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1 Introduction

Java, first developed as a programming interface for web
browsers, is being pushed by a consortium of companies as a
high level programming language for general programming.
Sun Microsystems provides, in addition to a compiler into
byte code for an interpreter (the Java virtual machine), a
multitude of libraries, most notably an object hierarchy for
building graphical user interfaces: the Abstract Windowing
Toolkit and the Swing components from the Java Founda-
tion Classes. Internet browsers contain Java virtual ma-
chines for interpreting byte code of Java programs that are
embedded into Internet documents as applets. Java defines
a standard framework for multi-threaded execution and for
message passing via serialization and socket/datagram pro-
tocols. Java assists component composition in two ways.
Java objects can discover how to invoke other Java objects at
run-time through a process called reflection. Java also sup-
ports programming conventions (collectively referred to as
“Java Beans”) for event-driven inter-component operation.
The two together allow tools such as Java Studio [26] to pro-
vide convenient visual programming methods of connecting
up Java software components. In short, Java is being vig-
orously developed and we ask the natural question whether
Java is suited for symbolic computation and whether our
discipline should take advantage of the plethora of freely
available software.

This article discusses Java as a symbolic computation
development tool, expanding on the pioneering efforts of
other researchers [39, 9]. We investigate if Java can com-
pete with C++, or Maple/Mathematica/Axiom for efficient
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implementation of algebraic algorithms. We suggest uses of
many of Java’s innovative features for symbolic software de-
sign problems. We discuss the suitability of Java for generic
programming, a methodology whose origins actually are in
computer algebra. We believe the software component ap-
proach is required for designing modern systems that in-
clude computer algebra. We describe ways in which Java
can be used to adapt legacy software into components, and
we present our ideas how component interfaces can be struc-
tured.

In section 2 we state our requirements for symbolic com-
putation components without making reference to a partic-
ular programming style or language. How well our require-
ments are met by Java and other languages is discussed in
section 3. Our personal experience with Java, including effi-
ciency measurements, is documented in section 4. We finally
appraise Java as an implementation language for symbolic
computation software in section 5.

2 Symbolic Computation Component
Requirements

A middle-ware paradigm for making new algorithmic results
available to the non-expert end-user of our technology is rec-
ognized in [17]. Suppose a symbolic computation researcher
wishes to implement a new algorithm for sparse linear alge-
bra. The program should not start from scratch and imple-
ment basic long integer and polynomial arithmetic, as there
are highly tuned libraries such as GnuMP [23], SACLIB 2.1
[13], and NTL 3.1 [42] available for those tasks. Moreover
the program need not develop a distinct user interface or
command language but instead be callable from all famil-
iar platforms such as Maple, Mathematica, and an Internet
browser. Thus, the implementation ends up in the middle
of existing symbolic computation software.

We loosely distinguish between the plug-and-play and
generic programming component design [29]. The plug-and-
play methodology requires an application program interface
of the finished new package to the users’ actual platform:
for instance, a user should be able to launch a sparse matrix



computation for the new package from within her MuPAD
environment. Generic programming, on the other hand,
makes the new package independent of, e.g., the underlying
polynomial arithmetic that is employed. The implementa-
tion has plugs into which certain libraries have to be put.
Libraries are plugged into the new package, either using a
common object interface standard or by placing an adaptor
program between the package and the plug-in. The purpose
of plug-and-play is wide dissemination while the purpose of
generic programming is reusability of code in a different set-
ting; we shall not be dogmatic about this distinction.

In computer algebra, the study of generic programming
techniques and the requirement of plug-and-play compo-
nents is not new. Common object interfaces for algebraic
domains such as polynomial rings go back to [37, 2, 27, 35].
Standards for serialization of mathematical objects are the
subject of the OpenMath consortium [1, 15] and have been
proposed in [4] and are used in Mathematica’s MathLink
tool. Vertical integration of components was already posed
as a problem in 1974 [34]. There now is a sizable commu-
nity of researchers investigating the construction of so-called
problem solving and integrated development environments
[32, 25].

We shall list of what we feel are important ingredients of
component interfaces.

Objects as functions The view of mathematical objects
as functions is powerful. For example, a matrix is viewed
as a “vector-in, vector-out” matrix-times-vector function
and many linear algebra problems can be solved very ef-
ficiently with this black-box representation [21, and the
references given there]. The difficulty is to transmit such
a black-box matrix across the components, which may
be constructed in different programming languages. The
programming content dictionary of the OpenMath stan-
dard addresses this question to some degree. We remark
that the problem of function distribution is not unique to
symbolic computation. It has been seen to occur when
computing the optimum of a mathematical function in
parallel.

Parallelism Packages and libraries should allow for paral-
lel/distributed execution. The question remains if there
is a standard of high-level parallelization directives. Par-
allelism is important for symbolic computation because
it yields a fantastic increase in computer memory and for
certain algorithms in processing power.

Storage management Computing languages like Lisp,
Java, and Maple perform automatic garbage collection;
C and C++ requires the programmer to explicitly man-
age storage. The challenge for component technology is
to combine the different memory models in a single com-
putation.

Exceptions An accepted way of handling exceptions is the
try /throw/catch mechanism of C++ and Java. Clearly,
the interface between components must include excep-
tion handling. One form of exceptions are checkpoints,
where the current state of the computation is serialized
and saved.

Legacy code It is tempting to start with the bottom layer
of a symbolic computation system because all function-
ality can be custom-made. However, such design leads to
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monolithic systems which must keep pace with new algo-
rithmic advances. We believe in the utilization of existing
software and the formalization of interfaces. There re-
mains the problem of legacy code, often written in a dif-
ferent programming language. Sometimes one can gain
efficiency by so-called dirty tricks, which can be formal-
ized as traits [38] in the interface.

Algorithmic shortcuts An important paradigm in sym-
bolic computation is the evaluation/interpolation tech-
nique. Some libraries, such as NTL, internally use
Fourier points and the fast Fourier transform for effi-
ciency. The component interface can make Fourier evalu-
ation/interpolation available to a caller by again defining
a trait for library interface.

In conclusion, we observe that interchangeable compo-
nents are not restricted to libraries for symbolic compu-
tation algorithms. Clearly, a graphical user interface that
implements interactive usage of a set of library routines,
a garbage collector, a message passing distribution mech-
anism, a graphics visualization tool, a statistical analysis
package, or an online documentation browser, all might be
components to which a middle-ware package is connected.

3 A Comparison of Java to Traditional Languages

We now discuss how well Java meets the requirements of
section 2 for building symbolic computation components in
comparison with C++, Lisp, Smalltalk, Maple, and Math-
ematica. We will also take into account the A*/Aldor [43]
compiler.

3.1 Generic programming

A main goal of generic programming is the ability to write
algorithms with variable types: for example, a Grobner basis
procedure is parameterized with the coefficient field and can
be instantiated for a multitude of different fields. In [18] we
distinguish three implementations of genericity:

1. the field operations that define the common interface (ad-
dition, division, equality tests, etc.) are inline-compiled
into the procedure for a selected field;

2. they are retrieved via a function pointer in the stub for
the field object (an abstract base class);

3. they are linked into the procedure at load time.

The template feature of C++ is designed for the first
instantiation method. A large example is C++’s stan-
dard template library, and we have used this approach in
FoxBox [17]. Dynamic evaluation is used in the Scratch-
pad IT/Axiom system and in Maple’s Domain package. C++
has virtual class member functions for this purpose, which
have been adopted by Java under the name of abstract meth-
ods. A main point in [18] is that in C++ one can write a
generic program so that the choice of the three instantiation
methods for type parameters is left to the users.

Originally Java was thought as a computer architecture-
independent programming system. It adopted Smalltalk’s
approach of an interpreted intermediate instruction set,
namely, Java’s byte code and virtual machine. With au-
tomatic garbage collection its execution mechanism resem-
bles that of Maple, Mathematica, and Lisp. However, even



the use of C++’s virtual member functions is discouraged
for reason of efficiency. Our experience with Maple and
Lisp certainly warns us that Java byte code may suffer even
worse inefficiencies. It is expected, nevertheless, that Java
programs will be compiled into native machine instructions.
Compilers may, for reason of improving the efficiency, dy-
namically adapt the produced code to the present run-time
environment. In section 4.1 we give some timings for “just-
in-time” compiled byte code for polynomial arithmetic. We
remark that the intermediate byte code mirrors the role of
the intermediate C code of some C+-+ compilers. The sepa-
ration of architecture specific and architecture independent
optimization seems not to introduce inefficiencies.

In addition to abstract methods, the Java language pro-
motes the concept of an interface type. A class object that
implements all functions of the interface can be assigned to
a variable of the interface’s type. The reverse of implement-
ing an interface is reminiscent of a view of a concrete class
as an abstract domain [2]. In fact, the Collections package
of Java 1.2, which provides the functionality of C++’s stan-
dard template library, has largely replaced the template type
parameters by interfaces.” An abstract field, for example,
can be defined in Java as an interface. The concrete class
for a finite field of 2" elements can now implement both the
interface of an abstract field as well as the interface of a
vector space over the field with 2 elements; this is the only
form of multiple inheritance that Java permits.

The lack of C++-style templates in Java has prompted
the development of a precompiler for a generic Java language
extension [§8]. But are templates really needed? We
observe that C++’s template expansion mechanism can be
used as a precompiler. Blitz++’s [7] expression templates
and Athapascan-1’s [3] and POOMA’s [40] parallelization
types are a powerful demonstration of the utility of what is
now called template meta-programming. For example, by
overloading of the assignment operator the template expan-
sion mechanism can be programmed so as to group assign-
ments left-to-right. Overloading of operators has been used
in MITMatlab [24] to parallelize legacy Matlab code. From
the above examples of use of the template expansion mecha-
nism we conclude that even more sophisticated manipulation
of C++ programs is possible. Java does not allow the over-
loading of operators and makes such after-the-fact semantic
changes impossible. We should add, however, that the intri-
cacies of the resulting C++ programs are currently beyond
the ability of most C++ compilers. Ultimately, template
meta-programming may be too complicated to be of lasting
value to even the system-building programmer.

3.2 Plug-and-play

Java, as with any modern programming environment, is
downward compatible meaning that programs written in C
or in other programming languages can be invoked by a
Java program via its so-called native method mechanism. A
Java run-time environment decides if a native code library
is available and chooses between a Java or a more efficient
native implementation for a given subtask. We have done
some experiments with integrating GnuMP in this fashion.

A more serious question is upward compatibility: how
does another program invoke a Java component? In
[39] it is proposed that REDUCE can execute Java pro-
grams in a similar manner as browsers do: a Java virtual

*Private communication from Joshua Bloch at Sun Microsystems.
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machine, perhaps restricted to the byte codes that are of
importance in the symbolic computation context, is embed-
ded in REDUCE’s Java interface. Their approach is at-
tractive for another reason: black box mathematical objects
can be transmitted in byte code to this interface. In [29] we
have noted that dynamic descriptions of mathematical ex-
pressions are not only useful for black box algorithms, but
can be used to generate a static data structure for the ex-
pression. An example is the Hilbert-like 100 x 100 matrix
[1/(i* 45 — 1))1<i.5<100, which should not be transmitted as
10,000 rational numbers.

An alternative approach is facilitated by Java’s network-
ing capability. The Java and non-Java components run as in-
dependent processes and communicate via a socket protocol
or a pipe. No virtual machine needs to be constructed. We
have chosen the socket approach for connecting Maple to the
distributed symbolic computation tool [11] and to FoxBox
[17]. Maple does not yet provide built-in networking pro-
cedures and the connection was implemented with Maple’s
insecure “system” command, which executes any accessi-
ble local program. Schreiner has recently distributed Maple
with a Java-based scheduler [41]. Java, on the other hand,
provides a complete set of network programming tools.

Java assists the programmer in the design of component
interfaces. First, so-called marker interfaces can can be used
to determine if a component has a certain trait, such as
Fourier point evaluation/interpolation. The marker inter-
face to a foreign library is placed in the Java adaptor code.
Second, Java code can be probed for type-signature infor-
mation, a process that Java calls reflection. This is similar
to the notion of plug-and-play hardware, where the oper-
ating system can determine the properties of a device by a
signal protocol. Reflection allows for adaptive interfaces and
interactive component assembly and thus relaxes the need
for rigid standards.

3.3 Parallelism

Threads With multi-CPU PCs becoming common place,
multi-threading becomes an increasingly important tool for
expressing fine-grained parallelism. Three features charac-
terize an efficient multi-threaded development environment:
1. Thread control

2. Memory locking

3. Thread-safe libraries

Java provides built-in support for creating and starting
multiple threads of execution. C or C++ require additional
libraries, like the Posix threads library; Kiichlin [31] has en-
dowed Saclib with multi-threading in this manner. A*/Aldor
cannot take advantage of these libraries for reasons discussed
below. Computer algebra systems like Maple or Mathemat-
ica do not provide any tools for thread creation, although
an experimental version of Maple uses threads in order to
parallelize selected internal operations [5].

Memory locking is vital in a multi-threaded environment
in order to prevent memory accesses of independent threads
from interfering with each other. The Posix threads library
provides semaphores and memory locks as library calls. Java
integrates semaphores into the language itself, yielding the
potential of enhanced efficiency through data-flow analysis
and compiler optimization.

In order to take full advantage of multi-threaded execu-
tion, each library linked into the executable must support
multiple threads. If this feature is lacking, a multi-threaded



application is denied access to its most basic support li-
braries like input and output and becomes virtually useless.
Most of today’s operating systems have thread-safe system
libraries, so this is usually not a problem for C or C++ appli-
cations. The Java libraries, which make extensive, possibly
internal, use of multi-threading are already thread-safe. The
run-time libraries of the A /Aldor compiler are presently not
thread-safe, which makes multi-threading problematic.

Distributed Computing We have already seen that
Java provides built-in support for network communication.
Distributed computing can be built on top of this layer us-
ing serialized objects to communicate over sockets. How-
ever, Java provides the programmer with a more convenient
way of expressing distributed computing and remote execu-
tion with its remote method invocation (RMI) mechanism,
which loosely corresponds to a remote procedure call.

Remote method invocation is integrated into the Java li-
brary hierarchy and is convenient if the complete distributed
system is built using Java. For integrating Java into pro-
grams written in other languages that approach is not an
optimal solution since we would need to create Java wrap-
pers for integrating legacy code. However, Java 1.2 includes
support for CORBA (Common Object Request Broker Ar-
chitecure) [14]. and thus communication with programs that
follow the CORBA protocol is transparent.

3.4 Memory management

Storage allocation, especially in a parallel/distributed set-
ting, remains a sticky point. In Java garbage collection is
automatic, a process that presented itself problematic in
our Lisp-based Dagwood system [19]: memory was filled
up uncontrollably and a full garbage collection took days of
computation. Automatic garbage collection provides conve-
nience to the programmer, but it has its price: the virtual
machine must determine if an object is still in use, either
by a reference count or by an intermittent mark-and-sweep
memory scan. Explicit storage management, as in the con-
structor /destructor mechanism of C++, is especially appro-
priate for large data structures, which occur in the symbolic
computation context. The algorithms know exactly when
storage becomes reusable and can cleverly overlay data of
possibly diverse type and in a cache-size sensitive fashion:
storage preservation becomes part of the algorithmic objec-
tives. In C++, garbage collection can be implemented and
libraries that perform garbage collection can be plugged-
in. The allocator template of the C++ standard template
library provides a common object interface for garbage col-
lectors. Givaro [20] is an example for a parallel symbolic
computation library in C++ that performs garbage collec-
tion by reference counting.

Java 1.2 allows the programmer some control over mem-
ory allocation through what are called weak references. For
example, references to newly made objects can be placed
into a table that acts as an object cache. If an object is
found in this table, it needs not be constructed but can be
shared. Maple implements the object cache technique for
sharing one and the same subexpression. A reference in the
table should be weak, so that if it remains the only refer-
ence to an object its storage is garbage collected and the
reference in the table set to null.
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3.5 Additional Useful Java design features

If C++ pioneered the design of a standard library for se-
quential data structures and algorithms, then Java pio-
neered that of a standard object hierarchy and library for
building graphical user interfaces in an operating system-
independent fashion. We wish to mention two more features.

Serialization A standard Java feature is conversion of
most any object into a serial stream, ready for writing onto
a file or transmission over a network. Object oriented com-
pilers like C++ or A* /Aldor require the programmer to ex-
plicitly define the serialization for every single class. With
Java, the programmer is able to define a special external rep-
resentation on a class-by-class basis, but in most cases the
default serialization provided by the language is used, yield-
ing instant compatibility of the serialized streams among
different code-bases. An object can be serialized, sent over
a network and reconstructed by the receiving program with-
out requiring an agreed common protocol (other than using
the Java language). Java leaves the programmer in control
over what parts of an object the default serialization pro-
cedure should save and which should be discarded. During
reconstruction, Java takes care to preserve the sharing of
objects though multiple references. The programmer may
choose to partially override the default reconstruction pro-
cess by deciding to replace certain serialized objects with
alternate instances. Computer algebra systems, like Maple
or Mathematica, usually provide serialization for their user
level objects but not for internal kernel objects. CORBA im-
plementations also provide serialization techniques for C+-+.
The CORBA specification provides serialization that works
between components written in different object-oriented lan-
guages, e.g., between C++ and Java.

BigNumbers Java 1.1 has a very limited package for arbi-
trary precision integer and floating point arithmetic, which
was developed mainly for cryptographic applications.

4 Experience with Java Symbolic Computation
Programs

The authors have built several symbolic computation pack-
ages in languages other than Java: Bernardin has extensive
Maple experience: his bivariate polynomial factorization al-
gorithm is now part of the standard Maple library. Char
is a co-designer of Maple and has recently worked on prob-
lem solving environments. Kaltofen has built the Lisp-based
Dagwood system [19] for manipulation of straight-line pro-
grams and the C++-based FoxBox system [17] for manipu-
lation of black box symbolic objects. All three authors have
experience in parallel computation [5, 12, 16, 30].

4.1 Timings
For a first benchmark we chose multiplication of univariate
polynomials over a small prime field. We chose it because
this represents a common low-level operation in symbolic
computations, which are found at the heart of many al-
gorithms involving univariate and multivariate polynomials
over the rationals. We implemented an in-place algorithm
for classical polynomial multiplication [36] in both C and
Java.

Table 1 reflects the results of multiplying polynomials
of degree n = 10000 to n = 50000. All times are in CPU



seconds. The tests are run on a Sun Enterprise 3500 with
6 CPUs clocked at 336 Mhz. The run-time environment is
Solaris 2.6 and Sun’s Java JDK 1.2 (beta 5). We compiled
the C code with the Sun Workshop C Compiler 4.2. The
“C” column of table 1 reflects the timings with the com-
piler switches set to “-O”. For the “C*” column we enabled
more powerful optimizations using the options “-native -fast
-x04”. However, the latter options imply that the resulting
binary is heavily optimized for the specific machine that it
has been compiled on. Supported instruction set extensions
as well as cache configuration is taken into account by the
compiler. This means, that the binary will be portable to a
different (yet binary compatible) Sun machine only with a
potential performance penalty.

For comparison, we include timings using the modpl
data structure of Maple V Release 5. Arithmetic with this
data structure is implemented in Maple’s C kernel.

[ n [Java | Maple | C | C* | Javavs. C*¥ ]
10000 7s 9s 9s 3s 2.33
20000 | 30s 37s 36s | 13s 2.31
30000 | 69s 77s 82s | 31s 2.23
40000 | 124s | 137s | 146s | 56s 2.21
50000 | 196s 218s | 231s | 89s 2.20

Table 1: Timings for polynomial multiplication over F,

Here lies another advantage of the Java approach of
“Just-in-time” compiling. The byte-code is free from plat-
form specific optimizations and the run-time environment
will decide which set of platform specific optimizations to
use. The last column of table 1 shows the time factor we
have to pay for using Java over heavily optimized “C” (the
C* column).

It is quite impressive that the latest Java run-time envi-
ronments are already competitive with conservatively opti-
mized C, especially if you take into account that the code
from above makes heavy use of arrays and that Java provides
us with automatic array bounds checking which C does not
have. We expect the Java runtimes to further improve and
get closer to the running times of heavily optimized C code
as just-in-time compiler technology matures.

For our second benchmark, we also use polynomial multi-
plication. But instead of representing the polynomials as an
array of 32 bit integers and limiting the algorithm applicabil-
ity to polynomials over small prime fields, we now represent
the polynomials as arrays of pointers to generic coefficient
objects. Now we can parameterize our multiplication algo-
rithm by any coefficient ring, that has to be implemented
separately.

With Java, we first define a generic type (interface) for
Rings. We then implement one concrete Ring, namely [,
with p small. We further define a generic dense polynomial
ring class which uses the operations of a generic coefficient
ring in order to implement polynomial multiplication.

We compare this Java implementation with C++. Here
we use templates, which have been described earlier. We
define one template class for small prime fields, parameter-
ized by the characteristic. We define another template class
for dense polynomials, parameterized by the coefficient ring,
i.e. the small prime field class from above.

Table 2 summarizes the results for multiplying polyno-
mials of degree n = 1000 to n = 8000. It is important to
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note that the C++ timings do not contain the time spent in
memory allocation and deallocation. This is because we had
to disable deallocation completely as our algorithm makes
use of shared object instances and we did not implement
C++ garbage collections. For the same reason, we could
not go further than n = 8000 in our test since the C++
runtime for the latter already required over 1.2GB of main
memory. We used the Gnu compiler 2.8.1 with the options
“-04 -mv8&” for compiling the C++ code.

For comparison we include timings using the A*/ Aldor
compiler 1.1.10b (which, as a back end, uses the Gnu com-
piler with the -mv8 switch as above). We also used the ) _;;
[10] library which provides polynomial arithmetic in Aldor.

Note, that for all these benchmarks, the times given
include the time needed for constructing the polynomials
>or ezt and Y. aiyni12’ to multiply, using the follow-
ing recurrence for a;:

1 if2a;-1+1= O7

ap=1, a;= { 2a;—1 +1 otherwise.

| n [ Java | Aldor [ C++ | Java vs. C++ |
1000 | 2.6s 1.2s 0.9s 2.8
2000 | 9.1s 4.3s 3.6s 2.6
3000 | 20s 10s 8s 2.5
4000 | 36s 19s 14s 2.6
5000 | 57s 30s 22s 2.6
6000 | 82s 42s 31s 2.6
7000 | 111s 56s 42s 2.6
8000 | 146s T2s 57s 2.6

Table 2: Generic polynomial multiplication timings

One can conclude that for generic algorithms, which play
an important role in symbolic computation, Java performs
fairly well. The difference of a factor of 2.2-2.3 compared
with a factor of 2.6 between our first and second benchmark
is because in the second benchmark the C++ timings do not
include memory management, whereas the Java timings (as
well as the Aldor timings) do.

We also like to point out that in the direct, non-generic
first test example we do not perform a modulo p division
after every arithmetic operation. Instead, we reduce partial
convolutions just before overflow in the accumulated inter-
mediate integer occurs. Timings indicate a savings of a fac-
tor of 2 over non-generic arithmetic that reduces after each
operation. Therefore, the pointer indirections in the generic
arithmetic cost us about a factor of 12. Modulo p polyno-
mial arithmetic for a small prime may be so special that a
generic implementation may never yield acceptable results.
For generic operations on larger objects, such as long in-
tegers, the reference pointers for the abstract methods and
arguments needed for its implementation cause much less
penalty.

4.2 Design of symbolic computation components
using Java Beans

This section describes the use of Java to experiment with the
software component paradigm in building Problem Solving
Environments (PSEs) that use symbolic computation. Java
Beans are made from ordinary Java code by employing ad-
ditional coding conventions when building a software com-
ponents. An application is built by plugging together and



configuring instances of Beans. The application builder can
view their task as configuration and wiring — plugging to-
gether Beans and entering initial values for configuration
(data) fields of each Bean. Java Studio [26] is an exam-
ple of a component composition system for Java Beans. It
presents a visual programming tool to application develop-
ment using component configuration and wiring. We found
Java’s multithreading features a great aid in building soft-
ware components, making it easier to handle simultaneous
or interrupting incoming events. Java Studio also capitalizes
on strengths of Java in the following ways:

e It builds graphical user interface icons automatically for
each Bean as it is imported, using reflection to determine
the input and output ports as well as the number, name,
and type of configuration fields for the component.

e Java Studio can provide a number of graphical user
interface-building widgets as “giveaways” because the
Java library already provides the base functionality.

e To assist rapid prototyping, components can be loaded
and executed on the fly.

Our Bean building efforts have focussed on providing
a Bean form for the Matlab and Maple engines found in
TechTalk [32]. We called this “MathServerBean”. We ex-
tended our original technique of engine invocation (talking
to a separate engine process through pipes) after we discov-
ered that the same style of interaction could handle Water-
loo Maple’s MathEdge (C-subroutine style version of Maple)
coded as a Java Native method. Engine configuration and
invocation for either the “pipe” or “native method” modes
of engine can be performed at run time, allowing an ap-
plication to adapt efficiently to new needs as users develop
them.

The role of the Java code in MathServerBean is to ini-
tialize the underlying math engine, and await requests for
work through incoming events. Events are objects that have
embedded text as a component — incoming events are com-
mands to the engine, outgoing events may contain the en-
gine’s response. The role of the Java wrapper is fourfold:

1. to initialize the engine

2. to interrupt or shutdown the engine upon receipt of the
appropriate incoming event

3. to embellish the basic command with the extra text that
may be necessary to get the engine to operate within the
Bean (e.g. extra semi-colons, newlines, procedure calls)

4. to parse the output of the engine, stripping away in-
teractive prompts, separating error or warning messages
from answers, etc. In order to do proper parsing, it is
sometimes necessary to get the engine to emit an end-
marker token or signal after processing input. Thus there
is synergy between processing done for engine input and
output.

One way of viewing the MathServerBean is that it pro-
vides the functionality of a shell scripts or an interaction-
handling system such as ezpect [33] in a software component
(OS-independent, portable, plug and play) form. As might
be expected, most of our operational difficulties have to do
with the idiosyncrasies of engine input and output on various
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platforms. We intend to alter our design for MathServer-
Bean so that it depends on a separate engine interaction
component to specify the engine I/O protocol. This is an
admission that at present, idiosyncrasies of engine interac-
tion cannot be handled simply through data configuration;
procedural information needs to be provided sometimes.

We have found the unstandardized text input and output
for MathServerBean adequate for our simple needs in appli-
cation building at this time. In part this is because our input
needs are for commands, which are engine-specific, and our
output needs are fairly simple (i.e., text works okay as a
way of displaying the answer), or not are standard mathe-
matical expressions, e.g., Fortran subroutines or output to
be fed into a visualization system. Clearly, however having
a data standard that encompasses both control and proce-
dural information as well as mathematical semantics would
be beneficial, as it would simplify the engine-specific pars-
ing and translation that we currently employ in moving data
between some components.

Since Java Beans for the near-term can only run on a sin-
gle processor, there is a limit to their usefulness in building
distributed systems. However, we believe that our experi-
ence with them has given us insights as to the needs and
usefulness of symbolic computation systems in other frame-
works that do permit distributed operation, such as Java
RMI or CORBA.

5 Appraisement of Java for Symbolic Computation

Java, despite its claim to do everything for everyone, suffers
from the growing pains of a large programming language
and library. There are already several standards defined
by versions 1.0, 1.1, and 1.2. In the case of floating point
arithmetic Java designers missed hard-learned lessons [28].
It will take some further time before the the common usage
patterns stabilize and the interfaces to non-Java components
persist.

There are two apparent uses of Java components in sym-
bolic computation. The first is a generic graphical user in-
terface for interactively accessing the functions and objects
in a library such as NTL or Saclib. Applets even permit
the embedding of such an interface into a web browser. One
may view the resulting graphical user interface as a web
document with active mathematical components. In [44]
documents with active expressions are designed in Oberon.

The second is a library of base classes for arbitrary preci-
sion rational numbers and polynomials. Not only may such
classes be useful for demonstrating symbolic methods in web
applications, such as embedded modules in educational soft-
ware, where high performance is not crucial, but they can
be used in what we call the contributory parallel web com-
putation project. Here a computational problem that can be
divided into many medium-sized unsynchronized tasks with
no shared memory (“embarrassingly parallel”) is posted on
the Web. All who wish to contribute to the computation
can download an applet in their browsers and donate cy-
cles towards the solution of the problem by permitting the
thread to run on their computers for a while. Java’s sand-
box principle is crucial: the Java byte code can be trusted
to be computer-virus-free, which may encourage participa-
tion. In [6] Java classes are described that manage such a
project, and we are in the process to develop the software
for a computational problem.

Furthermore, we foresee that Java components will be



develop for coordinating existing software of diverse func-
tionality (“glue between components”), as Java is specif-
ically designed as a programming tool for network tasks
and interactive processing. The wrapper idea for legacy
programs is sound: it provides a variety of functionality
with a modest investment in implementation. Java is well-
suited for wrappers because of its built-in support for “talk-
ing to programs”: portable “shell scripts”, portable multi-
threaded support for control. We recommend that builders
of new symbolic software design of their codes with respect
to their usage as software components. In particular:

1. Programs should provide as much functionality as possi-
ble through the use of non-proprietary interchange stan-
dards. It implies some flexible thinking about where the
results of a symbolic computation may end up — not nec-
essarily on a proprietary mathematics system GUI, but
perhaps on a GUI custom-built for an application, in a
commodity document processor, visualization system, or
database. Some of the most valuable functionality of the
proprietary systems is not necessarily output as mathe-
matical expressions, but as procedures, numerical data,
visualization, or mathematical display.

2. Programmers should assume that their software needs to
talk to components that do not share the same process
space. This does not mean that a “subroutine load and
execute” feature of a computer algebra system is useless
— there are many computations that are poorly handled
as the interaction of separate components. We mean
just that the latter notion is not a complete facility for
application building.

A final question remains. Will large scale symbolic
algorithms be programmed in Java? We believe that
our timings in Section 4.1 indicate that it is possible to gen-
erate efficient code from Java programs for symbolic com-
putation that are written in a modern generic style with ab-
stract domain types. Despite our concerns for Java’s mem-
ory model, especially when a high percentage of the avail-
able memory is used, we think that symbolic computation
software builders can adopt Java for major software design
and thus take full advantage of the computing infrastructure
that Java has provided.
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