear system of equations

LinProgr problem, if $\|\cdot\|$ is the $\begin{cases}l^{\infty} & \text { norm, or } \\ l^{1} & \text { norm }\end{cases}$
LeastSqu problem, if $\|\cdot\|$ is the l^{2} (Euclidean) norm.

Solutions for the l^{2}-norm in closed form:

$$
\mathcal{N}_{\min }(\alpha)=\|f-\tilde{f}\|^{2}=\frac{\overline{f(\alpha)} f(\alpha)}{\sum_{k=0}^{n}(\bar{\alpha} \alpha)^{k}}, \quad f_{j}-\tilde{f}_{j}=\frac{(\bar{\alpha})^{j} f(\alpha)}{\sum_{k=0}^{n}(\bar{\alpha} \alpha)^{k}}
$$

(also derived in Corless et al. [ISSAC'95] via SVD)

An l^{∞} example: $x^{2}+1$

$$
\begin{aligned}
& \min _{\tilde{a}_{2}, \tilde{a}_{1}, \tilde{a}_{0} \in \mathbb{R} \text { such that }}\left(\max \left\{\left|1-\tilde{a}_{2}\right|,\left|0-\tilde{a}_{1}\right|,\left|1-\tilde{a}_{0}\right|\right)\right. \\
& \exists \alpha \in \mathbb{R}: \tilde{a}_{2} \alpha^{2}+\tilde{a}_{1} \alpha+\tilde{a}_{0}=0
\end{aligned}
$$

Sensitivity analysis: Kharitonov [1978] theorem
Given are $2 n$ rational numbers $\underline{a}_{i}, \bar{a}_{i}$.
Let P be the interval polynomial

$$
P=\left\{x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \mid \underline{a}_{i} \leq a_{i} \leq \bar{a}_{i} \text { for all } 0 \leq i<n\right\} .
$$

Then every polynomial in P is Hurwitz (all roots have negative real parts), if and only if the four "corner" polynomials

$$
g_{k}(x)+h_{l}(x) \in P, \quad \text { where } k=1,2 \text { and } l=1,2
$$

with

$$
\begin{array}{ll}
g_{1}(x)=\underline{a}_{0}+\bar{a}_{2} x^{2}+\underline{a}_{4} x^{4}+\cdots, & h_{1}(x)=\underline{a}_{1}+\bar{a}_{3} x^{3}+\underline{a}_{5} x^{5}+\cdots, \\
g_{2}(x)=\bar{a}_{0}+\underline{a}_{2} x^{2}+\bar{a}_{4} x^{4}+\cdots, & h_{2}(x)=\bar{a}_{1}+\underline{a}_{3} x^{3}+\bar{a}_{5} x^{5}+\cdots
\end{array}
$$

are Hurwitz.

Constraining a Root Locus to a Curve

Let Γ be a piecewise smooth curve with finitely many segments, each having a parametrization $\gamma_{k}(t)$ in a single real parameter t.

For a given polynomial $f \in \mathbb{C}[z]$, we want to find a minimally perturbed polynomial $\tilde{f} \in \mathbb{C}[z]$ that has (at least) one root on Γ.

Parametric Minimization

We substitute the parametrization $\gamma_{k}(t)$ for the indeterminate α in $\mathcal{N}_{\text {min }}(\alpha)$. The resulting expression is a function in $t \in \mathbb{R}$.

It attains its minima at its stationary points. We have to compute the real roots of the derivative.

The derivative of the norm-expression is determined symbolically, the roots can be computed numerically.

Algorithm C

Input: $\quad f \in \mathbb{C}[z]$, and a curve Γ.
Output: $\tilde{f} \in \mathbb{C}[z]$, and $\tau \in \mathbb{R}$, s.t. $\tilde{f}\left(\gamma_{k}(\tau)\right)=0$ for some segment of Γ, and $\|f-\tilde{f}\|_{2}=\min$.
$\left(\mathbf{C}_{1}\right)$ For each segement of Γ :
$\left(\mathbf{C}_{1.1}\right)$ Substitute $\gamma_{k}(t)$ for α in the symbolic minimum $\mathcal{N}_{\text {min }}(\alpha) \mapsto N(t)$.
$\left(\mathbf{C}_{1.2}\right)$ Symbolically determine the derivative $N^{\prime}(t)$.
$\left(\mathbf{C}_{1.3}\right)$ Compute the real roots (of the numerator) of $N^{\prime}(t)$. Select the one that minimizes $N(t)$.
$\left(\mathbf{C}_{2}\right)$ From all $N\left(\tau_{k}\right)$ of step $\left(\mathbf{C}_{1.3}\right)$ determine the minimum $N(\tau)$.
$\left(\mathbf{C}_{3}\right)$ Compute the perturbations $\boldsymbol{\delta}_{j}$. Return \tilde{f}, k, and τ.

Computing the Radius of Stability in the l^{2}-Norm

Definition: Let $\mathcal{D} \subset \mathbb{C}$ be an open, and convex domain of the complex plane. The polynomial $f \in \mathbb{C}[z]$ is called \mathcal{D}-stable, if all its roots are located within \mathcal{D}.
Special cases: - the left half-plane: Hurwitz stability

- the open unit-disc: Schur stability

Given a \mathcal{D}-stable polynomial f, how much can we perturb its coefficients such that the perturbed polynomial is still \mathcal{D}-stable?

If we have a (piecewise) real parametrization of the boundary $\partial \mathcal{D}$ then we can apply our algorithm to find a nearest unstable polynomial.

Theorem: Let $f \in \mathbb{C}[z]$ be \mathcal{D}-stable, and
let $\hat{f} \in \mathbb{C}[z]$ be an unstable polynomial, such that $\|f-\hat{f}\|=\varepsilon$, where $\varepsilon \in \mathbb{R}, \varepsilon>0$.

Then, there exist $\tilde{f} \in \mathbb{C}[z]$ and $\zeta \in \partial \mathcal{D}$ such that

$$
\|f-\tilde{f}\| \leq \varepsilon \text { and } \tilde{f}(\zeta)=0
$$

Example (of a monic polynomial)

$$
\begin{aligned}
f(z)= & z^{3}+(2.41-3.50 \mathbf{i}) z^{2}+(2.76-5.84 \mathbf{i}) z \\
& -1.02-9.25 \mathbf{i}
\end{aligned}
$$

is Hurwitz.

Root locations: $-1.04+3.10 \mathbf{i},-.99-1.30 \mathbf{i},-.37+1.70 \mathbf{i}$

Nearest unstable polynomial:

$$
\begin{aligned}
\tilde{f}(z)= & z^{3}+(2.7037-3.1492 \mathbf{i}) z^{2}+(2.5740-5.6842 \mathbf{i}) z \\
& -1.1026-9.3486 \mathbf{i}
\end{aligned}
$$

Radius of stability in the l^{2}-norm: 0.533567 .

Special case to Tchebycheff approx: Stiefel's 1959 theorem Let \mathbf{A} be a matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
a_{0,0} & \cdots & a_{0, n-1} \\
\vdots & & \vdots \\
a_{n, 0} & \cdots & a_{n, n-1}
\end{array}\right] \in \mathbb{R}^{(n+1) \times n}
$$

of rank n such that no row of \mathbf{A} is the zero vector, and let $\mathbf{b}=\left[b_{0}, \ldots, b_{n}\right] \in \mathbb{R}^{n+1}$ such that $\mathbf{A x} \neq \mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Then

$$
\delta=\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{A x}-\mathbf{b}\|_{\infty}=\left|\frac{\sum_{i=0}^{n} \lambda_{i} b_{i}}{\sum_{i=0}^{n}\left|\lambda_{i}\right|}\right|,
$$

where $\Lambda=\left[\lambda_{0}, \ldots, \lambda_{n}\right]^{\text {tr }} \neq 0$ is a linear dependency among the rows of \mathbf{A}, i.e., $\Lambda^{t r} \mathbf{A}=0$.

Special case: nearest polynomial with root α :

$$
\begin{equation*}
\delta(\alpha)=\min _{\mathbf{u} \in \mathbb{R}^{n}}\|\mathbf{P} \mathbf{u}-\mathbf{b}\|_{\infty}=\left|\frac{\sum_{i=0}^{n} \lambda_{i} a_{i}}{\sum_{i=0}^{n}\left|\lambda_{i}\right|}\right|=\left|\frac{f(\boldsymbol{\alpha})}{\sum_{i=0}^{n}\left|\alpha^{i}\right|}\right| . \tag{2}
\end{equation*}
$$

(also derived by Manocha \& Demmel [1995])
Stiefel's theorem also gives algorithm for finding u.

Parametric α : must minimize rational function (2).

Generalization to l^{p}-norm, where $1 \leq p \leq \infty$ (Hitz 1999):

$$
\delta(\alpha)=\frac{|f(\alpha)|}{\left(\sum_{k=0}^{n}\left|\alpha^{k}\right|^{q}\right)^{1 / q}}, \quad \frac{1}{q}+\frac{1}{p}=1, \quad \text { and } \quad \frac{1}{\infty}=0
$$

$$
f(x)=x^{2}+1, \tilde{f}(x)=\frac{1}{3} x^{2}-\frac{2}{3} x+\frac{1}{3}=\frac{1}{3}(x-1)^{2}, \delta=\frac{2}{3} .
$$

$$
f(x)=2 x^{2}-2 x+2, \tilde{f}(x)=\frac{4}{3}\left(x^{2}-2 x+1\right), \delta=\frac{2}{3} .
$$

$$
f(x)=\prod_{k=1}^{10}(x-k-\mathbf{i})(x-k+\mathbf{i}), \delta \leq 5.8210^{-10} .
$$

Nearest matrix with a given eigenvalue (Eckart and Young 1936): Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mu \in \mathbb{C}$:
where $\|\cdot\|=\|\cdot\|_{p, p}$ is an induced matrix norm.

For

$$
\|\mathbf{B}\|_{\infty, \infty}=\max _{i} \sum_{j}\left|b_{i, j}\right|, \quad\|\mathbf{B}\|_{1,1}=\max _{j} \sum_{i}\left|b_{i, j}\right|
$$

we can solve optimization problem for real entries and parameter μ in polynomial-time.

Homework: Given $f=\sum f_{i, j} x^{i} y^{j} \in \mathbb{C}[x, y]$ absolute irreducible, find $\tilde{f}=\left(c_{0}+c_{1} x+c_{2} y\right) u(x, y) \in \mathbb{C}[x, y], \operatorname{deg}(\tilde{f}) \leq \operatorname{deg}(f)$, such that

$$
\|f-\tilde{f}\|_{2} \text { is minimal }
$$

("nearest polynomial with a linear factor").

Hint: minimize parametric least square solution in the real and imaginary parts of the c_{i}.

