
Algorithmica (1999) 24: 331–348 Algorithmica
© 1999 Springer-Verlag New York Inc.

Distributed Matrix-Free Solution of Large Sparse
Linear Systems over Finite Fields1

E. Kaltofen2 and A. Lobo3

Abstract. We describe a coarse-grain parallel approach for the homogeneous solution of linear systems.
Our solutions are symbolic, i.e., exact rather than numerical approximations. We have performed an outer
loop parallelization that works well in conjunction with a black box abstraction for the coefficient matrix. Our
implementation can be run on a network cluster of UNIX workstations as well as on an SP-2 multiprocessor.
Task distribution and management are effected through MPI and other packages. Fault tolerance, checkpointing,
and recovery are incorporated. Detailed timings are presented for experiments with systems that arise in RSA
challenge integer factoring efforts. For example, we can solve a 252,222× 252,222 system with about 11.04
million nonzero entries over the Galois field with two elements using four processors of an SP-2 multiprocessor,
in about 26.5 hours CPU time.

Key Words. Distributed symbolic computation, Sparse linear systems, Block Wiedemann, Outer loop
parallelization.

1. Introduction. The problem of solving large, unstructured, linear systems over finite
fields has important implications for the security of public-key encryption algorithms.
The RSA scheme [18] is presently impregnable to attack due to the difficulty of finding
the prime factors of the public key which is an integer of more than 150 decimal digits.
Modern sieve-based integer factoring algorithms generate linear systems containing over
500,000 equations and variables over the finite field of two elements. Usually no more
than 0.1% of the entries in the coefficient matrix are nonzero.

The probability of successfully breaking the integer key is 1− 1/2r wherer is the
number of distinct solutions to a system of linear equations. A candidate solution is
useless if it is not exact and speed may be sacrificed for exactitude. Thus the equations
are solved in the context of symbolic, rather than numerical, computation.

While coarse-grain parallelism has proven successful [13], [6] for generating the
equations, solving those systems has been difficult partly due to the sequential nature
of the workhorse Structured Gaussian Elimination [16] algorithm which requires cubic
time (in the dimension of the matrix) and does not preserve sparsity. Indeed, the row
and column operations performed in the course of executing the algorithm can trigger

1 This material is based on work supported in part by the National Science Foundation under Grant No.
CCR-9319776. An extended abstract appeared in the proceedings ofHigh Performance Computing1996, a
conference sponsored by the Society for Computer Simulation, in April 1996.
2 Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA.
kaltofen@math.ncsu.edu.
3 Department of Mathematics and Computer Science, Washington College, Chestertown, MD 21620-1197,
USA. Austin.Lobo@washcoll.edu.

Received June 1, 1997; revised March 10, 1998. Communicated by F. Dehne.

332 E. Kaltofen and A. Lobo

a dramatic increase in the number of nonzero entries of the matrix, which in turn can
overwhelm the storage capacity of most computers.

An alternative approach is to employ iterative matrix-free methods that use the black
box model for the coefficient matrix and require a linear number of matrix times vector
products plus a quadratic amount of extra arithmetic in the coefficient field, both quan-
tities measured in the dimension of the matrix. Examples of methods in this category
are the counterparts, in the exact-arithmetic context of symbolic computation, of the
conjugate gradient algorithm [12], Lanczos algorithm [4], and Wiedemann’s coordinate
recurrence algorithm [21] which finds linear relations in Krylov subspaces [11].

The black box methods do not depend upon the structural properties of the matrix, in
contrast to Structured Gaussian Elimination, and the property of sparsity is maintained.
Sparsity is important only in the physical context of a computer implementation. The
methods are clearly parallelizable when considering the steps within the outer loop, i.e.,
within the matrix times vector product.

A far more difficult task is the parallelization of the outer loop. Wiedemann’s original
algorithm for solving a systemBw = 0 for a system ofN linear equations over the
finite field K requires no more than 3N multiplications of the coefficient matrixB
by vectors, plusO(N2 log N) arithmetic operations in the field. The method is Las
Vegas randomized, i.e., it never gives an incorrect answer upon termination, but it might
sometimes fail to provide any answer. Randomization compensates for the loss of speed
inherent to the pursuit of a symbolic solution.

An important substep is the computation of the sequence of field elements

a(i) = utr Bi v ∈ K for 0≤ i ≤ 2N − 1,

whereu andv are vectors with random entries fromK. A key idea is that this sequence is
generated by a linear recurrence that, with high probability, corresponds to the minimum
polynomial ofB and which can be computed by the Berlekamp/Massey algorithm [14].
Evaluation of the minimum polynomial yields the solution, if one exists. Wiedemann’s
original algorithm is entirely sequential.

Coppersmith [4] simultaneously usedm vectorsU for u andn vectorsV for v. The
sequence becomes one ofm× n matrices:

a(i) = U tr Bi V ∈ Mm×n(K).

He then generalized the Berlekamp/Massey algorithm to find the linear recurrence with
vector coefficients that generates this sequence of small rectangular matrices. Clearly,
thea(i) can be computed independently and in parallel.

Kaltofen (1993) showed that the number of termsa(i) to be computed reduces from
2N down to N/m+ N/n + 2n/m+ 1, and overall there are only 3N/n applications
of B to a vector (assumingm ≥ n), instead of 3N. Kaltofen also gave an analysis of
the running time complexity. Thus Coppersmith’s block Wiedemann algorithm, when
implemented in a parallel setting, exhibits a speedup proportionate ton and performs
much faster than its sequential counterpart.

In this paper we give an overview of the block Wiedemann method followed by
a description of our software package, WLSS2, which runs on a network cluster of
SPARC workstations or under the SPMD model on the IBM SP-2 multiprocessor using

Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields 333

MPI as a scheduler. Coarse-grain parallelism is used for simultaneously finding multiple
solution vectors from the kernel of the coefficient matrix. We have kept the matrix whole
by treating it as a black box and, therefore, the individual entries are not accessible
or changeable. We have performed an outer loop parallelization that works well in
conjunction with this black box approach.

2. Linearly Generated Sequences and Wiedemann’s Algorithm . LetW be a vector
space over an abstract fieldK. The infinite sequence{si }i≥0 with si in W is said to be
linearly generated overK if there exist scalarsc0, c1, . . . , cd, . . . , cl in K with cd 6= 0
for some 0≤ d ≤ l , such that, for everyj ≥ 0,

l∑
i=0

ci sj+i = 0.(1)

We say thatc(x) = c0+ c1x+ · · · + cl xl is a generating polynomial, or annihilating
polynomial, for{si }i≥0. The set of all generating polynomials together with 0 forms an
ideal inK[x], the ring of univariate polynomials overK, and the generator of this ideal
is a unique, monic, nonzero polynomial of minimal degree which we call the minimum
polynomial (or minpoly) of{si }i≥0.

SupposeV is another vector space and letα: W −→ V, si
α7−→ ti be a linear map.

The sequence{ti }i≥0 is also linearly generated and its minimum polynomial divides that
of {si }i≥0. The reader is referred to [8] for further details.

2.1. Wiedemann’s Algorithm. Let B be anN × N matrix over an abstract fieldK.
Typically the entries lie in some finite fieldK = Fq, the finite field containingq elements.
The problem is to solve the homogeneous linear system

Bw = 0.(2)

If B is nonsingular, the systemBy = z wherez is a vector in the column space ofB,
can be converted to a homogeneous system by augmenting the columns ofB with z and
adding a zero row. It is assumed thatB is stored inωmemory locations and that the cost
of applyingB to a row or column vector is at most 2ω arithmetic operations. The actual
entries ofB are not manipulated. This is the black box model for the coefficient matrix
and is shown in Figure 1.

Wiedemann’s algorithm [21] is based on the fact that when a square matrix is re-
peatedly applied to a vector, the resulting vector sequence is linear recursive. Letv be
a columnN-vector overK. Since the spaceS = {Bi v}i≥0, whereB0 = I the identity
matrix, is N-dimensional, there is an integer 1≤ l ≤ N such thatv, . . . , Bl−1v are

Fig. 1.Black box model for a coefficient matrix.

334 E. Kaltofen and A. Lobo

linearly independent andBl is a linear combination of these vectors with coefficients in
K, i.e.,

Blv = −cl−1Bl−1v − · · · − c0v.(3)

The monic polynomialf B,v(λ) = λl + cl−1λ
l−1 + · · · + c0 has the least degree among

all polynomials for which (2) holds. It is called the minimum polynomial ofv, and

f B,v(B)v = 0,

Bδ
(
Bl−δv + cl−1Bl−δ−1v + · · · + cδv

) = 0,(4)

whereδ ≥ 0 is the minimum index for whichcδ is nonzero. IfB is nonsingular, then
δ = 0.

Supposef B,v has been found, let̂w denote the vector in parentheses in (4) and suppose
ŵ 6= 0. Then for some integert , with 1≤ t ≤ l , Bt ŵ = 0 but

w = Bt−1ŵ 6= 0(5)

and soBw = 0.
Clearly, dimS≤ N so the solution to (2) can be computed within 2N(ω+ 1) opera-

tions with a small constant timesN space requirement beyond that needed to storeB.
Supposeu is a column vector overK, then the sequence{utr Bi v}i≥0 is derived from

{Bi v}i≥0 by a linear map and satisfies the linear recurrence associated withf B,v. The
minimum polynomial of{utr Bi v}i≥0, denoted byf B,v

u , divides f B,v. Each term ofutr Bi v

is an element ofK and the Berlekamp/Massey algorithm [2], [14] can be employed to find
f B,v
u from the first 2N terms of{utr Bi v}i≥0 in timeO(N2) field operations. Wiedemann’s

algorithm is shown in Figure 2. The components of vectorsu andv are chosen uniformly
at random from the elements ofK.

2.1.1. Probabilistic Justification of Wiedemann’s Algorithm. It may sometimes hap-
pen thatalgSW fails to give a vector in the kernel ofB. In such an instance,f B,v

u 6= f B,v

owing to a “bad” projection and (5) cannot be satisfied. Wiedemann derives [21, Sec-
tion 6] an estimate for the probability that the two minimum polynomials are the same.

Input B ∈ MN×N(K)
Output w ∈ MN×1(K) such thatBw = 0
Body s0 Select randomu, z ∈ MN,1(K)

L ← 2N
v← Bz.

s1 Compute{utr Bi v}i=0,...,L

s2 Apply the Berlekamp/Massey algorithm and findl ,
c0, c1, . . . , cl 6= 0, ci ∈ K, such that, fori = 0,1, . . . , L −
l − 1 utr

(
Bi c0+ · · · + Bi+l cl

)
v = 0

s3 δ← mini≥0{cδ 6= 0}
ŵ← Bl−δzcl + · · · + Bzcδ+1+ zcδ
t ← min1≤ j≤δ+1{B j ŵ = 0}

Return w← Bt−1ŵ or failure

Fig. 2.Wiedemann’s algorithm (algSW).

Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields 335

THEOREM1. Let d= deg(f B,v) and letW be the linear space of polynomials of degree
less than d inK[λ]. There exists a surjective linear mapα : MN×1(K) −→W such that,

∀u ∈ MN×1(K), f B,v
u = f B,v ⇐⇒ GCD(f B,v, α(u)) = 1.

Thus the probability thatf B,v
u = f B,v for a randomly selected column vectoru is

the probability that a randomly selected polynomial of degree less thanN is relatively
prime to f B,v. In Fq, the finite field ofq elements, Wiedemann shows that

Pr
(

f B,v
u = f B,v

) ≥ 1

6 max{dlogq

(
deg f B,v

)e,1} .(6)

Kaltofen and Pan [10, Section 2] prove the following alternative:

THEOREM2. LetS ⊆ K. Randomly and uniformly select u∈ MN×1 (S). Then

Pr
(

f B,v
u = f B,v

) ≥ 1− deg(f B,v)

card(S) .

Of course, Theorem 2 is meaningful only when card(S) is greater than deg(f B,v). The
cardinality can always be increased by makingS a finite extension ofK of appropriate
degree overK.

3. Coppersmith’s Block Wiedemann Algorithm. Coppersmith proposed a block
version of the Wiedemann algorithm which takes advantage of the ability to perform
simultaneous operations on blocks of vectors. His algorithm works with matricesU ∈
MN×m and V ∈ MN×n in place ofu and v. As many asn candidate solutions are
found simultaneously on a single invocation. It is not guaranteed that these vectors are
nonzero, or different from one another. The cost per solution is decreased in approximate
proportion to the amount of blocking, i.e., the column dimension ofV . There are three
steps in the algorithm, which is shown in Figure 3.

Step BW1: Sequence Generation. Pick random vectorsU = [u1|u2| · · · |um], andZ =
[z1|z2| · · · |zn], uj , zi ∈ MN×1 for all 0< i ≤ m, 0< j ≤ n. ComputeV = BZ and

a(i) = (U tr Bi V)tr for all 0≤ i ≤ N

m
+ N

n
+ 2n

m
+ 1.(7)

The task requires not more than(
1+ n

m

)
N + 2n2

m
+ 2n(8)

black box multiplicationsv 7−→ Bv of a column vector inMN×1 by B as shown in
Figure 1. Actually, theκν rows ofa(i) can be computed usingκν columns of the vectorV
as a coarse-grain parallel operation, shown in Figure 6. Theνth processor gets a copy of
the black box forB, and the entire vectorU . Another way is to perform the computation
B · (Bi−1vν) in parallel, as Coppersmith does, for eachi . The grain is much finer than
before but synchronization might be needed. We return to this issue in the next section.

336 E. Kaltofen and A. Lobo

Input B ∈ MN×N(K)
Output w ∈ MN×n(K) such thatBw = 0
Body b0 Choose random blocksU ∈ MN×m(K), Z ∈ MN×n(K) such

that rank(U tr AZ) = n
L ← N/m+ N/n+ 2n/m+ 2
V0← BZ

b1 Compute {(U tr Bi V)tr}i=0,...,L by a coarse-grain parallel
method

b2 Compute a linear generator9 tr(λ) with m× n matrix coeffi-
cients usingalgMinp, such thatU tr ·9(B) · V = 0

b3 For each 1≤ j ≤ n
δj ← maxi≥0{λi divides9j (λ)}
9̂j (λ)← λ−δj9j (λ)

ŵj ← 9̂j (B) · Z
tj ← min1≤i≤1+δ{Bi ŵj = 0}

Return w = [w1 | · · · | wn] such that, for each 1≤ j ≤ n, wj ←
Bt−1ŵj wherewj 6= 0 andBwj = 0; otherwise setwj = 0

Fig. 3.Coppersmith’s block Wiedemann algorithm (algBW).

Step BW2: Finding a Linear Generator. Find a linear generator9 of lengthD + 1 for
the sequence of matricesa(i).

9(λ) = λD + cD−1λ
D−1+ · · · + c1λ+ · · · + c0,

whereci ∈ Kn for i = 0, . . . , D − 1. All this can be accomplished sequentially with
O(nN2) operations in the coefficient field. A practical parallelization has so far eluded
us. We describe the full details of this step in a subsequent section.

Step BW3: Horner-Like Evaluation. This block step involves a Horner-like evaluation
of a polynomial9j for 1≤ j ≤ n, derived from9 whose coefficients aren-dimensional
vectors.

9j (λ,V) = λl Vcl , j + · · · + λδ+1Vcδ+1, j + λδVcδ, j

with ck, j = 0 for all 0 ≤ k < δ ≤ l . Each coefficientcj, j is the j th column of
the coefficient ofλ j in 9(λ) computed in the previous block step. This step can be
performed in a parallel/distributed setting.

With sufficiently high probability, justified later,9j yields a valid linear combination
of vectors inVV such that

9j (B,V) = 0(9)

within an orthogonality constraint onVU andVV . In other words, with high probability,
the projections due toU do not introduce any spurious additional linear dependencies.

Setting9̂j (λ) = λ−δ9j (λ) compute

ŵj = 9̂j (B, Z).(10)

This task requires no more thanl − δ matrix times vector products plus some additional
O(N2) work to compute the products of the formZcj,i .

Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields 337

With probability at least 1− 1/card(K), ŵj 6= 0. Compute the productBt ŵ for the
smallest integer 1≤ t ≤ δ + 1 that yields the zero vector. Finallywj = Bt−1ŵj is
returned.

With parallelization, the block step of evaluation can yield as many asn individual
candidate solution vectorswj which may not all be different or nonzero.

The overall cost for findingn candidate solutions to (2) is within

O

((
1+ 2n

m

)
Nω + (m+ n)N2

)
(11)

field arithmetic operations, whereω, as before, is the cost of applying a black box matrix
to a column vector. These figures are supported by the following facts from [4], [9], and
[20].

PROPOSITION1. A linear generator for the sequence{U tr Bi V}i≥0 of m× n matrices,
m ≥ n, can be computed from a consideration of the first L terms of the sequence,
provided

L ≥ N

m
+ N

n
+ 2n

m
+ 2.

PROPOSITION2. Let ŵ be calculated by step BW3 in algorithmalgBW. Then

Prob(ŵ 6= 0) ≥ 1− 1

|Kernel(B)| .

Unlike the sequential case, a proof that the block algorithm works and an estimate
for the probability of success are available in a restricted setting, in which the rank of
the matrixB bears a strict relationship to the degree of the minimum polynomial ofB,
and the cardinality ofK is approximatelyO(N2).

THEOREM3. LetK be a finite field, and let B∈ MN×N(K) be a singular matrix whose
minimum polynomial fB has degreedeg(f B) = rank(B) + 1. Suppose that the vector
blocks U∈ MN×m(K) and V ∈ MN×n(K) are chosen at random and that̂w is computed
as in algorithmalgBW.Then with probability no less than1−(2 rank(B)+1)/card(K) ≥
1− (2N − 1)/card(K) we havêw 6= 0 and Bt+1ŵ = 0 for some integer t≤ N/n.

PROOF. See [9].

Kaltofen’s analysis is valid only for fields where card(K) is greater than approximately
2N. Villard [20] has a generalized approach that is valid in any fieldFq. Lettingβ denote
the number of companion blocks in the Frobenius form ofB restricted to its range space,
letting πB denote the minimum polynomial ofB, Villard defines functions8n(fB, β)

and2n(f, β) and an integer parameter1 such that the length of the sequence computed
is L = N/m+ N/n+1, and gives the following theorem.

338 E. Kaltofen and A. Lobo

THEOREM4. Let B be an N×N matrix overK = Fq. The matrices U∈ Mm,N(K) and
Z ∈ MN,n(K) are chosen at random. Let m≥ min{β,n} and Ke = |Kernel(B)|. If w is
computed by the block algorithm with shift parameter1, thenProb{w 6= 0, Bw = 0} is
greater than

(8m(fB,min{β,n})−2m(fB,min{β,n})) (1− 1/Ke) .

PROOF. See [20].

Villard’s result effectively lays to rest all concerns about the conditions under which
the block Wiedemann algorithm fails. His theorem does not depend upon randomized
preconditioning. For large fields, his result can be specialized to Kaltofen’s.

4. The Sequential Component. The biggest obstacle faced in designing a block
Wiedemann algorithm was the correct generalization of the Berlekamp/Massey algo-
rithm [14]. We describe a version due to Coppersmith in light of our experience with
the implementation of this and similar algorithms for rational approximation of linear
sequences. The algorithm corresponds to step BW2 and is purely sequential. A parallel
version working well in practice has so far eluded us.

Given the firstL terms of the formal power seriesT(z) = ∑∞
i=0 Ti z−i of m × n

matrices withT(z) assumed rational, the problem is to find anm×n polynomial matrix
G(z) andn×n invertible polynomial matrixH(z), deg(G) < deg(H) such that the first
L terms of the Laurent expansion ofG(z)H(z)−1 correspond to{T0, . . . , TL−1}, i.e.,

T(z) modz−L = (G(z)H(z)−1) modz−L .(12)

In linear control system theory this is the partial minimal realization problem [19].
In the present context theTi are the matrices(U tr Bi V)tr. The denominator termH(z)
corresponds to the sought-after linear generator. The pair(G, H) is unique only up to
right multiplication by ann× n unimodular matrix.

The problem has been solved in many ways in the past, with the oldest version being
apparently the work of Rissanen [17]. Rissanen’s algorithm finds a linear generator of
minimum degree.

Competing algorithms have been given in [9] which uses randomization and FFT-
based fast polynomial arithmetic and costsO((m+ n)N2 log N log logN) arithmetic
operations; the generalized Levinson/Durbin/Trench algorithm [5] for Toeplitz-like
matrices [7]; and the asymptotically faster version in [3] or [15]. Using fast polynomial
arithmetic the cost is inO((m+ n)2N(log N)2 log logN). Another approach computes
matrix Padé approximants [1] inO(mN2) time.

4.1. Rational Approximation of a Linearly Generated Matrix Sequence. Coppersmith’s
algorithm treats the sequence{(U tr Bi V)tr}i≥0 as a matrix polynomial withn×m matrix
coefficients. His method is iterative, requires no randomization, and costsO((m+n)N2)

with classical arithmetic. The algorithm is shown in Figure 3.

Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields 339

The key variables are3(t) ∈ M2n×m(K)[λ], 1(t) ∈ M2n×n(K), andTt ∈ M2n×2n(K).
At each iterationt = 0,1,2, . . . the polynomial

3(t)(λ) =
(
9(t)(λ)

8(t)(λ)

)
is computed. When viewed as a polynomial matrix inM2n×m(K[λ]), the firstn rows
of 3(t) represent “current” trial generator polynomials and the lattern are the “most
recent past” generators, as in the classical Berlekamp/Massey algorithm. An integer
upper boundd(t)i or nominal degree is assigned to thei th row of3(λ). The actual degree
of the row could be less due to cancellation in the course of row operations on3(λ).
The matrix coefficient1(t) = coeff(λt ,3(t)α) represents the discrepancy between the
actual value ofa(t) and the value generated using the most recent trial generators. In
particular, if the uppern rows of1(t) are all zeros, then the trial generator9 could be a
valid generator for the entire input sequence.

Two conditions are maintained throughout, namely:

(C1) coeff(t,3(t)
i α) = 0tr (∀i,1≤ i ≤ 2n)

(
∀ j,d(t)i ≤ j < t

)
,

(C2) Rank(Coeff(t,3(t)α)) = n.

At the start, witht = 0 with 9(0)(λ) = 8(0)(λ) = In and all nominal degrees
initialized to 1, condition (C1) is vacuous, but clearly (C2) is enforced by the choice
for Z andu. Now, by setting8 = λIn and t = 1, the remarks on (C1) and (C2) still
apply. Of course, in practice there is no need to start att = 0. Proceeding inductively,
for t > 0 with increments by 1, first1(t) is computed as in step 3 of Figure 4. This costs
O(n2mt) operations. Except fort = 1 only the submatrix from the product9(t)α needs
to be computed, the remaining submatrix comes from the lastn rows ofTt−11

(t−1). The
next step is to maintain (C2) using the lastn rows of1(t) to compute a transformTt that
makes the firstn rows of1(t) each zero.

One approach is to triangulate1(t) along the antidiagonal. Briefly, for eachj =
1,2, . . . ,m, a pivot row is selected which is nonzero in itsj th column. This row is then
exchanged with an appropriate row from the lowerm rows of1(t) and then used to make
zero the entries above it in columnj . The pivot row is selected by sorting the nominal
degrees in ascending order and picking a candidate row of lowest nominal degree. Thus
a row of1(t) corresponding to a row of3(t) is never subtracted from another row of
lower nominal degree. We remark thatTt can be computed in no more than(m+ n)3

field arithmetic operations. The transformation is applied to all terms of3(t) and the
nominal degrees of the lastn rows of3(t) are incremented by 1. Thus

3(t+1) = Diag(1, . . . ,1︸ ︷︷ ︸
n

, λ, . . . , λ︸ ︷︷ ︸
n

) · Tt ·3(t).

The multiplication using the diagonal matrix can be done implicitly by simply increment-
ing the lastn rows ofd(t). This update step costsO(n2mt) operations. Summing the com-
ponent costs over allO(N/mn) iterations, the entire cost of step BW2 isO((m+n)N2)

and the coefficients of9 are rectangular matrices.
Unfortunately a better, practical, parallel version has eluded us, and so the step of

finding a recurrence for the matrix sequence ofalgBW is purely sequential.

340 E. Kaltofen and A. Lobo

Input α(λ) – sequence ofn×m matrices
Output 9(λ) – linear generator forα(λ)

d – list of nominal degrees of rows of9,8
Variables 8,9 ∈ Mm×n(K[λ]) – linear generators

T ∈ M2n×2n(K) – linear transformation
1 ∈ M2n×m(K) – discrepancy matrix
d ∈ K2n – nominal degree list

Body 8← λ ; 9 ← 1
d[1, . . . ,n] ← 1
for t = 1, . . . ,deg(α(λ)) do

1← coeff

(
λt ,

[
9(λ)

8(λ)

]
α(λ)

)
ComputeTt such thatTt1 =

[∗ | 0
]tr[

9(λ)

8(λ)

]
←
[

In 0n

0n λIn

]
Tt

[
9(λ)

8(λ)

]
d[m+ 1, . . . ,2n] ← 1+ d[n+ 1, . . . ,2n]

od.
Return 9,d

Fig. 4.Finding a linear generator (algMinp) as in step BW2.

5. Black Box Matrix and Outer-Loop Parallelization. Mathematically, a black box
matrix is a linear operator that carries a vector into another vector. In the language of
object-oriented programming, a black box matrix is an instance of a program class that
consists of a private area, containing either an encoded matrix or a private member
function that can dynamically generate components of the matrix on demand and a
public area that contains a constructor and an applicator function. The black box matrix
implicitly or directly multiplies an input vector by the private matrix using the applicator
function. The applicator function is permitted to call the constructor function, if one is
supplied, and it has access to private data.

The constructor obtains matrix data from an external source and stores an encoding
in the private data area. In our implementation, the data for the matrix are stored in a
compressed format within private memory, and the constructor reads that data from a
file.

The apply function carries out the matrix times vector product by means of either a
private direct access to the static matrix data, or by calls to the private data generator
function, if one exists. A schematic black box is depicted in Figure 1.

When memory restrictions prohibit the instantiation of the data, or a good way exists
to generate the contents of the matrix dynamically, the data generator function approach
is preferred. In that case the constructor is rudimentary and is frequently a vestigial
requirement of the object-oriented language, needed for creating an instance of the black
box class.

Figure 5 shows the C language description of the black box for a matrix over the
finite field of two elements. The data are stored statically as an array of arrays of column

Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields 341

Fig. 5.C language definition of black box and associated variables for anNr × Nc matrix.

indices for those columns containing nonzero data. In this case there is no need actually
to store the data, but if the field contained more than two elements, the row lists would be
of ordered pairs representing column index and actual data stored. The column addresses
are divided into a set of contiguous columns whose addresses are relatively offset by less
than 32767 (representable in 15 binary digits), and a second set containing the remaining
columns.

The representation conserves physical memory on matrices from integer factoring
which, while possessing no special structure, are nevertheless highly dense in the first
few hundred rows, and the density gradually falls off to the point where a row might
contain as few as three nonzero columns.

The constructor reads the matrix into static memory while the applicator function
performs routine matrix times vector multiplication with the important consideration

342 E. Kaltofen and A. Lobo

Fig. 6.Distributing the vectors: preferred mode for distributed computation of vector sequence.

that, inF2, two elements can be added or multiplied using the bitwiseexclusive-orand
and functions, respectively.

5.1. Parallelizing the Outside Loop. The use of block vectors and a black box lead
naturally to coarse-grain parallelism. The computations for steps BW1 and BW3 in
algBW can be distributed over a network of compute nodes. Significantly, the length of
sequence needed is reduced, which characterizes an outer-loop parallelization ofalgSW.
The expected parallel speedup is roughly proportional to the number of vectors in a block.
Moreover, the algorithm can be applied to any linear system over any finite field and
retains the property of being matrix-free because the black box approach is preferred
over the natural tendency to partition the matrix and assign components to processors
on a mesh or array, the latter being a form of inner-loop parallelization.

5.1.1. Preferred Mode of Distribution. Our preferred partitioning scheme was chosen
to avoid elaborate synchronization and to minimize the cost of data communication
across a network. The entire black box matrix is copied to every active processor, and
blocks of vectors are distributed. The overall mechanism is shown in Figure 6.

The j th block column ofU tr Bi V is computed by a coarse-grained parallel operation
in which vectorU , and thej th column blockvj of V having widthκj , is sent along with a
copy of the black box to each of several processors on a network. Starting withv

(0)
j = vj ,

the j th processor computesv(k+1)
j = Bv(k)j , by a black box application, followed by an

inner productU trv
(k+1)
j , which yieldsκj columns ofa(k+1). All this is depicted in Figure 7.

The output from a processor depends only on its own most recent output, and not on
the output of any other processor sibling. Thus there is no need for interprocessor com-
munication and synchronization is uncomplicated. The processors can be coordinated
by barrier synchronization or a busy wait, both at minimal cost. Furthermore, the cost
of sending large volumes of data over a slow link is avoided.

At regular intervals each processor updates a checkpoint of its state, particularly of
a current value ofv(k+1)

j . The writing of the outputU trv
(k+1)
j to a file immediately upon

generation means that all past output is saved. So faults as well as recovery are localized.
Other strategies exist for multiprocessor architectures with shared memory, but they

might require synchronization. The strategies lead to finer grain size than in our preferred
strategy and incorporate a distributed black box, as shown in Figures 10 and 8. They are

t1: Proc(j) computesv(k+1)
j = By(k)j

t2: Proc(j) computesU trv
(k+1)
j and writes to file

Fig. 7.Black box matrix with distributed vectors.

Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields 343

Fig. 8.Distributing the black box with transverse partitioning: alternative strategy.

are not suited for networks of workstations because of the synchronization issue and the
frequent transfer of fairly high volumes of data.

5.1.2. Transversely Segmented Matrix Black Box. With transverse partitioning thej th
processor is able to call a black box representing a block ofρj rows of B, which is
denoted byBj . Applied to sequence generation, the strategy is depicted in Figure 8.
The j th processor computesy(i)j = Bj y(i−1) and must have access toy(i−1) which is

assembled from ally(i−1)
j . The mechanism is depicted in Figure 9.

Stept1 produces the vectory(i+1)
j that is only j < N long. This portion has to be

broadcast to all other processors which then assembley(i+1). Only then can the inner
product be taken. This means that moderate quantities of data have to be transferred
between processors and that at least two synchronization steps will be needed. Synchro-
nization and data transfer are expensive when done across a local area network even
if there is a shared file system. The partitioning strategy becomes more attractive on a
multiprocessor with shared memory and a fast data link.

5.1.3. Longitudinally Segmented Matrix Black Box. The black box may also be bro-
ken into blocks of columns ofB. In this strategy, each processor is given a black box
representingκj columns ofB which we denote byBj . Each processor initially takes the
vectorZ as input . An application of the black box generates the vectory(i+1) = By(i)

as in Figure 11.
In stept1, proc(j) produces anN-dimensional vectory(j)

i+1 which it then broadcasts.
It also receives a vector from each of the other processors. After that, the processor
must sum these vectors so as to have a local copy ofyi+1. All this must happen before
a designated processor can take the inner product and write the output to a file. This
means that large quantities of data have to be transferred between processors and that at
least two, and possibly three, synchronization steps will be needed. This cost of vector
addition is not seen in transverse partitioning. This method of partitioning is unattractive
for most applications and architectures.

t1: Proc(j) computesy(i+1)
j = Bj y(i−1)

t2: Synchronization wait
t3: Proc(j) broadcastsy(i+1)

j to all other processors

t4: Proc(j) assemblesy(i+1) from the receivedy(i)k
t5: Designated processor computesU try(i+1) and writes output to

file
t6: Synchronization wait

Fig. 9.Black box segmented transversely.

344 E. Kaltofen and A. Lobo

Fig. 10.Distributing the black box with longitudinal partitioning: alternative strategy.

6. Implementation. We implemented the algorithm in the C programming language.
As shown in Figure 5 our black box is a structure containing statically initialized data
and two functions,init to do the initialization, andapply , which computes the matrix
times vector product. No direct access to the static data is permitted to any other function,
in keeping with the spirit of a matrix-free algorithm. The functions are passed by pointers
to other procedures.

The software system is decomposed into three sections that are counterparts to the
steps BW1, BW2, and BW3. Sequence generation was further split into a function that
selects the vectorsU and Z, and a module to compute thea(i) that can be run in a
distributed setting. The load is statically balanced by giving theνth processor a copy
of the black box, the vectorU , andκν columns ofZ. Each processor then computes
a(i)ν = (U tr Bi+1Z)tr and puts it out to a file as an append operation, and then closes that
file to minimize the effect of any fault. Barrier synchronization is employed before the
sequential step of finding a linear generator.

The block size is a multiple of 32 bits, which is the width of an integer word on most
computers.

The evaluation step, too, is executed in a distributed setting. Each processor receives
a copy of the black box, the entire vectorZ, andκν columns of each coefficient of the
linear generator. As in the sequence generation step, the load is statically balanced by
the choice of the grain size,κν , and barrier synchronization is employed.

The software architecture is depicted in Figure 12. The tasks are of very long duration
both in terms of CPU usage and elapsed time and checkpointing strategies are built in
to give fault tolerance and error recovery.

Our intention is to have a coarse-grain parallel computation over a network of work-
stations or on an MIMD machine. Though the parallel tasks are of long duration, in-
terprocessor communication is far more expensive than computation. Accordingly, the
subtasks do not communicate with one another after they are started. They write their
data directly to output files on a shared filesystem.

t1: Proc(j) computesy(i+1)
j = Bj y

(i)
j

t2: Synchronization wait
t3: Proc(j) broadcastsy(i+1)

j to all other processors
t4: Synchronization wait
t5: Each processor assemblesy(i+1) =∑n/j

k y(i+1)
k

t6: Synchronization wait
t7: Designated processor computesU try(i+1) and writes to file
t8: Synchronization wait

Fig. 11.Black box segmented longitudinally.

Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields 345

Fig. 12.Software architecture of the black box block Wiedemann algorithm.

For the network of SPARC-20 workstations we wrote a UNIX script that took a list
of available nodes and used a ready-queue mechanism to match subtasks to available
nodes and used a simple busy wait for synchronization. No attempt was made to pick the
best compute engine since only a few large workstations were available. The queue was
essential when there were fewer available processors than subtasks. The script provided
an environment and it was not linked into the solver. The solver in this case was broken
into four stand-alone modules.

On the IBM SP-2 parallel computer, we linked to the MPI library (mpich) to schedule
the tasks of the solver. While maintaining the same partitioning, balancing, and com-
munication strategies, there was only one program written in a straightforward fashion,
instead of discrete modules. Barrier synchronization is used for the parallel subtasks.

7. Experiments and Discussion. We conducted our tests on a network of SPARC-20
workstations with nominal ratings of 107 MIPS, and on an SP-2 parallel computer whose
native MIPS ratings are not known to us at the present time. The software was compiled
with the highest possible optimization flags on both platforms.

The test cases came from RSA challenge integer factoring experiments. The first was
supplied by A. Odlyzko, and the other two representing the RSA-120 and RSA-129
efforts, were obtained from A. Lenstra. The systems were made square by padding with
zero rows. Their specific details are as follows:

1. A 50,001× 52,250 matrix over GF(2) containing 9–34 entries per row and 1.1
million entries totally.

2. A 245,811× 252,22 matrix over GF(2) containing 10–217 nonzero entries per row
and 11.04 million entries totally.

3. A 524,339× 569,466 matrix over GF(2) containing 26.6 million entries totally.

346 E. Kaltofen and A. Lobo

Table 1. Parallel CPU time (hoursh minutes′) for finding 128 solutions with an optimized WLSS2 package
on a network of SPARC-20 workstations, with variable grain sizeκ = 128/# proc. Each processor is rated at

107.3 MIPS. Work is measured in units of MIPS-hours#.

N Number of processors BW1 BW2 BW3 Total Work

52,250 4 0h19′ 1h00′ 0h10′ 1h28′ 308#

2 0h24′ 1h04′ 0h09′ 1h36′ 347#

252,222 2 28h46′ 23h54′ 11h52′ 64h32′ 13820#

569,466 2 167h39′ 106h45′ 57h40′ 332h04′ 35630#

The blocking factorn, with m = n, was chosen to be an integer multiple of 32 bits,
the word size of the machines. The granularityκν was usually 32. Vectors, the matrix,
and the intermediate results were maintained and passed as files. A shared filesystem
was in use and hence only filenames needed to be exchanged by tasks.

7.1. Discussion of Timings. Table 1 shows the parallel CPU time for finding 128 solu-
tions to linear systems over GF(2), with κν a multiple of 32, on a network of SPARC-20
workstations.

It can be seen that the time for evaluation (step BW3) is approximately half of the time
for generating the sequence (step BW2). Each of these steps involves matrix times vector
products plus some additional work, but the dominating cost of these steps appears to be
the matrix times vector multiplication. It makes sense, therefore, to optimize this task as
much as possible.

The times for finding the linear generator (step BW2) grow quadratically with dimen-
sion of the matrix and, overall, the total time appears to grow according to a function
that is inO(N2+ε) where 0< ε ≤ 1.

Our tables give the total work, which is the product of the total time taken by all
parallel and sequential tasks, multiplied by the native MIPS of the machines. This is a
measure of the total number of instructions that the processors could have executed while
active. Another point to observe is that for the smallest matrix, the time is approximately
the same for granularities of 32 and 64.

Table 2 shows the time for solving two of the systems on an SP-2 multiprocessor.
Scheduling was done by means of MPI. Comments similar to the ones for Table 1 can
be made here as well. We presently have no figure for the native MIPS of the individual
processors.

Interestingly execution on any one node of the SP-2 is much faster than on a SPARC-

Table 2. Parallel CPU time (hoursh minutes′) for finding 128 solutions with the
optimized WLSS2 package using fixed grain sizeκ = 32, on an SP-2 multiprocessor

using the MPI scheduler.

N Number of processors BW1 BW2 BW3 Total

52,250 4 0h10′ 0h42′ 0h04′ 0h57′

252,222 4 7h15′ 15h24′ 3h51′ 26h30′

Distributed Matrix-Free Solution of Large Sparse Linear Systems over Finite Fields 347

20. We took care to see that the output data was always written to local disk space so the
difference in timings is most likely to be the result of different processor power, different
compilers, or different disk write speeds and bandwidth. We did not have sufficient disk
space to store the contents of the matrix and the intermediate files, for the RSA-129
matrix.

7.2. Scalability. The programs are scalable and will run on more processors, with
appropriate adjustments to the blocking factor. There is a point when adding processors
will not materially improve the overall performance.

We could for example use a larger blocking factorn and more processors to reduce
the time for a parallel subtask in steps BW1 and BW3, which is inversely related ton.
However, the time complexity of the block Wiedemann algorithm isO(ωN/n+ nN2)

and finding the linear generator in step BW2 is directly proportionate to the blocking
factor. Thus, there is a point in the total-time characteristic when the reduction of time
due to parallelization is balanced by the increase in the sequential time. Past that point,
the total time increases.

8. Conclusions. We have demonstrated the black box concept and have successfully
parallelized a program in the outer loop. Our solutions are symbolic, i.e., exact, rather
than numerical approximations. Parallel subtasks are statically balanced and the compu-
tation is scalable. The problems of processor synchronization and the exchange of large
quantities of intermediate data over a network, are circumvented by the decomposition
of the program into three sets of subtasks that communicate by means of files alone.

We solved a system of 569,466 equations in 332 hours on a workstation cluster, and
a system of 252,222 equations in about 26.5 hours on an SP-2. These and other results
gave concrete evidence that the block Wiedemann algorithm could be successful in a
field of any cardinality, and was a motivating factor in a search for a proof and estimate of
success probability which has finally been given by Villard in Theorem 4. Coppersmith
attempted to give such a theorem, and relied on the notion ofpathologicalmatrices,
for which he claimed the algorithm would fail. Experiments such as ours failed to find
a single pathological matrix. Thus in a certain sense, theory has been encouraged by
experiment.

We are investigating theoretical issues of the block Wiedemann algorithm, and the
parallelization of the linear generator step. We believe that the block algorithm is a viable
alternative to structured Gaussian elimination because it is matrix-free and causes no loss
of sparsity during the computations. Were sparsity to be lost, for example, in the case of
our largest matrix, nearly 40 Gbytes of storage would be needed to to accommodate the
dense matrix even if just one bit was used per entry.

We find the block Wiedemann algorithm to be competitive to the block Lanczos algo-
rithm which is susceptible to problems of orthogonality of the vectors in its intermediate
steps, that problem becoming more visible as the dimension grows.

In conclusion, we have shown how a nontrivial problem can be solved on a network
of inexpensive workstations as well as on an MIMD machine where each processor
has a large amount of local memory and processing power, and where interprocessor
communication is minimal.

348 E. Kaltofen and A. Lobo

We anticipate that the techniques described here will keep pace with the larger systems
generated in the state of the art of integer factoring and will hence, indirectly, have an
impact upon the security of public-key cryptosystems. Our next challenge is to solve
a system of approximately 1,500,000 equations and variables generated in a factoring
experiment. We plan to use a distributed black box strategy for this purpose.

Acknowledgments. The authors thank Dr. Charles Norton for valuable discussions
and assistance with the use of the SP-2. Thanks also to David Hollinger and Nathan
Schimke for technical support.

References

[1] Beckerman, B., and Labahn, G. A uniform approach for the fast computation of matrix-type Pad´e
approximants.SIAM J. Matrix Anal. Appl. 15(3) (1994), 804–823.

[2] Berlekamp, E. R.Algebraic Coding Theory. McGraw-Hill, New York, 1968.
[3] Bitmead, R. R., and Anderson, B. D. O. Asymptotically fast solution of Toeplitz and related systems of

linear equations.Linear Algebra Appl. 34 (1980), 103–116.
[4] Coppersmith, D. Solving linear systems over GF(2). Tech. Report RC 16997, IBM Thomas J. Watson

Research Center, NY, 1991.
[5] Gohberg, I., Kailath, T., and Koltracht, I. Efficient solution of linear systems of equations with recursive

structure.Linear Algebra Appl. 80 (1986), 81–113.
[6] Golliver, R. A., Lenstra, A. K., and McCurley, K. S. Lattice sieving and trial division. InProc. ANTS

’94 (1994).
[7] Kailath, T., Kung, S. Y., and Morf, M. Displacement ranks of matrices and linear equations.Linear

Algebra Appl. 80 (1979), 395–407.
[8] Kaltofen, E. Efficient solution of sparse linear systems. Lecture notes, Dept. of Computer Science,

Rensselaer Polytechnic Institute, Troy, NY.
[9] Kaltofen, E. Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse

linear systems. Tech. Report 93-22, Rensselaer Polytechnic Institute, Troy, NY, 1993.
[10] Kaltofen, E., and Pan, V. Processor-efficient parallel solution of linear systems over an abstract field.

In Proc. 3rd Annual ACM Symp. Parallel Algorithms and Architectures, ACM Press, New York, 1991,
pp. 180–191.

[11] Krylov, A. N. On the numerical solution of the equation by which the frequency of small oscillations is
determined in technical problems (in Russian).Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 4 (1931), 491–539.

[12] LaMacchia, B. A., and Odlyzko, A. M. Solving large sparse linear systems over finite fields. InAdvances
in Cryptology: CRYPTO ’90 (1990), pp. 109–133.

[13] Lenstra, A. K., and Manasse, M. S. Factoring by electronic mail. InProc. Eurocrypt ’89 (1990), pp. 355–
371.

[14] Massey, J. L. Shift-register synthesis and BCH decoding.IEEE Trans. Inform. Theory15 (1969), 122–
127.

[15] Morf, M. Doubling algorithms for Toeplitz and related equations. InProc. IEEE Internat. Conf. Acous-
tics, Speech, and Signal Processing, IEEE, New York, 1980, pp. 954–959.

[16] Pomerance, C., and Smith, J. W. Reduction of huge sparse matrices over finite fields via created catas-
trophes.Experiment. Math. 1 (1992), 89–94.

[17] Rissanen, J. Realizations of matrix sequences. Tech. Report RJ-1032, IBM, Yorktown Heights, NY,
1972.

[18] Rivest, R. L., Shamir, A., and Adleman, L. A method for obtaining digital signatures and public-key
cryptosystems.Comm. ACM 21 (1978), 120–126.

[19] Rosenbrock, H. H.State-Space and Multivariable Theory. Wiley, New York, 1970.
[20] Villard, G. Further analysis of Coppersmith’s block Wiedemann algorithm for the solution of sparse

linear systems. InProc. ISSAC ’97 (Hawaii), ACM Press, New York, 1997, pp. 205–211.
[21] Wiedemann, D. Solving sparse linear equations over finite fields.IEEE Trans. Inform. Theory32(1986),

54–62.

