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1 Introduction

We present three new algorithms in the general area of
input-sensitivity analysis: a problem formulation, possibly
with floating point coefficients, lacks an expected property
because the inputs are slightly perturbed. A task is to ef-
ficiently compute the nearest problem that has the desired
property. Nearness to the desired property can lead to prob-
lems for numerical algorithms: for example, an almost sin-
gular linear system cannot be solved by classical numeri-
cal techniques. In such case one can approach the problem
of locating the nearest problem with the desired property
by symbolic computation techniques, for instance, by exact
arithmetic.
Our three properties are:

1. A univariate polynomial with real coefficients has a real
root

2. A square matrix with real entries has a real eigenvalue

3. A bivariate polynomial with complex coefficients has a
linear complex factor

Obviously, if we take input data with any of the above
properties and change coefficients/entries in the slightest, as
would be the case, for example, when the input data is the
result of the numerical computation or a physical measure-
ment, the perturbed problem can lose the property. At task
is to recover a nearby input data with the wanted property
in an efficient manner. Although that data may still only
be an approximation of the actual problem, it now can be
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processed under the assumption of the known property. For
example, a multiple real root can be removed.

Nearest polynomial with a real root The problem of
finding the nearest polynomial with a given root has been
studied before (see [1, 15, 12, 13, 7]). The problem in this
paper is very special: nearness is measured coefficient-wise,
i.e., in infinity norm. And the root locus is parametric,
namely, the real axis. All previous solutions seem to have
required that for parametric root locations the distance ex-
pression is at least differentiable: they and we have proven
results using the Euclidean distance. Infinity norm leads us
[7] to linear programming problems, whose parametric ver-
sions we do not know how to solve efficiently. We can solve
our specific problem efficiently, that is in polynomial-time
in the degree and input length, because an explicit expres-
sion for the distance to the nearest polynomial with a real
root can be derived from a result in [17], or alternatively
by eigenvalue analysis of companion matrices in [15, Sec-
tion 4.2]. The expression involves absolute values, but by a
stroke of luck can be minimized over the entire real axis.

Nearest matrix with a real eigenvalue The coefficient
space of polynomials is not restricted to coefficients before
powers of the variable. Often a polynomial is represented as
the characteristic polynomial of a matrix. One must perturb
the entries of the matrix to achieve a property for the charac-
teristic polynomial. The measure of distance perhaps must
be chosen differently, as entry-wise minimization can lead to
NP-hard problems [16]. Stability problems, i.e., where the
locus of the eigenvalues is to remain in an open subset of
complex plane, are discussed for complex matrices and the
induced 2-norm in [19]. The computation of the nearest ma-
trix with a multiple eigenvalue is discussed in [14]. We give
a polynomial-time solution to the problem of finding, given
a real matrix, the nearest real matrix with a real eigenvalue.
We measure nearness in terms of the matrix norms induced
by the infinity- and one-norms on the n-dimensional vec-
tors. Our methods are similar to the previous problem, but



in this case the explicit formulas for the distances are all
well-known.

Nearest multivariate complex polynomial with a lin-
ear factor The problem of computing in polynomial time
the nearest multivariate polynomial that factors over the
complex numbers is posed in [11]. It remains unsolved. Here
we take a partial step, in that we compute the nearest poly-
nomial that has a linear factor. Our methods generalize to
any factor of fixed degree. Distance is measured in the Eu-
clidean norm of the coefficient vector, and the technique is
taken from [12, 7]. Having a linear factor can be formulated
as a least squares problem. Because of explicit determined
solution, the coefficients of the linear factor can be taken as
parameters, and the least square solution can be optimized
for those parameters.

The algorithms to each of the three problems are given
in a separate section below.

2 The nearest polynomial with a real root

2.1 Preliminaries

Tchebycheff gives a variant of least squares optimization,
which finds the nearest constant vector in terms of entry-
wise (infinity) norm that makes a linear system consistent:

n
min( max ‘bl— E ai,ji’j’)
z 1<i<m

j=1

By introducing a new variable § we can derive the minimum
by solving the linear program due to Tchebycheff.

minimize: §
(1<i<

<m)
(1<i<

m)

linear constraints: 8§ > b — > 7 ai;&;

0= —=bi + 30 ai;i;

Stiefel gives algorithms for solving the Tchebycheff prob-
lem based on work by Vallée-Poussin [17] and on the simplex
method [18]. We will use the explicit formula for the opti-
mum solution, which Stiefel [17] has found under special
circumstances.

Theorem 1 Let A be a matriz

ap,0 ‘- Q0n—1

A — c R(n+1)><n

An,0 **° Ann-—1

of rank n such that no row of A 1is the zero vector, and
let b = [bo,...,bn] € R™ such that Ax # b for all x =
[zo,...,Tn—1] ER™. Then

oAb
d = min ||Ax — blje = ‘—ZZZO
xcR™

Z?:o ‘/\1|

where A = [Xo, ..., A\n]" # 0 is a linear dependency among
the rows of A, i.e., ATA = 0.

)

ProOF: Let A; = [as,0,...,ain—1] denote the it" row vector
of A. Each equation A;x—b; = 0 defines a hyperplane in R",
while A, is a normal vector for that plane. Because of the
rank condition, any n out of n+ 1 hyperplanes intersect in a
single point, whereas all n+ 1 hyperplanes form a simplex in
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R™. This is a convex polytop with n + 1 vertices (a triangle
for n = 2, a tetrahedron for n = 3, and so on). We want to
characterize the inner points of this simplex. Because the
rows A; are linearly dependent, there must exist a vector
A = [Xo,...,An]" such that A" A = 0, and \; # 0 for
0 <1 < n. If we remove the k" equation Axx — by = 0 then
the remaining n equations have a unique solution x®) e R™.
The point x*) is one of the vertices of the simplex. Every
inner point has to be on the same side of the k* hyperplane
as x®) . The sign of the function di(x) = Axx — by, indicates
whether the point x € R" lies to the “left” or “right” of
the hyperplane with respect to the direction of the normal
vector Ay. For the extreme point x*) we have a residue
rE = dk(x(k)) # 0. Since Ax® —p =0 forl #* k we get

Akrk _ Atr(Ax(k) _ b) _ (At'I‘A)x(k) _ Atrb _

—A"b. (1)
The product —A"b does not depend on k, therefore the sign
of di(x) of an inner point x has to satisfy:

sgn di(x)=
or
sgn di(x)=—sgn g

sgn Ak
every k,0<k<n.

(2)

for

Note that the “or” is exclusive, and—depending on the sign
of —A"b—either one of the two cases applies to all dj(x).

Evidently, the minimum minxer» ||[Ax — bl is attained
where one of the vertices of a hypercube centered at b
touches the range of A (a hyperplane in R"*!), i.e., when all
residues d;(x) have the same absolute value §. Figure 1 il-
lustrates the situation for the two-dimensional case: any de-
viation from the optimal point increases the absolute value
of some d;(x), and in turn maxo<;<n |d:(X)].

Figure 1: Projecting b onto the range of A in the infinity
norm.

Therefore, we can express the residues at the optimal
point x, which by geometric reasons must be an inner point
[17, Satz 3], as di(x) = d - sgn A;, where d = £4. Finally,
from (1) we get:

n n

D Ni(d-sgn X)) =D Nidi(x)

=0 =0

=A"(Ax—b)=—A"b=—>"\b,,
1=0



hence
di Aisgn A\ = — i Aibi
i=0 i=0

i Aibi

=0

thus § = . (3)

>
=0

Once we know the sign of every \; we can compute ¢ as
well as the minimizing vector x by solving the linear system
Ax — b =0, where

@00 *** Ao,n—1 00
A € RHDX ()
An,0 *°° Anmn—1 On
Y = [00,...,00]" = [sgn Xo,...,sgn A,]", and
i::[xow..,mn,17drr

Here, d = +06 plays the role of a slack variable, and it
will eventually contain the norm expression (3) up to its
sign. Geometrically, the “x-part” x = [xo,...,Zn—1] of the
solution X defines the intersection point Ax of the range of
A with that diagonal of the hypercube around b which has
¥ as directional vector in R™™!. Due to the rank conditions,
we have an immediate proof for the existence and uniqueness
of x and 4. O

If we would replace the hypercube around the point b
by a “diamond” in R"*!, we would get the minimum in the
1-norm in lieu of the infinity norm. From the proof given
above, one can easily derive the following corollary, that we
include without proof here:

Corollary 1 Let A,x, and b be defined as in theorem 1.
Then min |Ax — b||; is attained at one of the vertices x*)
of the simplex mentioned in the proof of theorem 1:

min |Ax —b|j; = min |Axx® —by|.
x€R™ 0<k<n

In general, exactly one vertex of the hyper-diamond will
touch the range of A. Therefore at the 1-norm minimum,
we will have a residue r; in one particular coordinate xj
only. If an edge or a facet of the diamond or the hypercube,
in the case of the 1-norm or infinity norm respectively, is in
any way colinear to the range of A, there will exist infinitely
many solutions to the minimization problem.

The sign rules (2) will prove to be essential for deriving
our algorithm in the next section. They also suggest that an
extension of theorem 1 to the case of complex numbers seems
difficult to be accomplished along this line of reasoning.

2.2 The general case

In this section, we assume that

f(@) = ans™ + an—12" '+ + a1z + ao

is a polynomial with real coefficients that does not have any
real roots. Evidently the degree n of f has to be even, i.e.,
n = 2m for some m € Z. Furthermore, the roots of f are
m pairs of complex conjugates. We want to perturb the
coefficients of f minimally in the infinity norm, such that
the perturbed polynomial f (of equal or lesser degree than
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f) has at least one real root. As shown in [7] and [6], we

can state the problem as a linear minimization problem:
0= min

ER[z]

deg f<deg f

I = fllee = min [[Pu—blle,  (4)

where || f — f|| is the norm of the coefficient vector, and

tr

b = Jao,...,an]",
= [007"'56’“«*1]”‘7
—Q
1 —« 0
P = eR(n+1)Xn
0 1 —«

The vector u contains the coefficients of the co-factor of the
linear factor x — «, while the matrix P represents multi-
plication by * — «. The indeterminate @ € R is the real
root of f. Its actual value will be determined by parametric
minimization in a second step.

In the following we want to use the result of theorem 1
to express the symbolic minimum as a function in «. In
order to satisfy the prerequisites for the theorem, we have
to exclude o = 0. However, we will see after the fact that
the result also covers this special case. Now, it can easily be
verified that the vector A = [1,a,a?,...,a"] represents a
linear dependency among the rows of P. Therefore, we can
express the symbolic minimum as the function (see also [7],
[6], and [15]):

Dio Aithi
E?:o ‘Al|

For a = 0, the expression becomes: §(0) = |f(0)/1] = |aol,
i.e., the minimum perturbation is obtained by dropping the
constant coefficient ag, while ai,...,a, each may be per-
turbed arbitrarily, as long as the absolute value of each per-
turbation does not exceed |ag|. Therefore, we have infinitely
many solutions to the minimization problem for o = 0, al-
though the value of § is consistent with theorem 1.

We still have to find the critical values of d(«) in order
to determine the overall minimum, and finally to compute
a. In general, we would have exponentially many possible
values for the sign vector ¥, representing all possible 2"T*
vertices of the hypercube mentioned in the proof of theo-
rem 1. However for our problem, we only have to check
two cases, namely o < 0 and a > 0, because the \; only
depend on the single parameter a. We will denote the two
norm functions by d~ () and d*(a) for & < 0 and a > 0,
respectively. In order to determine the root a that yields
the global minimum, we have to compute the derivative of
d~ and d* symbolically. Any real zero of one of the two
derivatives is a candidate for the optimal choice of a. How-
ever, we only have to run the root-finder on the appropriate
domain, i.e.;, « < 0 or a > 0. Finally, we have to evaluate
our norm expressions at those values, and select the one(s)
that minimize §(c). Once we know the minimizing a, we
can compute the actual perturbations by solving the linear
system mentioned above.

The following example illustrates the individual steps of
our method:

oe) =

_ ‘ fa)
Sl



Example 1 f(z) = 2® + 1 has the complex roots +i and
—i. We look at the norm expressions:

a2 +1 a2 +1
dr = d d =
(e) a?4+a+1’ an (a) a2 —a+1
2
N\
\\ "
\

X&. 5

\\
\\
1

2 T pa— T )

Figure 2: d(a) for f(z) = 2% +1

For the given polynomial, the graphs for d™ (a) and d™ ()
are symmetric about the y-axis. The plot for d™(a) in fig-
ure 2 shows a minimum at o = 1, therefore, we compute the
perturbations by solving the linear system

ao

-

011
for ap, a1, and d, and finally determine f(:c) %(xQ —2x+
1). The perturbations have absolute value & = 2/3, and f
has a double root at x = 1. We could derive another solution
for f, yielding the same value for §, by using o = —1.

" olalt of §(a) does
not have any real roots, because the roots of a™tt — 1=
(a=1)3" ot aswellasof "' +1 = (a—1) 31 (—-1)'a’,
are located on the unit circle in the complex plane. There-
fore, we do not have to take poles of either d* () or d™ ()
into account. We only have to compute the zeros of the
numerator of their derivatives to find the critical points.
Furthermore, we can use f(«) in place of |f(a)| within our
norm expressions, as f(a) is either positive or negative for
all @ € R.

When perturbing the coefficients of a generic polynomial
to move one or more roots to a given locus, we may en-
counter the following special cases (see [6]):

For even n, the denominator

1. The minimal perturbation is attained for a polynomial
of lesser degree than the degree of the given polynomial.

2. The resulting root can become zero. This special case
leads to infinitely many solutions if we use the infinity
norm or the 1-norm.

3. The derivative of the norm expression vanishes for the
entire domain under consideration.

We will prove that none of these can happen in our context
of real polynomials of even degree n > 1. The following
theorem is instrumental; it shows that setting the leading
coefficient of the polynomial to zero is always a sub-optimal
perturbation with respect to infinity norm.
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Theorem 2 Let f(z) = anz™ + lower order terms € R[x]
be a polynomial of degree m with no real root. Then there
exists an € > 0 and a polynomial f € R[x] of degree n with
a real Toot such that

1F = Flloo < lan] —e.

PROOF: Since f(z) has no real root, n is even. We set
f(z) = anz™ + g(z) where g(z) is the reductum polyno-
mial of degree less than n. First suppose that g(z) has odd
degree. Then g(z) has a real root of odd multiplicity m
that is isolated in a disc of radius § around this root in the
complex plane. We prove that there is an € > 0 such that
fe(x) = ex™ + g(x) only has m roots in this disc. First,
the boundary of the disc is a circle C' of radius ¢ which
since it isolates the root cannot contain a root of g(x). We
will choose € such that |g(z)| > €|z"| for all z € C. Then
by Rouché’s theorem of complex function theory, ¢g(z) and
g(z) + €z" have the same number of roots inside C. There-
fore, fe has m complex roots within C, one of which, since
m is odd and ﬂ has real coefficients, must be real.

We finally extend the proof when g(z) has even degree,
which must then be less than n — 1. One simply uses g(z) =
an/2 x"' 4+ g(z) in place of g(x) and enforces ¢ < a,/2 in
addition to the above restrictions.

Theorem 2 immediately excludes the first special case.
It can also be applied to the second case:

Corollary 2 Given f € R[z] as in theorem 2, there exists
an € > 0 and a polynomial f € Rlz] with a real root such

that ~
If = Flleo < lao| —e.

PRrROOF: Either apply theorem 2 to the reverse polynomial
fr(z) == aoz™ + -+ + an—1% + an, or conduct the proof of
theorem 2 for f.(z) = xg(x) + €. O

Finally, the derivative of d'(a) vanishes if f(z) =
e r_ oz, where ¢ € R, ie., if f(z) is a multiple of the
denominator of d*(z). Likewise, the derivative of d~(a)
vanishes if f(z) is a multiple of the denominator of d~ ().
Both d*(a) and d~ («) can vanish at the same time for poly-
nomials of degree zero only. The following is an example of
a quadratic polynomial with d~ («) vanishing:

Example 2 f(z) = 22> — 2z + 2 has the complex roots

1(1+iv3).

2
|
\
154
51
1 ‘\ /
\
\
L
) 0 a 2

Figure 3: 6(a) for f(z) = 2z® — 2z + 2



The plot for

2a° — 200+ 2
oa) = ——F—
(@) = aF a1
in figure 3 shows that the minimum at o = 1 gives us a

unique solution for the perturbed polynomial f Although
the derivative of d~ («) vanishes, this cannot simultaneously
happen to d*(a). The minimal perturbation is §(1) = 2

and f(z z)=3(z" — 22 +1).

We summarize the discussion of this section in the de-
scription of the algorithm:
Algorithm U:

Input: f € R[z], deg f =n > 1 even, and
f(z) #0 for all z € R.
Output: f € R[z], and o € R, such that f(a) =0 and
§ = min gy [1F — flloe-
Ul Let dt(a) := f( )/( ?Oa)and
d”(a) = f(a)/(Zi_o(-1)"a").

U1.1: Determine the derivative of d* () and
d™ (a) symbolically.
Ul.2:
Determine all real roots aj > 0 of the numerator of

the derivative of d*(a), and evaluate di := d* (o).
U1.3:

Determine all real roots o, < 0 of the numerator of the

derivative of d” (), and evaluate d;; :=d™ (o} ).

U2: From the values dz and d, computed in step Ul.2
and UL.3, select § = ming m{|d}],|dm|} and set a = o;f
or a = q, accordingly.

U3: Solve the linear system shown at the end of the proof
of theorem 1; return f and .

2.3 Preserving monicity

In [7], we showed how a given monic polynomial f can be

minimally perturbed such that f is also monic. The norm
expression derived from theorem 1 becomes

‘Z ) o]

Because n is even, /' |@'| contains the factor ||+ 1, and
d*(a) has a single pole at o = —1, while d~ («) has a pole
at a = 1. Their derivatives also have a singularity at either
a = —1 or a« = 1. The algorithm has to account for these
special cases.

2.4 Other “perfidious” polynomials

One of the applications of our method is sensitivity anal-
ysis of root locations of polynomials subject to coefficient
perturbations. It was shown in [8] and [2] that root finding
becomes ill-conditioned whenever the root is “close” to a
multiple root. In our case, we convert one or more pairs of
complex conjugates to double real roots. Therefore, we are
able to compute the distance to the “set of ill-conditioned”
problems in the infinity norm.
As an example, we look at w(z) =

k + i), a polynomial of degree n = 20.

the Wilkinson-polynomial f(z) = [[3~,(z —

iozl(a: —k—1i)(z—

It is a sibling of
k) [20] which
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5. 86e- 10 LML

d*

5.82e-10

Figure 4: d* () for w(z)

exhibits extreme sensitivity to small perturbations of its co-
efficients, despite of its simple structure.

Figure 4 is a plot of d*(a) = w(a)/ Y ;> a" near its
local minimum between a = 8.25 and a = 8.35. It was pro-
duced using the default setting for the numerical precision
in Maple. The oscillations are an indicator for the increased
sensitivity in this area. The plot shows that the minimal
infinity norm perturbation that forces (at least) one pair
of complex roots to the real axis is very small: less than
5.82-107 1.

One could argue that the picture would look differently
if we would use the factored form of w(«), or that increasing
the numerical precision in Maple would “smooth” out the
plot. However, if the coefficients of the polynomial are de-
rived from experimental data then we are always given the
un-factored form. In fact, one of the common tasks will be
to factor the polynomial. On the other hand, if we apply
numerical methods to root finding we usually cannot ad-
just the precision, we are stuck with standard floating point
arithmetic (e.g. IEEE 754).

3 Nearest matrix with a real eigenvalue

Van Dooren [19] made us aware of the work on matrix per-
turbations for purpose of moving an eigenvalue onto a given
curve, for instance, the unit circle (Schur stability) or the
imaginary axis (Hurwitz stability). Van Dooren is mostly in-
terested in matrix-2-norm. The methods of section 2 apply
to this problem when distance between matrices is measured
in matrix-oo-norm and matrix-1-norm. For a matrix B we
have

B co = max 3

B, = m].aXZ bisl,  (5)

where in general

B = B
Bl = max Bl /[

is the induced matrix norm with || - ||; denoting the vector-
[-norm. For the entry-wise norm, which was the subject of
section 2, no such results are to be expected, as the problem
of finding the nearest singular matrix, i.e., one with eigen-
value 0, is NP-hard [16].

The distance to the nearest matrix with a given eigen-
value is a direct consequence of a theorem on the distance



to the nearest singular matrix attributed to Gastinel in [9,
p. 775].%

Theorem 3 Let A be a complex matriz and p be a complex
number.

oa(p) = min A - A
A: pois an eigenvalue of A
. 1
[[(pI —A)~1]|
where || - || = || - llp,p s an induced matriz norm.

In addition, one can efficiently compute the actual pertur-
bation matrix [9].

Suppose now that we wish to compute, given a real n x
n matrix A with no real eigenvalue, a matrix A with a
real eigenvalue such that [|[A — Al/cc,00 I8 minimized. By
Theorem 3 we first compute, for the variable parameter p,
the matrix with polynomial entries

B(p) = [bi,j(w)]1<ij<n = adjoint(ul — A)
and the characteristic polynomial
F() = det(ul — A).
From definition (5) and Theorem 3 we conclude that one
must minimize
L W
[(uL = A)=H - max 325 [bi,; (1)

over the real parameter u. We proceed by computing nPW

many real intervals such that in each interval the sign of the
polynomial b; ;(u) is fixed. In each interval, we intersect for
all i the polynomials > |b;,;(1)| to determine subintervals
with the following property: for each subinterval there is
an do with 3 [bi,,; ()| = 32 [bi;(u)| for all i and for all
1 within the subinterval. Finally, for each subinterval we
minimize |f(u)[/>; [bio.;(1)|, this by standard techniques

from calculus. Note that f(u) has no real root, hence has
one and the same sign on the subinterval. The minimum
distance to the nearest matrix with a real eigenvalue is the
smallest of all minima of the subintervals. Our method is
polynomial-time in n and the size of the entries in A; the
method is a special case of quantifier elimination over the
reals with a fixed number of variables. The algorithm for
matrix-1-norm is the same.

4 Approximate factorization of
bivariate polynomials

In this section, we formulate the problems of computing ap-
proximate factorization of bivariate polynomials with real or
complex coefficients as parametric minimization problems.
The formulations generalize to the case of multivariate poly-
nomials easily.

*In [3] a corresponding theorem is established for Euclidean norm
viewing the matrices as vectors of dimension n?. A referee points to
the alternative view for matrix-2-norm of da () being the smallest
singular value of puI — A, which is similar to the approach taken in
(3]-
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We state the problem for the case of polynomials with
real coefficients, with the reminder that the complex coeffi-
cients case is analogous (see remark below). Let f € R[z, ],
of total degree m. Canonically, we write it as

> fisaly’

i,j=0
i+j<n

f:

For normalization purposes, we regard it as monic in z, i.e.,
frno=1.

Approximate Factorization:
to compute a polynomial

F=> fua'y
i,j=0
i+j<n

Given f as above, we wish

R[z, ] of total degree n and monic in z such that f factors
over R in a “pre-determined” manner minimizing

If=Fflla= D (fas — fii)™
zzr;:SOn

By “pre-determined”, we mean that f has two factors g,h
of degrees k,n — k (and monic in z) respectively for a fixed
k > 0. More generally, one can look for factors with specific
sparsity patterns and such. However, to keep the exposition
simple, we formulate the minimization problem for the above
version, for k = 1, indicating possible variations along the
way. Let

T+ go,1y + go,o,

>

4,J=0;i+j<n

i
hijz'y’,

with hn—1,0 = 1. As we want

we should have
fi,j =hi—1,; + go,1hi,j—1 + go,0hi,j,
for 0 <14,j;i4+7 < n.If f has a linear factor, we would have
fi fii
hi—1,5 + go,1hij—1 + go,0hi,j
for 0 < 4,551+ j < n,i # n, a total of n(n + 3)/2 linear
equations in the (n—1)(n+2)/2 unknowns h; ;. We re-write
this system in matrix form as
Mh =f

where h is the (n — 1)(n + 2)/2-dimensional column vector

[ho,0 h1,0 ho1 - hn—21]",
f is the n(n + 3)/2-dimensional column vector

[fo.o fr0 fou-- fa—1a]",

and M is the n(n+3)/2 x (n—1)(n+2)/2 coefficient matrix
corresponding to the system of linear equations above (each



row has 3 non-zero entries, 1, go,1,g0,0). When f does not

have an exact linear factor, we want f that minimizes the
norm of the residual

If = fll2 = min | Mh — £]]>.
g,h

This is a least squares problem with the twist that the entries
of the matrix M are parametric. Symbolically, M has full
rank and we can write down the solution to the least squares
problem as
h = (MtrM)—lMtrf
where M"" denotes matrix transposition. The residual is
I — M(M"M) M€

which is a function of the parameters go,1, go,0. The polyno-
mial closest (in 2-norm) to f that has a linear factor is that

f for which the above function of go,1, go,0 is minimized. To
obtain such an f, we need to

F1: find the global minimum of
If — M(M"M) 'M"f|5.

See the remark in [13, page 658] on computing the mini-
mum of a bivariate polynomial and the papers cited there.
F2: compute
h = (Mt7.M)71Mt7.f

at the global minimum.

Remark 1: The algorithm can be generalized to the case
of f with complex coefficients and complex perturbations by
separating the real and imaginary parts of each equation in
the system Mh = f above. One now has twice the number
of equations, unknowns and parameters as before.

Remark 2: Generalization to the case of factors of degree
higher than 1 and polynomials in several variables is obvious.
The optimization problem gets much harder.

5 Concluding discussion

The algorithms presented in this paper are of polynomial-
time complexity in the input size with the coefficients rep-
resented in any of the customary exact ways. There are
several questions whose answers are not entirely explored.

1. For the problem of finding the nearest polynomial with
a root on a curve, such as the real axis, how important
is the choice of distance norm? In this paper we con-
sider the theoretically more challenging infinity norm,
but it is not clear when in a given situation one should
switch from the Euclidean norm to infinity norm, es-
pecially since the Euclidean norm algorithms [1, 7] are
much less costly. We suppose the same question arises in
least squares problems, where the infinity norm approx-
imation requires the solution of a linear programming
problem.

2. The practicality of all of our algorithms is open. Imple-
mentations of our algorithms with fixed precision floating
point arithmetic may be fairly unstable, as the goal poly-
nomials have multiple roots. For the problem of approx-
imately factoring a bi-variate polynomial over the com-
plex numbers, numerical instability has been observed
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for the polynomial-time solution [10, 5, 4]. In fact, our
algorithms open an exact approach to imprecisely pre-
sented inputs that would be numerically unmanageable.
The price is a higher computational complexity.

3. The parametric optimization approach of [12, 13], which
our algorithms have utilized, appears to reach its limit
when the GCDs or factors of the perturbed inputs are to
have a high degree. These problems are solvable via the
quantifier elimination algorithm, and perhaps the most
pressing problem is to first put them into polynomial-
time.
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