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Abstract

Continuous changes of the coefficients of a polynomial move
the roots continuously. We consider the problem finding the
minimal perturbations to the coefficients to move a root to
a given locus, such as a single point, the real or imaginary
axis, the unit circle, or the right half plane. We measure
minimality in both the Euclidean distance to the coefficient
vector and maximal coefficient-wise change in absolute value
(infinity norm), either with entirely real or with complex co-
efficients. If the locus is a piecewise parametric curve, we
can give efficient, i.e., polynomial time algorithms for the
Euclidean norm; for the infinity norm we present an efficient
algorithm when a root of the minimally perturbed polyno-
mial is constrained to a single point. In terms of robust
control, we are able to compute the radius of stability in the
Euclidean norm for a wide range of convex open domains of
the complex plane.

1 Introduction

Recent results in robust stability can be categorized by
two different ways of looking at the same problem: on
the one hand, following the landmark paper of Karithonov
[13, 15, 14], several tests for stability of a given family of
polynomials have been devised (see [1, 24]). On the other
hand, research focuses on the determination of the radius
of stability for a given nominal polynomial and a certain
norm in coefficient space. In this area, notably the work
of Tsypkin and Polyak [25], Desages et al. [5], and Ko-
gan [16] provides necessary and sufficient conditions for the
range of robust stability in a (weighted) lp norm. However,
these criteria allow actual computation of the stability ra-
dius only in a few special cases, as they leave infinite one-
or two-dimensional sets to be searched for the minimum.
Frequency domain plots seem to be the method of choice
for more general applications (see [10]). In this paper, we
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present a method for computing the radius of stability in
the l2 norm for univariate polynomials with either complex
or real coefficients. In terms of flavor, it is closest to the
ideas presented in [19], and especially in [20]. Although the
latter paper addresses the more general problem of unspec-
ified affine coefficient perturbations in several norms, it is
limited to the case of real coefficients. As is shown in [3]
and [2], their method is equivalent to computing structured
singular values for a special class of rank-one problems. The
perturbations in our approach are more closely tied to root
locations. As a consequence, searching along the contour
([20]), or along a radial ([19]) is reduced to computing the
real solutions of an algebraic equation. The method is appli-
cable for a wide range of stability domains D ⊂ C. Among
them are the familiar cases of Hurwitz and Schur stability.

Our method is based on a recent result for the near-
est approximate greatest common divisor by Karmarkar and
Lakshman [11, 12]. It makes use of the technique of para-
metric minimization, and belongs to the relatively new class
of hybrid symbolic-numeric algorithms. These algorithms
combine the deductive power of modern computer algebra
systems with the speed and reliability of numerical packages.

After some notation and theoretical background, we
show how to compute the coefficients of the (or a) nearest
unstable polynomial for a given stable, monic polynomial
with complex coefficients. We later discuss the case of real
coefficients, as well as how to deal with degree-drops when
allowing the highest-order coefficient to be perturbed. Par-
ticular attention is paid to the special case of Hurwitz and
Schur stability.

2 Preliminaries

In the following, C[z] and R[z] are the rings of univariate
polynomials over the complex numbers and real numbers,
respectively. Bold letters should indicate vectors and matri-
ces; a bold i stands for the imaginary unit.

If not stated otherwise, ‖.‖ denotes the l2 vector norm.
For the sake of notational simplicity, we keep it unweighted
at that point; however, all statements are still valid for a
weighted l2-norm. The norm expression ‖f‖ for a polyno-
mial f is the norm of its coefficient vector.

The operator ∗ applied to matrices and vectors is the
Hermite transposition, while tr is used for the regular trans-
position.

Let D ⊂ C be an open, convex domain of the complex
plane. The polynomial f ∈ C[z] (or f ∈ R[z]) is called D-
stable if all its roots are located within D. Our goal is to
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derive a method for finding the nearest unstable polynomial
f̃ for a given D-stable polynomial f . For simplicity again, we
restrict ourselves to fixed-degree polynomials, and without
loss of generality to monic polynomials in particular. We
will discuss the more general case at the end of this article.
The basis of our method is the following theorem, which
could also be called the inverse zero-exclusion principle:

Theorem 1 Let f ∈ C[z], monic be D-stable (D as defined

above), and let f̂ ∈ C, monic be an unstable polynomial of

the same degree as f such that ‖f − f̂‖ = ǫ, where ǫ ∈

R , ǫ > 0. Then, there exists f̃ ∈ C[z] and ζ ∈ ∂D such that

‖f − f̃‖ ≤ ǫ and f̃(ζ) = 0.

Proof: For Hurwitz stability, see also Lemma 3.2 in [16].
For t ∈ R and 0 < t ≤ 1, we define the polynomials ft by

ft(z) = f(z) + t · (f̂(z) − f(z)) .

Because of our assumptions, all ft have the same degree
as f . For a generic vector norm, the expression ‖f − ft‖ =

t ·‖f̂(z)−f(z)‖ is a strictly increasing function in t. Because

f̂ is unstable, it has one or more roots outside or on the
boundary of D. By virtue of the continuous dependence of
the roots on the coefficients (see [18]), there must be τ ∈
(0, 1] and ζ ∈ ∂D such that fτ (ζ) = 0 and ‖f − fτ‖ ≤ ǫ. �

In other words: the roots of fixed-degree polynomials
cannot “jump” out of the domain D without crossing the
boundary ∂D. If we allow perturbations of the leading co-
efficient, we have to be more careful in case the domain is
unbounded (see section 6). Therefore, for any unstable poly-
nomial we can find a polynomial with a root on ∂D that is
as close (in coefficient space) as the given one. I.e., it suffices
to look for such polynomials to find a nearest unstable one.

3 The Nearest Polynomial with a Constrained
Root

First, we want to solve the following reduced problem:

Problem 1 Given f ∈ C[z] monic, deg(f) = n, For a com-

plex indeterminate α, find f̃ ∈ C[z], monic, such that

f̃(α) = 0 , and ‖f − f̃‖ = min .

Let

f ∈ C[z] , f(z) =
n
X

k=0

akzk , monic.

For the complex indeterminate α, we define the perturbed,
monic polynomial f̃ ∈ C[z] such that f̃(α) = 0:

f̃(z) = (z − α)

n−1
X

k=0

ukzk

= zn + (un−2 − α)zn−1 + (un−3 − αun−2)z
n−2 +

· · · + (u0 − αu1)z − αu0

= zn +

n−1
X

k=1

(uk−1 − αuk) zk − αu0 ,

where uk ∈ C and un−1 = 1. Furthermore, we define the
perturbation δ = f − f̃ , a polynomial of degree n− 1. Now,

let

b = [a0, . . . , an−2, an−1 + α]tr ∈ C
n , and

u = [u0, . . . , un−2]
tr ∈ C

n−1 .

In order to minimize ‖δ‖, we have to solve the following
parametrized least squares problem:

‖δ‖ = min
u∈Cn−1

‖Pu − b‖ , (1)

where the rectangular matrix

P =

2

6

6

6

6

6

4

−α
01 −α

. . .
. . .

0 1 −α
1

3

7

7

7

7

7

5

∈ C
n×(n−1) (2)

represents the polynomial multiplication operator for (z−α).
Due to the monicity condition, the leading coefficients are
not part of the equation. However, we have to add un−1α =
α to the last element of the constant vector b to account for
this omission. We can state the following lemma:

Lemma 1 For any choice α ∈ C, the least squares problem
(1) has a unique solution um(α) ∈ C

n−1.

Proof: For any α ∈ C the column vectors of P are linearly
independent, thus P has full rank. �

We can derive an explicit formula for the parametric min-
imum. It will enable us to compute the perturbation of each
coefficient as well as the root α if we are given suitable con-
straints (such as domain boundaries) for α. The following
theorem summarizes the results for complex coefficients:

Theorem 2 At the minimum um(α) the square of the norm
of the minimal perturbation is

Nm(α) = ‖δ‖2 =
f(α)f(α)
Pn−1

k=0 (ᾱα)k
, (3)

and the perturbation of the j-th coefficient is

δj =
(ᾱ)jf(α)
Pn−1

k=0 (ᾱα)k
, (4)

for 0 ≤ j ≤ n − 1, and assuming that 00 = 1.

Proof: The formulas can be obtained by either explicitly
solving the normal equations, or equivalently, minimizing
a quadratic form (see [11]), or via a Lagrange multiplier
approach (see [12]). A proof based on vector geometry is
given in appendix 8.1. �

The minimum Nm(α) as a function of α is real-valued
and non-negative. Its denominator is the determinant of
the matrix Q = (P∗)P, and is strictly positive.

4 The Nearest Unstable Polynomial – Complex
Coefficients

By combining theorem 1 and 2, we are able to develop
an algorithm for computing a nearest unstable polynomial
in the l2-norm. To accomplish that, we need a suitable
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parametrization γ(t) of the domain boundary ∂D, where
t ∈ I ⊂ R. We then substitute this parametrization for the
indeterminate α in the formula for Nm(α), resulting in an
expression Nm(γ(t)) as a function of the real parameter t.
The minima can be found at the stationary points of this
function, i.e., we have to determine the real solutions of the
equation:

dNm

dt
=

dNm

dγ

dγ

dt
= 0 . (5)

For each solution τk, we obtain a root ζk = γ(τk) of an
unstable polynomial with ζk ∈ ∂D. We have to select the
one with the smallest Nm(γ(τk)).

We illustrate the procedure in the following example:

Example 1 The polynomial

f(z) = z3 + (2.41 − 3.50 i)z2 + (2.76 − 5.84 i)z

−1.02 − 9.25 i

is Hurwitz, with approximate roots: −1.04 + 3.10 i, −.99 −
1.30 i, and −.37+1.70 i. The boundary of the left half-plane
can be parametrized by γ(t) = it, where t ∈ R. Consequently,

Nm(γ(t)) = (t6 − 7.00t5 + 12.5381t4 + 9.6712t3

−18.1104t2 − 62.9736t + 86.6029)

/(t4 + t2 + 1) .

The numerator of the derivative is a monic polynomial of
degree nine. It has three real roots (rounded to 6 dig-
its): τ1 = −1.84729, τ2 = −.248977, and τ3 = 1.88617.
Nm(γ(τk)) evaluates to 25.9376, 94.8227, and .284693 re-
spectively. Therefore, τ3 leads to minimal perturbations.
The l2-norm distance (radius of stability) is the square root
of Nm, namely .533567. Using (4), we can compute the co-

efficients of the perturbed polynomial f̃ :

f̃(z) = z3 + (2.7037 − 3.1492 i)z2 + (2.5740 − 5.6842 i)z

−1.1026 − 9.3486 i .

The roots moved to −1.6472 + 2.5328 i, −1.0566 − 1.2698 i,
and 1.8862 i respectively (see figure 1).

We are now ready to give a formal description of the
algorithm and its requirements. The problem, we want to
solve is the following:

Problem 2 Let D ⊂ C be a domain as described in sec-
tion 2, whose boundary ∂D has a piece-wise smooth, closed
parametrization (Jordan-curve), where each segment is a
map γ from an interval I ⊂ R onto C ∪ {∞}. Further-
more, let f be a monic D-stable polynomial with complex
coefficients. Then find a monic polynomial f̃ such that
‖f − f̃‖ = min and f̃ is D-unstable, where the computations
are performed within some given (numerical) precision.

Based on the discussion at the beginning of the section,
we propose the following algorithm to compute a nearest
unstable polynomial:
Algorithm C:
C1: For each segment of ∂D with parametrization γ : I →

C ∪ {∞}, substitute γ(t) for α in the symbolic minimum
Nm(α).
C1.1: Determine the derivative of Nm(γ(t)) symboli-

cally.

-1

0

1

2

3

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

Figure 1:

C1.2: Determine all real solutions τk to equation (5);
evaluate Nm(γ(τk)).

C2: From the values for Nm computed in all steps C1.2,
select the minimum. Compute the perturbed coefficients,
and return f̃ .

Remarks:

• Certain parametrizations have singular points which
have to be treated separately, as additional segments.
E.g., the popular parametrization of the unit-circle:

γ(t) =
t − i

t + i
,

for −∞ < t < ∞ leaves an infinitesimal gap at 1. In
this case, we have to evaluate Nm(1), and compare the
result with the values obtained in C1.2. Another solu-
tion would be to use two half-circles whose parameter
t only runs from −1 to +1.

• Computer algebra systems are capable of computing
the derivative for a wide range of parametrizations sym-
bolically. However, numerical techniques (difference
methods) could be used for cases there no closed form
for γ is available.

• Solving the equations in C1.2 is computationally the
most expensive step of the algorithm. Numerical root-
finders are most likely to be superior compared to im-
plementations based on exact arithmetic.

• Complexity-wise, all steps are in polynomial time.

5 The Nearest Unstable Polynomial – Real Coeffi-
cients

If f ∈ R[z], monic, and we allow only real perturbations of
the coefficients, we have to distinguish between real roots
and pairs of complex conjugates. Real roots lie in the inter-
section of the domain boundary ∂D and the real axis. We
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can use algorithm C for real values to find roots on that
segment of ∂D. In the second case, we have to find a per-
turbed polynomial with a pair of complex conjugate roots
whereof (at least) one lies on the boundary ∂D. From this
it is clear that the stability domain D has to have a non-
empty intersection with the real axis if the coefficients of the
perturbed polynomial have to remain real (we could relax
this condition by allowing domains with two separate com-
ponents, where one component has a non-empty intersection
with the mirror-image with respect to the real axis of the
other component). The following small example shows the
different cases for Schur-stability:

Example 2 The polynomial f(z) = z2 − 0.1z − 0.3 has
(real) roots −0.6 and 0.5; both are inside the unit-circle.
By perturbing the coefficients of f , one root can become
either −1 or +1, or both can be a pair of complex conju-
gates located on the unit-circle. Using (3) from section 2,
we have Nm(−1) = 0.32 and Nm(1) = 0.18. Alternatively,

the perturbed polynomial f̃ would have roots α and ᾱ, where
αᾱ = 1, i.e., f̃(z) = (z − α)(z − ᾱ) = z2 − 2az + 1, and
a = ℜ(α) ∈ R. Perturbing the constant coefficient (−0.3)
to a value of +1 would already give us a contribution of
1.32 = 1.69 towards N . Therefore, moving one root to +1
will result in the minimal perturbation. f̃ = z2 − 0.4z − 0.6
has another real root at −0.6.

In general, we have to perturb f such that f̃ has a factor
(z − α)(z − ᾱ) = z2 − 2az + a2 + b2, where a = ℜ(α) ∈ R

and b = ℑ(α) ∈ R. If we set s = −2a and q = a2 + b2, we
are lead to the least square problem, analogous to (1):

‖δ‖ = min
v∈Rn−2

‖Rv − c‖ , (6)

where

v = [v0, . . . , vn−3]
tr ∈ R

n−2 ,

f̃(z) = zn + (vn−3 + s)zn−1 + (vn−4 + svn−3 + q)zn−2

+(vn−5 + svn−4 + qvn−3)z
n−3 + · · ·

+(v0 + sv1 + qv2)z
2 + (sv0 + qv1)z + qv0 ,

c = [a0, . . . , an−2 − q, an−1 − s] ∈ R
n , and

n = degree(f) ≥ 3 .

The tridiagonal n × (n − 2)-matrix

R =

2

6

6

6

6

6

6

6

6

6

4

q
0s q

1 s q

. . .
. . .

. . .

1 s q

0 1 s
1

3

7

7

7

7

7

7

7

7

7

5

(7)

has again full rank, thus warranting a unique solution for
(6). Most computer algebra systems allow users to specify
additional properties of variables. For symbolic derivations,
the fact that q is positive can be of advantage.

Unfortunately, the symbolic expressions are not as simple
as in the complex case. However, the symbolic minimum
can still be computed for a given problem, such that the

algorithm from the previous section remains essentially the
same. For completeness, we present the entire algorithm for
polynomials with real coefficients:
Algorithm R:
R1: Derive the symbolic solution vm(s, q) to (6) for the

given polynomial f ∈ R[z]. Derive Nm(s, q) = (Rvm −
c)tr (Rvm − c).

R2: For each segment of ∂D with parametrization γ : I →
C ∪ {∞}, substitute −2ℜ(γ(t)) for s, and |γ(t)|2 =
ℜ(γ(t))2 + ℑ(γ(t))2 for q in the symbolic minimum
Nm(s, q), resulting in an expression Nm(t).
R2.1: Determine the derivative N ′

m(t) of Nm(t) symbol-
ically.

R2.2: Determine all real solutions τk to N ′
m(t) = 0;

evaluate Nm(τk).
R3: Use algorithm C from the previous section to compute

Nm for the intersection points of ∂D with the real axis.
R4: From the values for Nm computed in all steps R2.2,

and step R3 select the minimum. Determine the pertur-
bations using expressions from step R1, or formulas (4)

respectively. Return f̃ .
For Hurwitz stability, we can again give explicit formulas.

The special form of the domain boundary (imaginary axis)
reduces (6) to a problem in a single parameter. In this case,

f̃ will have a factor (z − it)(z + it) = z2 + t2, where t ∈ R,
i.e., s = 0 and q = t2. We summarize the results in the
following theorem:

Theorem 3 Let f ∈ R[z] be Hurwitz. We define the poly-
nomials g, h ∈ R[x], such that f(z) = g(z2) + z · h(z2), and
substitute x for z2. The nearest polynomial having at least
one root on the imaginary axis at z = it is given by the
following perturbations of the coefficients of f :

a) If n = degree(f) is even, and m = n/2, then

δj =

`

−t2
´j/2

g
`

−t2
´

Pm−1
k=0 t4k

, j even,

δj =

`

−t2
´(j−1)/2

h
`

−t2
´

Pm−1
k=0 t4k

,j odd,

Nm(t) =
g2
`

−t2
´

+ h2
`

−t2
´

Pm−1
k=0 t4k

. (8)

b) If n = degree(f) is odd, and m = (n − 1)/2, then

δj =

`

−t2
´j/2

g
`

−t2
´

Pm
k=0 t4k

, j even,

δj =

`

−t2
´(j−1)/2

h
`

−t2
´

Pm−1
k=0 t4k

, j odd,

Nm(t) =
g2
`

−t2
´

Pm
k=0 t4k

+
h2
`

−t2
´

Pm−1
k=0 t4k

. (9)

Proof: A proof of this theorem can be found in ap-
pendix 8.2. �

Remarks:

• In order to compute the actual minimum, one still has
to execute steps R2.2, R3, and R4 of algorithm R.
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We could take the formal derivation even further, and
explicitly write down the (polynomial) equations in t,
that one has to solve. However, this can easily be done
by a computer algebra system, and does not provide
further insights into the problem.

• Formulas (8) and (9) are consistent with the Hermite-
Biehler theorem ([7, 17]). They represent the fact that
g and h are perturbed independently, such that they
have −t2 as a common root. The norm expressions
Nm are the ones we could derive from the formulas for
the approximate GCD problem of two polynomials in
the l2-norm (see [11, 12]) by substitution.

In the case where D is the open unit-disc (Schur sta-
bility), the matrix R of (7) is also depending on a single
parameter, namely s, as q = 1. Here however, the analogue
of the interlacing property (as in the Hermite-Biehler the-
orem) does not apply to polynomials that are constructed
from the coefficients of f directly (see [17]). Therefore, the
derivation of explicit formulas for Nm(s) would not save us
significant compute time over a direct solution of the least
squares problem.

6 Extensions and Generalizations

6.1 Other Norms

The minimization problem (1) is stated in a form that is
norm-independent. In fact the reduced problem, where α is
a given constant, can also be solved in the l∞ and l1-norm.
Algorithms for finding approximate solutions to inconsistent
systems of linear equations in these norms are well known
(see e.g., [23], [8, chapter on least squares] or [4], and the
literature therein), and they all can be made to run in poly-
nomial time. The basic algorithms are also given in Ap-
pendix 8.3. However, the involved linear programming sub-
steps seem more difficult to use in parametric minimization.
The methods of Appendix 8.3 are applicable in a straight-
forward manner to real roots and real coefficients. In the
complex case we separate real and imaginary parts by ap-
plying the following decomposition: if α = a + ib , a, b ∈ R

and
u = [v0 + iw0, . . . , vn−2 + iwn−2]

tr ,

then in (2) P = A + iB, where

A =

2

6

6

6

6

6

4

−a
01 −a

. . .
. . .

0 1 −a
1

3

7

7

7

7

7

5

and B =

2

6

6

6

6

6

4

−b
00 −b

. . .
. . .

0 0 −b
0

3

7

7

7

7

7

5

are real n × (n − 1) matrices. If we define

v = [v0, . . . , vn−2]
tr and w = [w0, . . . , wn−2]

tr ,

then we can replace the product Pu by

»

A −B
B A

– »

v
w

–

,

and set up the minimization problem accordingly.

6.2 Weighted l2-norms

If we assign positive weights wk to each component in com-
puting the norm, i.e.,

‖f‖w =

 

n−1
X

k=0

wkākak

!1/2

, for f(z) = zn +

n−1
X

k=0

akzk,

then Nm(α) in (3) becomes (see [12]):

Nm(α) =
f(α)f(α)

Pn−1
k=0 w−1

k (ᾱα)k
.

6.3 Perturbing the Leading Coefficient

Basically, there is no problem by letting the leading coeffi-
cient be subject to perturbation, i.e., to admit non-monic
polynomials. The only difficulty arises when the leading
coefficient vanishes in this process, and the degree of the
perturbed polynomial drops. As the leading coefficient ap-
proaches zero, (at least) one of the roots goes to ∞. The-
orem 1 still holds if we include the notion of points at ∞
(in the projective plane sense). This is only necessary for
unbounded domains, like the open left half-plane in the Hur-
witz case, where ∞ can be on the boundary ∂D. As long as
the domain D is bounded our algorithms can be extended to
the general case in a straightforward way. Roots moving out
to ∞ have to cross the domain boundary first in that case.
The following example shows that for unbounded domains
the minimal perturbation can be the one causing a drop in
degree. If we restrict ourselves to an affine view of the prob-
lem, and if we add the constraint that the leading coefficient
must not vanish, there might be no minimal solution at all.

Example 3 The linear polynomial f(z) = z +2 is Hurwitz.
If we look at real perturbations, the nearest unstable polyno-
mial of degree one is f̃1(z) = z, with ‖f − f̃1‖ = 2. By drop-
ping the leading term, we end up with the degree-zero polyno-
mial f̃0(z) = 2. The norm of the perturbation ‖f − f̃0‖ = 1
is obviously smaller than the one we would get from the least
squares solution. Adding the additional constraint that the
leading coefficient of f̃ is not allowed to vanish leads to the
family of unstable polynomials f̃ǫ(z) = −ǫz+2, where ǫ ∈ R,

ǫ > 0. The norm of the perturbation ‖f − f̃ǫ‖ = 1 + ǫ does
not have a minimum with respect to ǫ > 0.

It is clear that setting the leading coefficient to zero, while
leaving all other coefficients unchanged will give us the min-
imal perturbation in this case. This additional check has to
be added to algorithm C and R. For the least squares prob-
lem, we have to extend the matrices in (2) and (7) by an
additional row and column of the same structure, whereas
the vector of constants will become the coefficient vector of
f without further additions. The sum in the denominator
of the norm expressions Nm(α) will now run from k = 0 to
n.

We could look at the monic case as just one special in-
stance of linear equality constraints imposed on the coeffi-
cients of the perturbed polynomial, and extend our algo-
rithms to this respect as well. This more general method
could also be used to preserve sparsity in the given polyno-
mials. Inequality constraints on the other hand can lead to
cases where no minimal solution exists in the least square
sense (see our example above). Figure 2 is a (simplified)
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Figure 2:

illustration for some of the possible cases involving con-
straints on the coefficients of f̃ (here shown for dimension
3). The linear constraints can define a hyperplane (or a
lower-dimensional varity) in coefficient space, in which case
we have to project the coefficient vector of f onto the inter-
section of the range of the matrix P and that hyperplane to
obtain the coefficients of the “constrained” perturbed poly-

nomial
˜̃
f . Inequality constraints (similar to the one on the

leading coefficient in example 3) on the other hand could
exclude the optimal solution (indicated by the shaded area
in the picture).

7 Conclusions and Future Directions

The method presented in the previous sections results in
polynomial-time algorithms for computing nearest unstable
polynomials in the l2-norm for a variety of stability domains.
The reduced problem of finding the nearest perturbed poly-
nomial with a given root can also be solved in the l∞ and
l1-norm. For the general case, finding the parametric min-
imum, in the l∞-norm in particular, seems to be an open
problem at current time. An encouraging result can be ob-
tained by Stiefel’s geometric method in [22] for the following
restricted problem:

Problem 3 Let f ∈ R[x], monic and α ∈ R. Find f̃ ∈ R[x],

monic such that f̃(α) = 0 and δ∞ = ‖f − f̃‖∞ is minimal.

Because of the special structure of (2), one can derive an
explicit formula for the symbolic minimum in the l∞-sense
(see also [9]):

δ∞ =

˛

˛

˛

˛

˛

f(α)
Pn−1

k=0 |αk|

˛

˛

˛

˛

˛

(10)
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8 Appendix

8.1 Proof of Theorem 2

First, we note that the column vectors of P form a basis
for an (n − 1)-dimensional subspace of C

n. Therefore, the
unitary complement of the column-space is one-dimensional.
It can easily be verified that

w = [1, ᾱ, ᾱ2, . . . , ᾱn−1]tr

is orthogonal to any column vector of P, thus constituting a
normal vector to the hyperplane spanned by the columns of
P. Here, and in the following, we use the standard definition
for the inner product of two vectors x,y ∈ C

n:

x · y = y
∗
x =

n
X

k=1

xkȳk .

The vector of the minimal perturbations δ is the orthogonal
projection of b = [a0, . . . , an−2, an−1 + α]tr onto w:

δ =
b · w

w · w
w =

f(α)
Pn−1

k=0 (ᾱα)k
w ,

which is the vector [δ0, . . . , δn−1] in (4). The derivation of
(3), Nm(α) = ‖δ‖2 = δ · δ is obvious.

8.2 Proof of Theorem 3

For Hurwitz polynomials, we could state (6) as approxi-
mate GCD problem for the two polynomials g and h (this
is also true for the case of complex coefficients, where
f(it) = g(t) + ih(t) and g, h ∈ R[t]), and use the techniques
from [11] and [12] to derive the minimum norm change and
the perturbations. However, their methods also require both
g and h to be monic, which condition is, in general, violated
by one of the polynomials. Additionally, the derivation pre-
sented here, will give us more insights into the geometric
properties of this minimization problem.

For the real Hurwitz case, the column vectors of the ma-
trix R in (7) form a basis for a (n−2)-dimensional subspace
of R

n. It is easy to verify that the two vectors

v1 = [1, 0,−t2, 0, t4, 0, . . .] , and

v2 = [0, 1, 0,−t2, 0, t4, . . .]

span the orthogonal complement of the column-space of R.
The vectors

u1 =
v1

‖v1‖
, and u2 =

v2

‖v2‖

constitute an orthonormal basis for this 2-dimensional sub-
space. Therefore, the matrix

VV
tr , where V = [u1 | u2]

is a projector matrix in the sense of [8], sec. 2.4. As a
linear map, it projects any vector from R

n onto the subspace
spanned by v1 and v2. In our case, we have to project the
vector c = [a0, . . . , an−2−t2, an−1], i.e., we have to compute
VVtrc in order to obtain δ. As one can see from the special
structure of R, v1 and v2, as well as the matrix VVtr, odd
and even rows stay separated, which allows us to compute
δj for odd and even numbers in terms of the coefficients of
h and g, respectively. We also note, that odd rows in VVtr

are scaled by 1/‖v1‖
2, even rows by 1/‖v2‖

2, resulting in
the denominators of the formulas in (8) and (9).

8.3 Approximate Solutions to Inconsistent Sys-
tems

Here, we describe how to compute approximate solutions to
over-determined linear systems of real equations

n
X

j=1

ak,jxj = bk , for 1 ≤ k ≤ m , where m ≥ n ,

in the l∞ and l1-sense, by re-formulating the problem as a
linear program. We follow [6], section 2.3; an early reference
for the l∞-case is [23].

An approximate l∞-solution x ∈ R
n has to minimize

max
1≤k≤m

|δk| , where δk =

n
X

j=1

ak,jxj − bk .
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We introduce an additional free variable w, and formulate
the problem as a linear program with 2m constraints:

Minimize: w

Subject to: w ≥ δk 1 ≤ k ≤ m

w ≥−δk 1 ≤ k ≤ m

(11)

Similarly, in the l1-norm, we have to find x ∈ R
n that

minimizes

m
X

k=1

|δk| , where δk =
n
X

j=1

ak,jxj − bk .

With 2m additional variables d+
k and d−

k , as well as 3m
constraints, we obtain the linear program:

Minimize:
Pm

k=1

`

d+
k + d−

k

´

Subject to: d+
k − d−

k = δk 1 ≤ k ≤ m

d+
k ≥ 0 1 ≤ k ≤ m

d−
k ≥ 0 1 ≤ k ≤ m

(12)

As noted in [6], either d+
k or d−

k (or both) will be equal to
zero for each k. The minimal solution to the linear program
(11) will automatically satisfy that condition.
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