On the Genericity of the Modular Polynomial GCD Algorithm*

Erich Kaltofen
North Carolina State University
Mathematics Department, Box 8205
Raleigh, N.C. 27695-8205 USA.

E-mail: kaltofen@math.ncsu.edu
URL: www.math.ncsu.edu/ kaltofen

Abstract

In this paper we study the generic setting of the modular
GCD algorithm. We develop the algorithm for multivariate
polynomials over Euclidean domains which have a special
kind of remainder function. Details for the parameterization
and generic Maple code are given. Applying this generic
algorithm to a GCD problem in Z/(p)[t][x] where p is small
yields an improved asymptotic performance over the usual
approach, and a very practical algorithm for polynomials
over small finite fields.

1 Introduction

Efficient computation of greatest common divisors (GCDs)
of multivariate polynomials is very important in computer
algebra systems because the GCD operation is the bottle-
neck of many basic applications. The modular GCD algo-
rithm, developed by Brown [2], solved the problem of effi-
cient GCD computation in Z[z1, ..., x|, where Z denotes the
integers, when the input polynomials are dense. However,
Brown'’s algorithm is not effective when the polynomials are
sparse. This problem was solved by Zippel [24, 25] in 1979.
Many other methods have also been developed for efficient
GCD computation in Z[z1, . .., z,]. It is possible to compute
the GCD of two polynomials viewed a black boxes for their
evaluation again as a black box [17, 5]. Furthermore, Hensel
lifting can be utilized in what is called the EZ-GCD algo-
rithm (see [13, section 7] and the papers by Moses, Wang,
and Yun cited there). Brown’s dense modular algorithm, the
EZ-GCD algorithm, and Zippel’s sparse modular algorithm
are all widely used in practice. The modular algorithms can
be readily parallelized [22].

In this paper we investigate the general setting of the
modular GCD algorithm. In Section 2 we outline the mod-
ular algorithm in some detail for reference later in the paper.
In Section 3 we show how it can be applied to GCD prob-
lems over the Euclidean ring Z/(p)[t], where Z/(p) denotes
the integer residues modulo p. We compare it with other

*This material is based on work supported in part by the National
Science Foundation under Grant No. CCR-9712267 (Erich Kaltofen)
and on work supported by NSERC of Canada (Michael Monagan).
Permission to make digital/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and
that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. ISSAC’99,
Vancouver, British Columbia, Canada. ©1999 ACM 0-58113-073-2 /
99 / 07 $ 5.00

Michael Monagan

Centre for Experimental and Constructive Mathematics

Simon Fraser University

Burnaby, British Columbia, V5A 1S6 Canada.

59

E-mail: monagan@cecm.sfu.ca

algorithms in the domain Z/(p)[t][x] and establish it as bet-
ter than the known other standard methods. In section 4
we investigate the general setting of the modular algorithm.
Maple code for a generic implementation of the modular
GCD algorithm is given there, along with implementation
notes.

2 The Modular GCD Algorithm

In this section we outline the modular GCD algorithm for
multivariate polynomials with integer coefficients. A de-
scription of the algorithm may be found in section 7.4 in
[10]. Throughout we assume that all GCDs that are com-
puted are to be unit normal.

Let P = Z[z1,...,Zn], p € Z be a prime and G =
Z/(p)|z1,-..,2n]. Let a,b € P\{0}, g = GCD(a,b), a = ga,
and b = gb. The modular algorithm computes the GCD g¢
in two stages. The first stage applies a sequence of modu-
lar homomorphisms ¢,: P — G where ¢p(a) = a mod p to
reduce the GCD problem to a sequence of GCD problems
in Z/(p)[z1,-..,%n]. The GCD g is reconstructed from the
solution of these GCD problems by application of the Chi-
nese remainder theorem. This first stage of the algorithm is
presented here for later reference. The GCD computations
occurring in step 9 are calculated in the second stage which
is described later.

Algorithm ModularGCD Over the Integers

Inputs: A, B € P = Z[X] \ {0} where X = z,...
Output: g = GCD(A4, B).

y T

1 ca <« contentp(A).
2 cb < contentp (B).
3 ¢« GCDz(ca, cb).
4 (a,b) «— (A/ca, B/cb).
5 v — GCDz(lcx (a), lex (b)),
where lc is the leading coefficient (see below).
6 d < minx (deg(a), deg(b)),
where deg and min use a term ordering.
7 (m, gm) < (1,0).
8 Loop: Find a prime p € Z such that p { m~.
9 gp — GCDc(¢p(a), ¢p(b)).
10 If deg(gp) =x O then output ¢ and stop.
11 If deg(gp) >x d then Goto step 8.
12 gp < (ymodp)/lex(gp) - gp-

13 If deg(gp) <x d then (m, gm,d) < (1,0,deg(gp))-
14 h — CRA([gp, pl, [gm, m]).

15 If h = g, then begin termination test.

16 h «— h/contentp(h).

17 If h | @ and h | b then output c- h and stop.
18 (m, gm) < (p-m,h).

19 Goto step 8.

Note, the result computed by the Chinese remainder al-
gorithm (CRA) in step 13 must be expressed in the sym-
metric range of the integers modulo p - m so that negative
integer coefficients in g can be reconstructed as well as pos-
itive ones. We will come back to this later when we try to
generalize the algorithm.

The basic elements of the proof of correctness of the algo-
rithm are reproduced here for discussion later when we look
at the general setting of the algorithm. The requirement
that p not divide v in step (8) means that Lemma 1 below
holds. Lemma 1 tells us the relationship between the image
GCD g, that we compute in step (9) and what we want to
compute, namely ¢,(g). The function lcx, < (g) denotes the
leading coefficient of the polynomial g € P under an admissi-
ble term ordering < on the variables X = z1,z2,...,2,. We
have not before and will not list the term ordering explicitly
in the leading coefficient function. Also lc(a-b) = lc(a)-1c(b)
will hold since Z is an integral domain.

Lemma 1 Let a,b € Z[z1,...,z,] \ {0} be primitive. Let
g = GCD(a,b) and let g, = GCD(¢p(a), dpp(b)). Let v =
GCDz(Ic(a),le(b)). If ¢p(y) # 0 then gp = ¢p(g)-6-A where
0 €Z/(p)\ {0} and A € G\ {0}. Thus deg(gp) >x deg(g).

Proof. Let @ = ga and b = gb. Then GCD(ép(a),

¢p(b)) = GCD(¢p(9a), ¢p(gb)) = GCD(¢(9) - ¢ (@), bp(9)-
¢p(b)). Since ¢p(lex(g)) # 0 then deg(dy(g)) =x deg(g).
Since a and b are primitive then ¢,(a)¢,(b) # 0 hence

GCD(¢p(a)a¢p(§)) # 0. Hence g, = ¢p(g)/ICX(¢p(g))'
GCD(¢p(a), ¢p(b)) = ¢p(g) - 6 - A as claimed. X

A consequence of Lemma 1 is that if deg(gp) =x 0 then
deg(g) =x 0 hence the early termination of the algorithm
in step 10.

If deg(A) >x 0 then we say p is an unlucky prime. Con-
versely, if deg(A) =x 0 we say that p is a good prime. The
modular algorithm detects that the current prime p is an
unlucky prime in step 11, and that all previous primes are
unlucky in 13. The division checks h | @ and h | b in step 17
detect any unlucky primes not caught in steps 11 or 13.

In the univariate case the unlucky primes are character-
ized by those which divide r = res,(a,b). Since r is an
integer of finite size, the number of unlucky primes is fi-
nite. Lemma 2 below establishes that the number of unlucky
primes is finite for the multivariate case.

Lemma 2 The number of unlucky primes is finite.

Proof. For later reference, we prove this Lemma for coeffi-
cients in a unique factorization domain U in place of Z, and
we shall count as one two prime elements p; and p» that
are associates, i.e., if their quotient p1/p2 is an invertible
element (a unit) in U. Note that in a UFD such as Q[z],
where Q are the rational numbers, the number of units is
infinite.

60

We first note a lemma by Gauss (see [9, Article 42], [18])
that relates a factorization in QF(U)[z1, ..., xn], where
QF(U) is the field of quotients of U, to one in Ulzi, ...,
Zn]. Suppose A = ay -+ ar, where A € Uz, ..., z,] and
ai, ..., ar € QF(U)[z1, ..., zs]. Then there exist u1, ..., ur
€ QF(U) such that A = (u1a1) -+ (urar) and (uia1), ...,
(urar) € Ulz1, ..., n]. Gauss’s lemma actually justifies the
above algorithm. ~

A prime p is unlucky exactly if GCD(¢p(a), ¢p(b)) # 1,
where a and b are the co-factors of a and b defined above.
Since GCD(a,b) =1 in Ulx1, ..., x|, we have, by applying
Gauss’s lemma, GCDqp(v)[ay....,2n] (@, b) = 1. Over the field
QF(U) the GCD problem is a rational problem, which means
that the GCD can be computed by arithmetic operations in
QF(U) alone. Therefore we may extend the coefficient field
by transcendental elements zo,...,2,, thus proving that
GCDp(a,b) =1 for D = QF(U)(22,- .., 2n)[Z1, ..., Tn].

We now consider the map ¥: D — E = QF(U)(z2, ...,
zn)[y1, .-, yn] defined by W(f (1, ..., 2n)) = f(y1, y2+22y1,
ooy Yn + 2zny1) (cf. [15, Proof of Lemma 6.2]). Since ¥
is a polynomial ring isomorphism over the coefficient field
QF(U)(z2,...,2n) we must have

GCD(W(a), U(7)) = 1 (1)
either in F or more general by Gauss’s lemma in QF(U)(z2,
RS Z’Vh y27 LS y’ﬂ)[yl]

We now can consider the resultant

0 = res,, (U(a), U(B)) € Ulza, .

'7Zn7y27"'7y"}'

From (1) it follows as a property of the resultant that
0 # 0. The domain homomorphism ¢,: U — U/(p) ex-
tends to the polynomial rings Ulza,...,2n,Z1,...,%,] and
Ulz2,.--y2n,Y1,---,yn] and induces an isomorphism ¥,.

Suppose that
ép(0) # 0. (2)

Then GCD(,(¥(@)), ¢, (¥(B))) = 1 in U/(p)(z2, -y 2,
Y2, - Yn)[y1]. We now claim that there can be no common
factor in U/(p)(22, ..., 2n)[y2, - .., Yn|. First, not both of
the leading coefficients of ¥(a) and ¥(b) with respect to y1
can map to zero via ¢,, because otherwise their resultant
o would also map to zero. Suppose now, without loss of

generality, that
Pp(lcy, (¥(a))) # 0. (3)
The key property of the map ¥ is that lcy, (¥(a)) €

QF(U)(z2, ..., zn), which yields from (3) the stronger condi-
tion GCD(¢p(¥(a)), ¢p(¥(b))) =1 in U/(p)(22, ..., zn)[y1,
Y2, ..., Yn]. Using the isomorphism \I/;1 with y1 = x1

and y; = x; — ziz1 for 2 < ¢ < n we immediately obtain
GCD(¢p(a), ¢p(b)) = 1 in U/(p)(z2, ... 2n)[21, -..; Tn].
However, neither ¢,(a@) nor ¢,(b) contain any z;, so they are
relatively prime in U/(p)[z1, ..., Tn].

Finally, we observe that all p € U that satisfy (2) must
divide all coefficients in U of p, thus their greatest common
divisor which has a finite number of prime factors. X

We give this proof, which is based on a single resultant,
as it allows the sharpest estimate on the number and size
of unlucky primes, especially when combined with the in-
equalities in [11]. However, we shall not analyze unluckiness
further.

Assuming p is a good prime, that is, A = 1, the im-
age GCD g, = GCD(¢p(a),dp(b)), which is monic, will
be an associate of ¢,(g), differing from ¢,(g) by the unit

0 = lex(g) mod p. If we knew lex(g) then we could set
gp < 6gp and the CRA would, given enough primes, recon-
struct g. Instead we compute a multiple of g by imposing ~y
as a leading coefficient. The GCD g is now recovered when
we have reconstructed ag by calculating o = content p(h) in
step 16 and dividing it out.

Termination is ensured because eventually we will have
sufficient good primes to reconstruct g. Instead of testing
whether h | a and h | b at each iteration, which would be
expensive, the test is made only when h does not change
from one iteration to the next.

The Second Stage

In the second stage of the modular GCD algorithm we
compute a GCD in Z/(p)[z1,...,2n]. The evaluation
homomorphism @, —« with o € Z/(p) is applied to
Z/(p)[xn][x1,. .., Zn-1]. For the algorithm to terminate p
must be sufficiently large so that sufficiently many good
evaluation points exist. This is usually not a problem in
practice because the primes chosen in stage one will be the
largest primes that fit in a computer word, typically 31 or 63
bits in length. The evaluation homomorphism algorithm is
applied recursively until we have a GCD problem in one vari-
able, z1, over Z/(p) where the Euclidean algorithm is used.
After sufficiently many image GCDs have been computed
in Z/(p)[z1,...,xn-1] the coefficients in z,, are interpolated
from the images.

It is convenient for the purpose of our presentation
of the modular algorithm to view the evaluation homo-
morphism ¢(a) = a(a) as equivalent to the modular ho-
momorphism ¢(a) = amod (x —). Replacing the Eu-
clidean coefficient domain Z in Algorithm ModularGCD
by the Euclidean domain Z/(p)[zx], that is, with inputs
a,b € Z/(p)[zn][x1,. .., Tn-1], this second stage of the mod-
ular GCD algorithm becomes equivalent to the first stage
where the primes p chosen in step 8 are now the linear poly-
nomials x,, — «, and interpolation becomes equivalent to the
CRA in step 14. Lemma 1 and Lemma 2 also hold.

3 The Modular Algorithm over Z/(p)[t]

Consider a GCD problem in R = Z/(p)[z1,...,zn]. Such
problems arise when factoring polynomials in R where the
first step is to perform a square-free factorization of the poly-
nomial to determine any repeated factors. A bottleneck of
the entire factorization process may be the first GCD com-
puted in the square-free factorization step.

For example, consider the polynomial P in figure 1,
which in expanded form has 158 terms. It is a polynomial in
Z/(2)[A, B,C, Z]. To factor this polynomial the square-free
factorization step calculates the GCD(P,0P/90A). Maple
V Release 5 applies the subresultant algorithm because it
is unable to apply the modular algorithm over Z/(2) be-
cause not enough good evaluation points exist. Because the
subresultant algorithm blows up, Maple does not terminate.
Most of the polynomial factorization problems listed in [1]
that arose in practice are polynomials over small finite fields,
often p = 2.

What do we do if p is too small for the modular GCD
algorithm to be applied because there are too few good eval-
uation points in Z/(p)? One known solution to this problem
is to choose evaluation points from GF(p*), a field extension

61

z = (A"2xB"2%Z"2+A"2%B"2+B"2%Z"2+Z"2+B~2)/Z:
a := (B"2+C"2xA"2+B"2*C~2+C"2*xA~2+A"2+C"2) /A:
b := (C"2%Z*B~2+C~2%Z+Z*xB~2+B~2+Z)/B:
c := (Z*A*C™2+Z*xA+A*xC~2+C~2+A)/C:
P := Z"2%A"3%B"2%C"2%(z"2%b~2%c"2

+(at+z+1) 2% (a+c™2+1)):
P := expand(P) mod 2:

Figure 1: Maple code for H. Dobbertin’s [7] polynomial

of Z/(p) where k is sufficiently large. To interpolate a poly-
nomial of degree n we require k > log, (1 +n).

An alternative approach which we propose here is to con-
sider R = Z/(p)[zn][z2, ..., Tn—1] and apply the modular al-
gorithm to the coefficient ring Z/(p)[x»] which is a Euclidean
domain (see also [21, section 2.7.2]). Let m;, i = 1,2,... be
a sequence of monic irreducible polynomials in Z/(p)[xy»].
It is not difficult to see that the modular algorithm can be
applied to compute a GCD in R by computing image GCDs
modulo the m;, that is over the finite fields Z/(p)[zx]/(m.),
and applying the Chinese remaindering to the resulting im-
ages. Indeed in our presentation of the second stage of
the modular GCD algorithm we did exactly this with lin-
ear polynomials p = x,, — a.

The advantage of this approach over computing in an
extension field is now demonstrated for the case of R =
Z/(p)[t][z], i.e. bivariate polynomials. Let a@,b,g € R where
GCD(a, b)=1 and deg,(a) = deg,(b) = deg,(g) = deg,(a) =
deg, (b) = deg, (g) = n. Consider the problem of computing
the GCD(a = ag,b = bg) in R. In the following complexity
estimates we assume classical algorithms are used for poly-
nomial arithmetic in Z/(p)[t] and R, i.e., multiplication and
division are O(n~).

For comparison, we mention that the number of arith-
metic operations in Z/(p) done by the subresultant algo-
rithm with quadratic polynomial arithmetic is O(n®).

The approach of choosing evaluation points in GF(pk)7
an extension field of Z/(p) requires that k > log,(n + 1) for
there to be sufficiently many evaluation points. The cost
of the modular evaluation algorithm when run over GF(p*)
will depend on how the finite field is represented. We as-
sume polynomials of degree k are used to represent the field
elements, and that multiplication and division in GF(p*) are
quadratic in k. Under these assumptions we have

Result 1 The modular evaluation algorithm when run over
GF(p") performs O(k*n®) arithmetic operations in Z/(p).

Result 2 The modular algorithm applied to Z/(p)[t][x] per-
forms O(kn®) arithmetic operations in Z/(p).

In both of the following analyses, the cost of the trial
divisions in step 17, which are performed in Z/(p)|t][z], is not
included. If the classical algorithm is used for trial division,
the cost of the trial division step will be O(n*) arithmetic
operations over Z/(p).” Furthermore, it is assumed that all
primes are good.

* Alternatively and faster, namely in O(n3) arithmetic operations,
the algorithms can interpolate/Chinese remainder the co-factors a
and b. If the degrees of their coefficients stay properly bounded,
i.e., if the maximum degree of the coefficients of each co-factor and
the GCD adds up to the maximum degree of the coefficients of the
corresponding input polynomial, the division is certified to be exact
provided the moduli cover the degrees of the coefficients of the inputs.

Suppose the modular evaluation algorithm is used and
the evaluation points are chosen from the field extension
K = GF(p*). The algorithm must compute GCD(a(a, =),
b(as,)) at O(n) points a; € GF(p*) in order to interpo-
late ¢ of degree n in g. Each evaluation of a(t,z) at t = «;
costs O(n?) arithmetic operations in GF(p*). Each image
GCD costs O(n?) arithmetic operations in GF(p*). We must
interpolate n coefficients in GF(p”)[t] of degree n, each of
which costs O(n?) arithmetic operations in GF(p*). This
is O(n®), O(n®) and O(n®) arithmetic operations in GF (p*)
for the evaluations, image GCDs, and interpolations, respec-
tively. Thus we have O(n®k?) arithmetic operations over
7/ (p) assuming arithmetic in GF(p*) is done using classical
polynomial arithmetic.

Suppose the modular algorithm is applied to the coef-
ficient ring Z/(p)[t]. To reconstruct coefficient polynomials
in Z/(p)[t] of degree n, we will require monic irreducibles
mi(t) € Z/(p)[t] such that Y, deg,(m:) > n. We first claim
that there are sufficiently many irreducible polynomials such
that we may choose dmax = max;(deg,(m;)) = O(log,n).
This claim is a direct consequence of

k
= 11
f irreducible in Z/(p)[t]
deg(f) divides k

f(®). (4)

The cost of each modular reduction requires division of
O(n) coeflicients in Z/(p)[t] of degree n by m;(t) of de-
gree d; = O(log,n). The total cost is O(n}_;(nd;)) =
O(n?) arithmetic operations over Z/(p), as we also can have
>,;di = O(n). The cost of each image GCD is O(n?)
arithmetic operations over GF(p?). For all image GCDs
this is O(n? Y, d7) arithmetic operations over Z/(p). Since
>, di < dmax Y, di = O(nlog,n) the cost of the image
GCDs is O(n®k) for any k > log,n. There are n + 1 co-
efficients to reconstruct using the CRA, each of which take
O(n?) arithmetic operations over Z/(p). The O(n’k) arith-
metic operations over Z/(p) in the image GCD computations
therefore dominate the cost.

Thus there is an improvement of a factor of k = O(log,, n)
over the “standard” approach. The reason for the improve-
ment is that we are using ¢ instead of a new variable to rep-
resent GF(p"®). Dan Grayson has offered us another view of
this trick: evaluation in GF(p*) yields k images of the GCD,
all algebraic conjugates of the extension element. Our Chi-
nese remaindering approach shows how to make use of these
conjugates and recover the coefficients in Z/(p). However,
Grayson’s view is of value when the input polynomials are
presented by black boxes [17, 6], as so-called extended do-
main black boxes can allow for evaluation in GF(p*), but
there would be no easy mechanism for modular reduction of
the coefficients in a single variable.

In practice, we have observed a better gain than the ex-
pected factor of k on problems where p = 2 in Maple for the
following reason. We seek in the following table to show the
penalty that one pays when when one computes over GF(pk)
instead of Z/(p) using polynomials to represent GF(p*). In
Maple, polynomials in Z/(p)[t] are represented as arrays of
machine integers and arithmetic is done in-place in compiled
C code. Multiplication, division, GCD, are quadratic in k.
See [20] for details of the Maple representation for Z/(p)][t].
In comparison, polynomials in GF(p®)[t] are represented as
Maple lists of polynomials in Z/(p)[t]. Arithmetic is not

62

done in-place and is interpreted in Maple. B

Let a@,b,g € GF(11%)[z] where deg(@) = deg(h) =
deg(g) = n. The data in column 3 of Table 1 for T'(n, k)
were generated by timing how long Maple V Release 5 takes
to calculate GCD(a = ag,b = bg) for different values of k,
for suitably chosen n, where the coefficients of the polyno-
mials in GF(11%) were generated at random.

ko n T(nk) F n Mnk) e

2 256 96e4 242 24 Gleb 156

4 196 .3led 79 21 .26e5 6.5

8 144 .95e5 24 18 1505 3.7
16 100 .29e-5 7.4 15 .18e-5 45
32 64 17e5 43 12 .10e5 2.6
64 36 996 25 9 .75e6 1.9
128 16 .60e-6 1.5 6 826 2.1

Table 1: n?k2T(n, k) is the time in seconds for a GCD over
GF(11%); n?k* M (n, k) is the time in seconds for a GCD over
Z/(p), where p is a prime k words (of memory) long.

The data in column 4 for T'(n,k)/T(n,1) indicates the
penalty or loss of efficiency in calculating over GF(11%) for
k > 1 compared with Z/(11). The factor 242 for k = 2
means that there is an increase in cost of a factor of 242
beyond the expected factor of 4 from k. The factor 1.5
for n = 128 means that the penalty beyond the factor of
1282 is now only 50%. There are two reasons for this. First,
the Maple code for GCD computation in GF(p*)[x] is inter-
preted (the coefficient arithmetic is compiled) and this over-
head is relatively high when k is small whereas the code for
GCD computation for Z/(p)[z] is compiled C code. Second,
that whereas the data structure for polynomials in Z/(p)[z]
is an array of machine integers, and the GCD computation
runs “in-place” with no additional memory required, this is
not the case for GF(11%)[x] where the coefficient arithmetic
requires data structures to be allocated as needed.

We have attempted in columns 6 and 7 to eliminate the
overhead of the Maple interpreter from the picture by timing
GCDs over Z/(p) instead of GF(11%) where p is a k word
prime. Again, the coefficients were generated at random.
In this case the Maple code is compiled and runs in-place.
We can see from column 7 that for small k£ there is still a
penalty of a factor of 15. Thus, if one chooses to represent
GF(pk) using polynomials, there will always be a significant
penalty.

We can take advantage of this in the modular GCD al-
gorithm by increasing the degree of the irreducibles (with a
negligible penalty) but requiring fewer irreducibles. We ob-
served in our implementation that for Z/(p)[z] the optimal
degree for the irreducibles is arround 12.

4 The Modular Algorithm over Euclidean Domains

The purpose of a generic algorithm is to present a single pro-
gram that can be used in multiple settings. As we have seen
in sections 2 and 3, the modular GCD algorithm is employed
for the coefficient domains Z, Z/(p)[z:] and GF(p")[z;-1] to
produce GCDs over Z and Z/(p). An extension of Brown’s
algorithm to Gaussian integers is described in [4]. All these
domains share to property of a Euclidean division, and we
shall discuss the algorithm for a Euclidean coefficient do-
main.

By definition, a Euclidean domain E is an integral do-
main with a remainder function rem: E x (E \ {0}) — E,
such that there exists a degree function §: E — Zx>o with
the property that for any a € F and any b € E \ {0} there
exists a quotient ¢ € E and a remainder » € E with the
properties

a=gb+randr=0or (r+#0andd(r) <db)).

Any Euclidean domain is a unique factorization domain.
This fact is easier to prove if one requires d(ab) > d6(a) for
all a,b € E with ab # 0, but this is not necessary.

A prime in an integral domain is an non-zero element p
with the property that p | a - b implies p | a or p | b. An
irreducible element g # 0 in an integral domain has the prop-
erty that ¢ = u - v implies that either u or v is a unit. In a
unique factorization domain both notions are the same. The
elements in the residue ring E/(m) (often called the “quo-
tient ring”) are congruence classes modulo m € E, which are
normally represented by elements in E. The representation
need not be canonical, i.e., two elements a,b € E may repre-
sent the same class. Such ambiguity is well-understood: for
example, the two fractions 1/2 and 2/4 represent the same
rational number. In order to perform ring arithmetic in
E/(m) we need a test for equality: a = b mod m if m | a—b.
The alternative is canonical simplification, which is a proce-
dure that reduces any representative of a congruence class
of E/(m) to an element unique to that class (see below).
Often, Euclidean division by m is a canonical simplification.
We use the notion a mod m ambiguously: first, it denotes
the congruence class in E/(m) that contains a; second, it
is a (possibly canonical) element in F that represents the
same class.

In a Euclidean domain E a prime p must produce as a
residue ring E/(p) a field. We obtain an algorithm for the
reciprocal of (m mod p) € E/(p), where m € E \ pE via
the extended Euclidean algorithm: the algorithm computes
s,t € E such that sm+tp = 1, so s mod p is the reciprocal of
m mod p. Chinese remaindering is thus facilitated: suppose
we have a mod m and b mod p where GCD(m, p) = 1. Then

c=a+ ((b—a)ym ' modp) -m (mod mp)
is a representative of a unique congruence class in E/(mp)
with ¢ = a (mod m) and ¢ = b (mod p).

In any integral domain association is an equivalence re-
lation on all non-zero elements: a is an associate to b if b
divides a and a/b is a unit. Our algorithm returns a unique
GCD, namely that associate whose leading coefficient is unit
normal. Unit normalization is a canonical simplification al-
gorithm for association, which is part of the generic interface
to the integral domain. Divisibility testing and exact divi-
sion is another interface operation. Note that unit normal-
ization need not be multiplicative (e.g., Z[i]), which must be
accounted for in step 17.

The generalization of the modular GCD algorithm pre-
sented in Section 2 to Euclidean domains imposes additional
conditions on E. For one, we must have an infinite source of
primes. We shall suppose that we have access to the stream
of unassociated primes

()

A second issue is the recovery of elements a in FE from
a mod m for sufficiently large m. Even over the integers, the
divisibility test in step 17 will only succeed if the residues

P1,P2,P3, - - with 6(p1) < d(pip2) < 6(p1paps)--- -

63

modulo m are chosen in the symmetric range {|—(m—1)/2],
., =1, 0, 1, ..., [=(m — 1)/2]}. Similar difficulties
are addressed be the landmark generic description of the
Zassenhaus-Hensel algorithm in [21]. Instead of the require-
ment of an exhaustive set of representatives like in [21, sec-
tion 2.6.2], we impose the condition on a required canonical
simplifier modulo m. Recall that x: E x (E\{0}) — Eisa
canonical simplifier for the residue domain construction if

Simplification for all a € E we have a =
(mod m), and

x(a,m)

Canonicity for all a,b € E with a = b (mod m) we have
x(a,m) = x(b,m).

Note that x(x(a,m), m) = x(a, m). The required condition
is hard to read, at first:

VB > 03M(B) such that Vm with 6(m) > M(B)

and Va with §(a) < B: x(a,m) =a. (6)
In words, all elements of a bounded degree are recovered
by the simplifier if the modulus is sufficiently large. Here
is how the condition works. The bound B is a degree
bound with respect to the degree function ¢ for the coef-
ficients of «/1c(g)g, which is our target polynomial for h.
If §(m) > M(B) then x(h,m) = x(gm,m) = v/lc(g)g in
step 15. For E = Z we may choose M (B) = 2B and x sym-
metric remaindering modulo m, for Z/(p)[t] we may choose
M(B) = B and x normal polynomial remaindering. The
condition (5) on the primes ensures that d(m) will reach
M(B).

Finally, we call a Euclidean remainder function a sym-
metric remainder if it simultaneously is a canonical simplifier
with property (6). It is, however, not advisable to employ
symmetric remaindering throughout the algorithm, but only
in step 15. The sign adjustments in E/(m) would be a com-
pleted wasted until step 15 succeeds. Furthermore, x(-,m)
can be restricted to the range of rem(:, m).

Algorithm Modular GCD of section 2 is designed so that
it terminates with the proper GCD after all unlucky primes
have been eliminated. We comment that there is a practical
danger in that if there is a bug in the implementation the al-
gorithm will loop. However, this problem can be diagnosed
using an estimate on the number of good primes needed to
recover the coefficients of the GCD via condition (6) (for
E = Z multivariate factor coefficient bounds [18, section
4.6.2, exercise 21] can be employed for this purpose) and
using an estimate of the number of unlucky primes (see re-
mark following lemma 2 in section 2). In order to keep the
code generic, the (possibly optional) estimate computation
could be provided by the Euclidean domain.

4.1 Generic Maple Code

The Maple code below is written to be executed with the
Domains package in rmaple, the current research version of
Maple. The Domains package [12] supports the writing of
generic code.

The first two inputs A and B are polynomials. The pro-
gram calculates the GCD(A, B) where A, B are polynomials
in one or more variables X = x1, x2, ..., T, over a Euclidean
domain E. The third input parameter P = E[X] is the do-
main in which the polynomials A, B lie. In the program E
and X are accessed from the polynomial domain P. The do-
main X is an ordered Abelian monoid which defines a term

ordering on the exponent vectors of the polynomials. The
degree function in this setting returns an exponent vector.
The operation V[‘<‘] (a,b) compares exponent vectors a, b.

The fourth input, the domain G = R[X], is the image
ring in which the modular GCD computations take place.
In the program R is accessed from G. The program assumes
that the data structure and term ordering used for E[X] and
G[X] are the same, with respect to which the degree vectors
and leading coefficients are computed. Our Maple imple-
mentation currently does not allow the parameterization of
those functions with an admissible ordering. The operation
GL¢.‘]1(x,a) means scalar multiplication of a polynomial a
by a scalar z.

The fifth input ¢, the modular homomorphism which
maps E into the residue ring R = E/(m), is the remain-
der function in E. In the Domains package, it must be a
canonical simplifier for E/(m).

The sixth input, NextPrime, is a function which must
provide an infinite source of unassociated primes in E sat-
isfying (5). The Domains package is designed to permit the
modulus m of the residue ring R to be changed by assign-
ment, implicitly redefining the modulus in G, thus without
need to construct R and G for each new prime. This is
an important design consideration because constructing do-
mains has a cost which may be very high compared with a
GCD computation in one variable.

The last input, SymRem, is the symmetric remainder
function in E described in (6). For clarity, in our implemen-
tation below, this function is passed as a parameter and it
is applied to the result of the CRA explicitly.

GCD := proc(A,B,P,G,phi,NextPrime,SymRem)
if A = P[0] then RETURN(P[Normall(B)) fij;
if B = P[0] then RETURN(P[Normall(A)) fij;
E := P[CoefficientRing]; # Euclidean domain
R := G[CoefficientRingl; # Residue ring
X := P[ExponentVector]; # Ordered Abelian monoid
a := P[Primpart] (A,’ca’);
b := P[Primpart] (B,’cb’);
gc := E[Gcd] (ca,cb); # GCD of contents
da := P[Degree] (a);
db := P[Degreel (b);
degbound := X[Min] (da,db);
la := P[Lcoeff](a);

1b := P[Lcoeff](b);
gamma := E[Gcd] (1a,1b);

hbar := P[0]; modulus
for k do

:= E[1];

R[Modulus] := NextPrime();

while phi(gamma) = E[0] do
R[Modulus] := NextPrime()

od;

m := R[Modulus];

abar := P[Map] (phi,a);

bbar := P[Map] (phi,b);

userinfo(2,Gcd, "Image GCD computation");
gbar := G[Gcd] (abar,bbar) ;

64

d := G[Degreel] (gbar); # vector degree
if d = X[0] then RETURN(P[Constant](gc)) fi;

Leading coefficient correction
gbar is assumed to be monic
gbar := G[‘.‘](phi(gamma), gbar);

if hbar = P[0] or X[‘<‘](d,degbound) then
All previous homomorphism’s were unlucky

degbound := d;
hbar := P[0];
modulus := E[1];

elif X[‘>¢](d,degbound) then
This homomorphism is unlucky
next;

fi;

userinfo(2,Gcd, "Chinese remaindering");

s := R[Inv] (phi(modulus));

vl := G[“.“1(s,G[“-“] (gbar,P[Map] (phi,hbar)));
h := P[‘+‘] (hbar,P[‘. ‘] (modulus,vl));

modulus := E[‘*‘] (m,modulus);
h := P[Map] (proc(x) SymRem(x,modulus) end, h);

if h = hbar then
userinfo(2,Gcd,
"Beginning termination check");
g := P[Primpart] (h);
if P[Divides](g,a) and P[Divides](g,b) then
Unit normalization is not multiplicative in Z[i]
RETURN(P[Normal] (P[‘.‘](gc,g)));
fi;
fi;
hbar := h;
od;

end:

5 Conclusion

We have investigated to which coefficient rings, other than Z,
the modular GCD algorithm of Brown can be applied. The
main requirement appears to be Euclidean domains which
possess a remainder function for which the CRA can recon-
struct all values up to a given norm in the Euclidean domain.
In particular this includes the Euclidean domains F'[t] where
F is a field and Z[i], the Gaussian integers (see [3] for ef-
ficient arithmetic in Z[:] and [16] for efficient arithmetic in
any Euclidean quadratic number ring.). The Modular algo-
rithm is not necessarily effective, however, as there may be
an intermediate expression swell, e.g., for F[t] = Q[t].

The Maple code in section 4 gives a clear description
of the algorithm which has been tested on univariate and
bivariate polynomials for the Euclidean rings Z, Z[i], Q[t],
Z/(p)[t]. This code applies only one application of the mod-
ular GCD algorithm. It is clear that repeated application of
it will lead to a method which will not be effective for sparse
polynomials. One may combine our generic modular GCD
algorithm with the sparse modular GCD algorithm provided
any finite fields E/(p) are of sufficient size.

We have shown that when the modular GCD algorithm

is applied to the coefficient ring Z/(p)[t] of Z/(p)[t][x] when
p is too small to to use the modular evaluation algorithm,
we obtain a very good algorithm, both in practice and in
theory when compared with the approach of computing the
GCD in a field extension GF(p*).

We note here that we have not used rational reconstruc-
tion [23], [16, Section 5], [17, Lemma 1], in the modular GCD
algorithm as a means to determine the leading coefficient of
the GCD exactly. This is superior because it enables us to
reconstruct the GCD with a modulus m of minimal size.
Rational reconstruction can be done in Euclidean rings Z,
F[t], and Z[¢]. It remains to formulate the generic rational
reconstruction condition for a corresponding simplifier in an
arbitrary Euclidean ring similarly to (6).

The modular algorithm also applies to algebraic number
coefficients, which generate rings that may not be unique
factorization domains. The GCD is computed over their
corresponding algebraic number fields. Several efficient al-
gorithms are described in the literature (see [8, 19] and the
papers by Langemyr and McCallum cited there), whose the-
ory generalizes to multivariate polynomials by use of Kro-
necker’s substitution. Our generic algorithm can be adapted
to handle such coefficient domains, but we would like to in-
vestigate a generic algorithmic theory of algebraic extensions
first, so that algebraic function fields are also covered by our
implementations.

Acknowledgement Hans Dobbertin sent us a factoriza-
tion problem of P over Z/(2) in figure 1, which initiated this
work. Barry Trager shared the Axiom code for the modular
GCD algorithm with us for comparison. The external and
program committee reviewers saw the strengths of this paper
through the weaknesses of our presentation, and encouraged
us to improve the latter. We thank all of them.

References

Note: many of Erich Kaltofen’s publications are accessible
through links in the online BIBTEX bibliography database
at www.math.ncsu.edu/ kaltofen/bibliography/.

[1] BERNARDIN, L., AND MONAGAN, M. B. Efficient multi-
variate factorization over finite fields. In Proc. AAECC-
12 (Heidelberg, Germany, 1997), vol. 1255 of Lect.
Notes Comput. Sci., Springer Verlag, pp. 15-28.

BrowN, W. S. On Euclid’s algorithm and the com-
putation of polynomial greatest common divisors. J.
ACM 18 (1971), 478-504.

[3] CavinEss, B. F., aAND CoLLiNs, G. E. Algorithms
for Gaussian integer arithmetic. In Proc. 1976 ACM
Symp. Symbolic Algebraic Comp. (New York, N. Y.,
1976), R. D. Jenks, Ed., ACM, pp. 36-45.

[4] CavinEss, B. F., AND ROTHSTEIN, M. A modular
greatest common divisor algorithm for Gaussian poly-
nomials. In Proc. 1975 ACM Annual Conference (New
York, N. Y., 1975), ACM, pp. 270-273.

Diaz, A., AND KALTOFEN, E. On computing great-
est common divisors with polynomials given by black
boxes for their evaluation. In Proc. 1995 Internat.
Symp. Symbolic Algebraic Comput. (ISSAC’95) (New

65

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

York, N. Y., 1995), A. H. M. Levelt, Ed., ACM Press,
pp- 232-239.

Diaz, A., AND KALTOFEN, E. FoxBoX a system for
manipulating symbolic objects in black box represen-
tation. In Proc. 1998 Internat. Symp. Symbolic Alge-
braic Comput. (ISSAC’98) (New York, N. Y., 1998),
O. Gloor, Ed., ACM Press, pp. 30-37.

DOBBERTIN, H. Almost perfect nonlinear power func-
tions on GF(2"): The Niho case. Manuscript, German
Information Security Agency, Bonn, Germany, Apr.
1998.

ENCARNACION, M. J. Computing GCDs of polynomials
over algebraic number fields. J. Symbolic Comput. 20,
3 (1995), 299-313.

Gauss, C. F. Disquisitiones Arithmeticae. G. Fleis-
cher, Jr., Leipzig, Germany, 1801.

GEDDES, K. O., CzAPOR, S. R., AND LABAHN, G.
Algorithms for Computer Algebra. Kluwer Academic
Publ., Boston, Massachusetts, USA, 1992.

GOLDSTEIN, A. J., AND GRAHAM, R. L. A Hadamard-
type bound on the coefficients of a determinant of poly-
nomials. SIAM Rev. 16 (1974), 394-395.

GRUNTZ, D.;, AND MONAGAN, M. B. Introduction
to Gauss. No. 9 in Maple Technical Newsletter.
Birkhéauser, 1993, pp. 23-35.

KALTOFEN, E. Sparse Hensel lifting. In FUROCAL 85
European Conf. Comput. Algebra Proc. Vol. 2 (Heidel-
berg, Germany, 1985), B. F. Caviness, Ed., Lect. Notes
Comput. Sci., Springer Verlag, pp. 4-17. Proofs in [14].

KALTOFEN, E. Sparse Hensel lifting. Tech. Rep. 85-
12, Rensselaer Polytechnic Instit., Dept. Comput. Sci.,
Troy, N. Y., 1985.

KALTOFEN, E. Greatest common divisors of polyno-
mials given by straight-line programs. J. ACM 35, 1
(1988), 231-264.

KALTOFEN, E., AND ROLLETSCHEK, H. Comput-
ing greatest common divisors and factorizations in
quadratic number fields. Math. Comput. 53, 188 (1989),
697-720.

KALTOFEN, E., AND TRAGER, B. Computing with
polynomials given by black boxes for their evaluations:
Greatest common divisors, factorization, separation of
numerators and denominators. J. Symbolic Comput. 9,
3 (1990), 301-320.

KnutH, D. E. Seminumerical Algorithms, Third ed.,
vol. 2 of The Art of Computer Programming. Addison
Wesley, Reading, Massachusetts, USA, 1997.

MONAGAN, M., AND MARGOT, R. Computing univari-
ate GCDs over number fields. In Proc. Symp. Discrete
Algo. (1998), Soc. Indust. Appl. Math, pp. 42-49.

MONAGAN, M. B. In-place arithmetic for polynomials
over Z,. In Proc. DISCO ’92 (Heidelberg, Germany,
1992), vol. 721 of Lect. Notes Comput. Sci., Springer
Verlag, pp. 22-34.

[21]

[22]

[23]

[24]

[25]

Musser, D. R. Algorithms for polynomial factoriza-
tion. PhD thesis, Univ. Wisconsin, Madison, Wiscon-
sin, USA, 1971. Also TR #134, September 1971.

RAYEs, M. O., WANG, P. S., AND WEBER, K. Par-
allelization of the sparse modular GCD algorithm for
multivariate polynomials on shared memory multipro-
cessors. In ISSAC ’94 Proc. Internat. Symp. Sym-
bolic Algebraic Comput. (New York, N. Y., 1994), ACM
Press, pp. 66-73.

Wang, P., Guy, M. J. T., AND DAVENPORT, J. H.

p-adic reconstruction of rational numbers. SIGSAM
Bulletin 16, 2 (1982).

ZIPPEL, R. Probabilistic algorithms for sparse polyno-
mials. In Proc. EUROSAM 79 (Heidelberg, Germany,
1979), vol. 72 of Lect. Notes Comput. Sci., Springer
Verlag, pp. 216-226.

Z1PPEL, R. Interpolating polynomials from their values.
J. Symbolic Comput. 9, 3 (1990), 375-403.

66

