FoxBox: A System for Manipulating Symbolic Objects
in Black Box Representation”

Angel Diaz! and Erich Kaltofen?

lDepartment of Mathematical Sciences, IBM T. J. Watson Research Center
Yorktown Heights, New York 10598; aldiaz®@us.ibm. com
2Department of Mathematics, North Carolina State University
Raleigh, North Carolina 27695-8205; kaltofen@math.ncsu.edu
http://www.math.ncsu.edu/ kaltofen

Abstract

The FoxBoOXx system puts in practice the black box representa-
tion of symbolic objects and provides algorithms for performing
the symbolic calculus with such representations. Black box objects
are stored as functions. For instance: a black box polynomial is
a procedure that takes values for the variables as input and evalu-
ates the polynomial at that given point. FOxBox can compute the
greatest common divisor and factorize polynomials in black box
representation, producing as output new black boxes. It also can
compute the standard sparse distributed representation of a black
box polynomial, for example, one which was computed for an ir-
reducible factor. We establish that the black box representation of
objects can push the size of symbolic expressions far beyond what
standard data structures could handle before.

Furthermore, FOxBox demonstrates the generic program de-
sign methodology. The FOXxBox system is written in C++. C++
template arguments provide for abstract domain types. Currently,
FoxBox can be compiled with SACLIB 1.1, Gnu-MP 1.0, and
NTL 2.0 as its underlying field and polynomial arithmetic. Multiple
arithmetic plugins can be used in the same computation. FOXBox
provides an MPI-compliant distribution mechanism that allows for
parallel and distributed execution of FoxBox programs. Finally,
FoxBox plugs into a server/client-style Maple application inter-
face.

1 Introduction

FoxBox is a software system that puts in practice the black box
representation of symbolic objects and provides algorithms for per-
forming the symbolic calculus with such representations. A clas-
sical application of the black box model is the factorization of the
determinant of a matrix with symbolic entries. In FOxBox a de-
terminant object is a function which when supplied with values for
the symbols computes the value for the determinant by Gaussian
elimination. FoxBox then creates by the algorithm in [25] an-
other function that evaluates all irreducible factors. Any evaluation
will produce the values of one and the same associate (scalar mul-
tiple) of each factor. This “factors box” in turn makes a series of
calls to the determinant box; these calls can be executed in paral-
lel if need be. FOxBox also supplies a sparse interpolation algo-
rithm [32] with which those irreducible factors that have not too

*This article describes FOxBox 1.1 (January 30, 1998). This material is based
on work supported in part by the National Science Foundation under Grant No. CCR-
9319776 and CCR-9712267.

Permission to make digital/hard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. 1ISSAC’98, Rostock, Germany.
(©1998 ACM 1-58113-002-3/ 98/ 0008 $ 5.00

30

many terms can be converted to the distributed sparse representa-
tion. Since both the construction and the evaluation of the factors
box are quite efficient, it becomes possible in FoxBox to factor a
matrix determinant that as a polynomial would have a huge num-
ber of terms, and to obtain the sparse factors even in the presence
of very dense ones. For example, one of our benchmarks compu-
tations in §5 finds the factors in standard “sparse” representation
(there are 4982 non-zero monomials) of the determinant of a gen-
eral 13 by 13 symmetric Toeplitz matrix in 15 hours and 25 minutes
on a single processor of a Sun Ultra 2 computer.

The black box representation has evolved from our experience
with the straight-line program representation [19, 20] and the DAG-
wooD system [10]. In the straight-line program model the matrix
determinant and the factors box would be restricted to so called
single-assignment straight-line code. That model suffers from ex-
pression swell, as the length of the produced straight-line programs
is in many cases proportional to the complexity of the algorithm
that produced them. In [10] an irreducible quadratic factor of a de-
terminant of a 16 by 16 matrix whose entries are chosen from 16
indeterminates, has almost 200,000 assignments. FOXBoX’s fac-
tor box requires a comparable number of instruction for the evalua-
tion of that factor, but the procedure for doing so is of almost fixed
size. Furthermore, the matrix determinant box internally can test
intermediate values for being zero and thus will not fail on certain
inputs, while the straight-line code cannot in general avoid a zero
division for all inputs without increasing the cost of evaluation [21].

The usefulness of implicit functional representations of math-
ematical objects has been demonstrated in several contexts. One
example are the explicit and implicit LU-factorizations of a ma-
trix. Here the inverse of a matrix is not explicitly computed and
instead a forward and backward substitution is performed when the
matrix inverse is multiplied by a vector. Another example from
symbolic computation itself is the evaluation of a polynomial re-
mainder sequence as is needed in Sturm-like rootfinding methods.
The remainder sequence is implicitly computed from the polyno-
mial quotient sequence, which greatly improves the running time
of computing, say, the sign variation at a point. A final example is
the representation of power series, which are infinite objects. Abel-
son and Sussman [3] describe a stream-based approach in which
the i-th coefficient of the series is given by a procedure that is eval-
uated on demand thus removing the restriction of truncating the
series object at a given point.

FoxBox systematically introduces the implicit black box rep-
resentation to symbolic computation. It is written in C++ but has
a client/server style interface to Maple. As we have done much of
our algorithm proto-typing in Maple, a package written entirely in
Maple is also available. To avoid confusion we refer to this ver-
sion by the name PRoTOBOX. Aside from using as an underlying

model for symbolic expressions the black box model, the design of
FoxBox incorporates two more methodologies. First, following
the Smalltalk-based system by Abdali et al. [2], Axiom [18, 31],
and the Standard Template Library (STL) of C++ [28], our design
incorporates data types parameterized by arbitrary coefficient do-
mains and generic algorithms such as homomorphic imaging of
black boxes. Thus FoxBox can be compiled with an imported
underlying domain arithmetic, and in fact we currently plug into
the arithmetic of SACLIB 1.1 [16], GNU’s MP [13], and Vic-
tor Shoup’s fast modular polynomial arithmetic package NTL 2.0
[30]. C++ template classes allow us to define a precise interface
while compiling FOxBox and the imported packages in a seam-
less and efficient fashion. A second methodology incorporated into
FoxBox is an MPI-compliant [15] distribution mechanism that al-
lows for parallel and distributed execution of FOxBox programs
when needed.

The realization of FOXBoOX is intimately related to the develop-
ment of new powerful algorithms. It is the efficient greatest com-
mon divisor or factor boxes and sparse interpolation algorithms that
make the calculus of black boxes applicable to well-known prob-
lems in symbolic computation. In FoxBox we have made im-
provements to many of the algorithms in the literature, which we
describe in some detail in §4.

With FoxBox we hope to demonstrate an innovative approach
to building symbolic computing software itself. One of our goals
is to provide our algorithms to the non-specialist consumer of sym-
bolic computation software. FOXBOX is designed as a component
that can be easily custom assembled and incorporated into any com-
puter algebra system because of its generic design. Furthermore, if
a Maple user, say, wishes to access the C++ programmed black
box algorithms in the same way as the PRoTOBOx Maple pro-
cedures, we provide a client/server interface that links Maple and
FoxBox and works under many operating systems without having
to customize either Maple or FoxBox. As with “plug-and-play”
hardware components, we establish that symbolic packages such as
FoxBox, which are written by a small team of specialists, can be
immediately accessible to the many users of major systems.

Our paper is organized as follows. In §2 we explain our guid-
ing design principles and describe the overall components of the
FoxBox system. The architecture of the FOXxBox server is sum-
marized in §3. We proceed to summarize improvements to the ma-
jor FoxBox algorithms in §4. The benchmark timings on a set
of challenge problems is presented in §5. In §6 we analyze our
experience and state some future directions for the black box rep-
resentation in symbolic computation.

2 The FoxBox Components

The FoxBox distribution consists of a C++ object library that
puts in practice the black box representation of symbolic objects
and a C++ server that provides a portable interface to general pur-
pose computer algebra systems. Several outstanding features of
FoxBox include the following:

— Manipulation of symbolic objects as black boxes

— An extensible component library for black box objects

— Efficiency through compilation

— Versatility of domain types and arithmetic

— Parallelism via an MPI compliant layer

— Conversion of black boxes to distributed representations

— Native Maple package (PRoTOBOX) derived from our prototyp-
ing
— Maple interface to the FOXBOX server

31

We split FoxBox into seven main components, namely: base
arithmetics, black box objects, common black box objects, black
box algorithms, extended domain black box objects, homomor-
phic maps, and parallel black boxes. This section will provide an
overview of our guiding design methodology while covering the
highlights of each FoxBox component.

2.1 Overall Design Methodology

When designing a system like FOxBox one is faced with the diffi-
culty of fitting the resulting software into existing symbolic compu-
tation systems. Generic programming methodology allows us the
use of existing high performance arithmetic packages and parallel
computing software like MPI. Furthermore, FOXBOX’s algorithms
must be callable from familiar platforms like Maple and Mathemat-
ica and applicable to new user-defined black box objects. FoxBox
can be custom-assembled by a cafeteria-style selection process,
where the user picks arithmetic packages and a launch platform
and compiles the system. In January 1998 we have built a ver-
sion for one of our factor challenges (see §5.1) using Shoup’s new
NTL 2.0 zz_p and zz_pX classes for 30 bit prime moduli. The
compiled code still calls SACLIB’s rational polynomial factorizer
and FoxBox does its internal arithmetic with GnuMP. One might
even call Maple’s own sparse interpolation procedure on the client
side of our server §3. Since FOXBOX has a sparse interpolation
function a main program in Maple is in this case not necessary. We
believe, however, that mixing and matching makes FoxBox effi-
cient by new advances in fast arithmetic while maximally utilizing
the many algorithms available across existing systems.

2.2 Base Arithmetic

The algorithms offered by the FoxBox library are parameterized
procedural schemata, namely C++ templates, that are completely
independent of the underlying data representation. Hence, each al-
gorithm can be utilized with any concrete representation of a field
type or polynomial algorithm. We call such concrete representa-
tions a base arithmetic. Fundamental to the instantiation of such
algorithms are our arithmetic wrapper/adaptor classes. External
arithmetic packages are wrapped for adaptation to FOxBox’s func-
tion invocation standards. Inlining of member functions makes the
adaptation efficient. The exact operations required by an arithmetic
wrapper/adaptor depends on each particular black box algorithm.
For example, the black box GCD algorithm does not request poly-
nomial factorization from the external arithmetic package.

All of our algorithms are parameterized with both field and
polynomial arithmetic, even though the polynomial arithmetic
could be synthesized from field arithmetic (except polynomial fac-
torization). Clearly, the efficiency of polynomial arithmetic is de-
pendent on the representation of the field elements and a generic
implementation of polynomial multiplication, for instance, would
in most instances be quite inefficient. Victor Shoup’s class zz_pX
is a good example: it employs FFT based polynomial multiplica-
tion. However, the entire library only requires univariate polyno-
mial arithmetic. Representations of bi-variate polynomials or ra-
tional functions, when needed as, for example, in bi-variate Hensel
lifting, are constructed internally by FOxBox. An arithmetic wrap-
per/adaptor may require a means of setting native arithmetic pa-
rameters. The code sample in Figure 1 is intended to initialize our
SACLIB modular polynomial arithmetic wrapper/adaptor.

The function SaclibInitEnv initializes SACLIB by allocat-
ing memory and utilizing the address of Stack as the first vari-
able located on the stack. FoxBox utilizes GNU MP for its in-
ternal arbitrary precision integer arithmetic. All arithmetic wrap-
per/adaptors are expected to convert a GNU MP integer to its native
format. An example of this is illustrated by the SaclibSetPrime
function which initializes the SACLIB modular polynomial arith-

// SACLIB wrapper/adaptor

#include "PlugIns/saclib.h"

int main(int argc, char *argv[])

{ Word Stack;
// initialize SACLIB wrapper/adaptor
SaclibInitEnv(1000000, Stack);
MP_INT MPPrime;
mpz_init_set_str(&MPPrime, "32771", 10);
// set modulus
SaclibSetPrime(&MPPrime);
mpz_clear (&MPPrime) ;
SaclibCleanUpEnv(); }

Figure 1: SACLIB wrapper/adaptor

metic wrapper/adaptor to GF(32771).

When switching to different arithmetics within a single
FoxBox application run it is possible to release resources asso-
ciated with each wrapper/adaptor arithmetic by calling a corre-
sponding “clean-up” function. In the case of our SACLIB wrap-
per/adaptor, the call to SaclibCleanUpEnv frees the previously
allocated memory. While SACLIB allocates “heaps” of memory
and employs such maintenance routines, other arithmetics may not
require an explicit initialization/clean-up phase. Memory manage-
ment in the presence of unknown memory models remains a diffi-
cult issue for the FOxBox design.

2.3 Black Box Objects

Black box objects are C++ function objects derived from an ab-
stract base class, namely BlackBox< K >. The BlackBox base
class is parameterized by a coefficient domain K and serves as a
framework which specifies the minimal interface required for all
black boxes. Each black box object requires a function that pro-
vides its degree, number of variables and the probability of the
correctness of its particular black box evaluation program. Fur-
thermore, the overloading function operator is the evaluation of a
black box object.

A constructor provided by each derived black box class per-
forms a particular black box manufacturing algorithm. Each de-
rived black box common object or black box transformation may
extend this minimum black box interface by providing additional
functionality specific to a particular problem. Note that we call
the black box transformations, such as factorization of a black box
polynomial, “black box algorithms.”

2.4 Extended Domain Black Box Objects

The FoxBox library also provides for constructing black boxes
that can evaluate at points that come from a domain that is an ex-
tension of the field over which it was constructed. Extended domain
black boxes are derived from the abstract base class BlackBoxEx<
K, L > which itself is derived from BlackBox. Extended domain
common objects are parameterized by a coefficient domain X and
by an extension domain L, their evaluation domain. Extended do-
main black box algorithms often employ a distinct method of eval-
uation from their black box algorithm counterparts. Naturally, ex-
tended domain black box algorithms require input common objects
that can evaluate over an extension domain.

We apply extended domain black boxes to speed the factor-
ization method. There we need to evaluate the input polynomi-
als on truncated power series domains for the computation of the
right side of the Hensel lifting problem (see [11, Chapter 6] for
the Hensel lifting algorithm). Moreover, in symbolic computation
the coefficient domain can in many instances be much smaller than
the domain of values: a polynomial over the rational numbers can
be evaluated at points that are, for example, full-fledged rational
functions.

32

Template Prototype
Common Objects Extended Domain Common Obj’s
BlackBoxPoly<K> BlackBoxPolyEx<K,L>
BlackBoxRatFunc<K> BlackBoxRatFuncEx<K,L>
BlackBoxDet<K> BlackBoxDetEx<K,L>
BlackBox- BlackBox-
SymToeDet<K,KP> SymToeDetEx<K,KP,L,LP>
BlackBoxVandDet<K>
BlackBoxCauchyDet<K>

Table 1: FoxBox common object library

#include <iostream.h>

// SACLIB wrapper/adaptor

#include "PlugIns/saclib.h"

// Toeplitz common object

#include "BlackBox/CommonObjects/bbtoeplitz.h"

typedef BlackBoxSymToeDet< SaclibQ, SaclibQX >
BBSymToeDet;

int main(int argc, char *argv[])

{ Word Stack;
// initialize SACLIB wrapper/adaptor
SaclibInitEnv(1000000, Stack);
int N = 4;
int DegDet = 4;
// construct a symm. Toeplitz det. object
BBSymToeDet SymToeDet(N, DegDet);
SaclibCleanUpEnv(); }

Figure 2: Symmetric Toeplitz common object

2.5 Common Black Box Objects

FoxBox provides a library of common objects for constructing
implicit representations. One can construct a black box polynomial
or rational function from a handle to an external C function; con-
struct a determinant object, which evaluates via Gaussian elimina-
tion; or utilize specialized common objects for the determinants of
Cauchy, Vandermonde, and Toeplitz matrices. Indeed, extensibil-
ity to other implicit representations is achieved via the development
of user defined common objects. For example, our fast symmetric
Toeplitz determinant method computes the determinant in O(n?)
arithmetic operations via the subresultant PRS algorithm [24, The-
orem 2].

Table 1 on page 32 depicts the current set of common objects
found in the FOxBox library. Each common object provides an
implementation for the functionality required by its corresponding
black box base class. While all common objects are parameter-
ized by a coefficient domain X, several black box common objects
are further parameterized by a polynomial algorithm KP. Each ex-
tended domain common object also requires arithmetic for an ex-
tension of the coefficient domain K, namely the parameter L. Our
extended domain symmetric Toeplitz determinant common object
also requires a corresponding extended domain polynomial arith-
metic LP.

The C++ code provided in Figure 2 constructs a symmetric
Toeplitz common object. In this example, our fast symmetric
Toeplitz determinant procedure is instantiated to utilize the wrap-
per/adaptor to SACLIB’s rational coefficient and polynomial arith-
metic, Sac1ibQ and SaclibQX respectively. In C++ types are not
values. However, we can write a C++ typedef in lieu for an as-
signment of a type to a name. The SymToeDet black box common
object can provide rational number values for the determinant of a
4 by 4 symmetric Toeplitz matrix over the rationals. This determi-
nant has a total degree 4.

2.6 Black Box Algorithms

The FoxBox library provides black box algorithms for construct-
ing factor, greatest common divisor, and numerator/denominator
black boxes (see §4). FoxBox also supplies a specialized sparse
interpolation algorithm with which black boxes representing poly-
nomials that do not have overly many terms can be converted to
a distributed sparse representation. The only difference between
what we categorize as black box algorithms and common objects
is that a black box algorithm generates its result by probing values
from another black box supplied as input.

Template Prototype
BlackBoxFactors< K, KP, B >
BlackBoxFactorsEx< K, KP, B, L, LP >
BlackBoxGCD< K, KP, B >
BlackBoxNumDen< K, KP, B >

Table 2: FoxBox black box algorithm object library

Table 2 details template prototypes for the black box algorithm
objects available in the FoxBox library. Similar to common ob-
jects, each black box algorithm is parameterized by a coefficient
domain X, polynomial algorithm KP and possibly an extend domain
arithmetic L and LP. The B parameter specifies a particular input
black box type. The type B is required for the following reason.
Since a C++ compiler can inline the definition of the function at
the site of the calls, by using B as an STL-style function object type
we avoid, when evaluating the black box at a point, both function
look-up via a pointer to a function and even the function call. In ret-
rospect, however, the gain in efficiency is not as much as one might
expect. Our experiments in [9] show the cost of dereferencing,
and the savings may not justify the associated code bloat. How-
ever, code bloat can be easily avoided by use of the virtual function
calling mechanism and by supplying the (instantiated) base classes
blackbox< K > and blackbox< K, L > to the algorithm tem-
plates. The actual input black boxes are then typecast as references
to the base classes.

2.7 Homomorphic Maps

The homomorphic imaging of a black box object is a generic algo-
rithm that utilizes a supplied mapping function to convert between
coefficient domains. The result of such a mapping is another black
box that evaluates in the homomorphic image domain, such as the
integers modulo a prime. More specifically, the homomorphic map
produces a new black box where all of the “static” information,
which characterizes the original black box, has been converted to
its modular image. FoOxBox provides a homomorphic map for all
of the black box algorithm objects (see Table 3).

Template Prototype
BlackBoxFactorsHMap< K, KP, F, FP, B, FB, H >
BlackBoxGCDHMap< K, KP, F, FP, B, FB, H >
BlackBoxNumDenHMap< K, KP, F, FP, B, FB, H >

Table 3: FoxBox homomorphic map library

Each homomorphic map is parameterized by the pre-image
arithmetic (K and KP) and by a homomorphic image arithmetic F
and FP. A “mapping” function object H converts between the coef-
ficient domains. The parameters B and FB specify input black boxes
to black box algorithms, the first of which evaluates over K and the
second over F. The result of a homomorphic image of a black box
algorithm computes its value by probing FB at values in F. If FB
is not available, FOxBOX supplies a class, namely BlackBoxMod<

33

K, F, B, H>, which will wrap/adapt a black box of type B so as
to provide values modulo the homomorphic map. The mapping
function object H is employed to convert the modular input to the
original domain and the output to its modular representation. Mod-
ular wrapping, however, is likely to be less efficient than giving the
explicit evaluation type FB.

In our challenge computations (see §5.1) a factor black box
is constructed with SACLIB’s rational polynomial arithmetic and
mapped to a new black box that evaluates with NTL’s fast modular
polynomial arithmetic. This combination of utilizing specialized
base arithmetics for different steps in the solution of a particular
problem is one example of our “plug-and-play” software design
methodology detailed in §2.1. In the factor challenge in §5.1, for
example, the Toeplitz determinant factors are constructed by prob-
ing the Toeplitz determinant over SACLIB rationals. However, they
are evaluated in the sparse interpolation algorithm by probing the
same determinant over NTL integers modulo a prime. Nonethe-
less, both probing procedures are compiled from the same generic
template member function. In fact, an error in this function was
revealed modulo a small prime, when the subresultant PRS modulo
this prime became non-normal and an incorrect subresultant was
returned.

2.8 Parallel Black Boxes

Our sparse conversion algorithm is ideally suited for paralleliza-
tion: the algorithm probes the polynomial at selected points and
then performs the interpolation task by use of the obtained values.
Therefore, the evaluation at the different points can be done on dif-
ferent computers. Each black box object is characterized by a small
amount of pre-computed static information. An initial phase trans-
mits this static information to each processor allowing for subse-
quent remote evaluations.

The parallel black box interface adds three member functions
Distribute, Wait and Kill for administering remote construc-
tion, evaluation and termination of black box objects. Each class
is derived from their black box algorithm counter part and extends
the inherited data members and member functions by the parallel
black box interface.

The parallel black box interface can be implemented utilizing
different parallelization techniques. By virtue of this abstraction,
applications that employ the parallel black box interface can re-
main independent of such techniques. For example, one can plug
into the functionality offered by parallel systems such as DSC [6],
PVM [12], or MPICH [15] simply by providing a corresponding
derived class.

The current set of objects provided by the FoxBox parallel
black box library are realized via MPI compliant (Message Pass-
ing Interface) calls. Message-passing is a parallel programming
technique used on MPP systems, workstation clusters, and other
distributed memory systems. The Message Passing Interface stan-
dardization effort has produced a library specification intended for
the portable development of message-passing applications. Imple-
mentations of MPI exist for heterogeneous workstations clusters,
the Cray T3D, 64-bit mips3 and mips4 SGI machines, and Mi-
crosoft Windows to name a few. MPI and its workstation cluster
implementation lack several features found in our distributed com-
puting environment (DSC) such as process scheduling and dynamic
process creation. However, providing a MPI compliant mechanism
for parallelizing black boxes broadens FoxBox’s applicability.

A MPI parallel FOxBox application consists of a C++ program
that communicates with other processes by ultimately calling MPI
routines. The initial loading of the executables onto the parallel ma-
chine is beyond the scope of the MPI interface. Each MPI imple-
mentation will have its own means of performing this task. How-
ever, once loaded, each processor executes different statements

within their copy of the same FoOxBox application program based
on processor ranks. A typical application will consist of a driver
and a parallel subtask portion. The driver will request evaluations
from each parallel subtask. Each parallel subtask executes a copy
of the MPI black box server object, which has the ability to accept
messages from the interface provided by parallel black boxes. The
first call to a Distribute member function sends an object’s static
information to a particular processor, as well as a point for evalu-
ation. Subsequent calls simply send evaluation points. The call to
Wait blocks the driver program until a particular remote evaluation
can be processed. Each parallel subtask can be destroyed by a call
to Kill.

3 The FoxBox Server

The FoxBox distribution provides a server application that allows
the user of a general purpose computer algebra system to access
the FoxBox components in calculator style fashion. Since the
FoxBox server essentially provides for remotely invoking C++
black box object methods, there is quite a bit of overlap between
the components of the FOxBoX server and FOXBOX programming
library.

Throughout the development of examples, §3.1 describes the
overall components of the FOXBox server. The main design goal
for an interface between FoxBox and a computer algebra system
was that this interface had to be easily portable between different
systems. In §3.2 we detail the design behind the FOXBoOX interface,
which yields a fairly portable implementation.

3.1 Accessing the FOxBox Server

A FoxBox application specifies an underlying base arithmetic at
compile time by template class arguments. The FOXBOX server
application utilizes SACLIB’s rational and modular polynomial
arithmetic. However, since the components within the FOXBoOX
programming library are parameterized procedural schemata (see
§2.2), the FOXBOX server can easily be ported to take advantage of
other base arithmetics. Currently, the FOxBox server provides for
construction and evaluation of various types of black box objects.
The server is also capable of converting such objects to sparse for-
mat.

As an example, let us consider the problem of computing a fac-
tor of the determinant of a 4 by 4 symmetric Toeplitz matrix utiliz-
ing the Maple interface to the FOXBOX server.

The following code fragment illustrates the initialization of the
FoxBox interface in a Maple session.
> read ‘bridge.mpl‘:

FoxBoxInitEnv(‘bpid.bbs‘, ‘cpid.bbs‘,
‘command.bbs‘, ‘ans.bbs‘):

Mod := 32771: Seed := 103069:

FoxBoxSetPrime(Mod):

The read command is utilized to import the Maple specific
FoxBox interface code into the Maple environment. Control of
the remote black box objects is achieved via TCP/IP communi-
cation on a dedicated port. The FoxBox server library func-
tion FoxBoxInitEnv establishes such a communication connec-
tion to a remote FoxBoXx server as well as initializes several in-
ternal variables. Maple character strings formed by back quotes
specify file names utilized by the FoxBox server interface. The
only restriction for each file name argument is that they be unique.
The FoxBoxSetPrime procedure initializes the FoxBox modular
arithmetic.

The next code fragment issues FOXBoX server library calls in-
tended to remotely instantiate two 4 by 4 symmetric Toeplitz de-
terminant common objects. One evaluates over the rationals and
the other modulo a prime. Each Maple constructor returns an inte-
ger index that serves as a remote black box object identifier. The

34

call to BlackBoxFactors creates a factors black box over the ra-
tionals that can evaluate each irreducible factor of the previously
constructed symmetric Toeplitz determinant common object.

> SymToeQ := BlackBoxSymToe(BBNET_Q,4,-1,1.0):
SymToeQ := 0
> SymToeZP := BlackBoxSymToe(BBNET_ZP,4,-1,1.0):

SymToeZP := 1
> FactorsQ := BlackBoxFactors(BBNET_Q, SymToeQ,
> Mod, 1.0, Seed):
FactorsQ := 2
The parameters for the Maple black box object constructors
mirror those utilized by the FOxBox programming library. The
reader is referred to [5] and [8] for a more elaborate exposition
of each FOxBox server library procedure call. The result of the
BlackBoxHomomorphicMap Maple constructor is a homomorphic
image of the previously computed factors black box object. Such
an image evaluates over the integers modulo a prime.
> FactorsZP := BlackBoxHomomorphicMap(BBNET_FACS,
> FactorsQ, SymToeZP):
FactorsZP := 3
> FactorZP := BlackBoxSelectValue(BBNET_ZP,
> FactorsZP, 0):
FactorZP := 4
The BlackBoxSelectValue function call serves asannto 1
multiplexor which is utilized to select the first factor. The code be-
low converts the first factor into its distributed sparse representation
by employing the homomorphic map of the factors black box object
to interpolate the selected factor modulo a prime. As an example,
we provide two methods of sparse conversion. The first performs a
remote conversion utilizing our modified Zippel algorithm.
> FB1 := SparseConversion(BBNET_ZP, FactorZP,
> [x1, x2, x3, x41, [4, 4, 4, 41, 4, Mod);
FB1 :=
2 2 2
+ 3 x2 + 32768 x1 x2 + 3 x3 +
6 x2 x3 + 32768 x2 x4 + 32768 x1 x4
The call to the SparseConversion FOXBoOX server library
procedure requires as input a base arithmetic flag, an index to a
black box representing a polynomial, a bound on the total degree
of the input polynomial black box, a degree bound for each vari-
able, and cardinality from which to choose random field elements.
The result of this call is a vector of monomials and corresponding
degrees. This representation is converted to a Maple polynomial
by matching the input variables to each monomial degree pair. The
second method employs Maple’s sparse multivariate modular poly-
nomial interpolation function.
> f := proc(x1, x2, x3, x4, p)
> local FactorValue;
> FactorValue := BlackBoxEval(BBNET_ZP,
> BBNET_FAC_HMAP_EVAL, FactorZP,
>
>

32768 x1

[x1, x2, x3, x4]);
RETURN(FactorValue);
> end:
> readlib(sinterp):

> FB2 := sinterp(f, [x1, %2, x3, x4 1, 4, Mod);
FB2 :=
2 2 2
32768 x1 + 3 x2 + 32768 x1 x2 + 3 x3 +

6 x2 x3 + 32768 x2 x4 + 32768 x1 x4

The Maple sinterp function call requires a procedure that
given integers and a prime number returns the value of a polyno-
mial modulo the input prime. In our example, this procedure calls
the BlackBoxEval FOXBoOX server library procedure to evaluate
the homomorphic map of the factors black box. Clearly, our remote
interpolation generates the same result in less time since it employs
an improved algorithm, utilizes compiled code, and does not incur
the communication overhead of transmitting evaluations.

3.2 Underlying Interface Architecture

As stated in the introduction, the primary design goal for our in-
terface between FOXBOX and a computer algebra system was that
this interface had to be easily portable between different systems.
Most general purpose computer algebra systems provide a method
of invoking commands in the host operating system. Therefore, we
chose a mechanism by which the FoxBox server functions are in-
voked through a “system” call. Drawing from an idea utilized by
our DSC interface to Maple [4], that system call executes an inter-
face program which sends a signal to a concurrent daemon process.
It is that single daemon process which forwards each request via a
TCP/IP connection to the FOXxBoXx server. Thus, we avoid any de-
pendence on calls to functions written in C from within a computer
algebra system. Furthermore, similar to OpenMath “phrase books”
[1] that translate (both ways) between the application specific rep-
resentation of a mathematical concept and its representation as an
OpenMath object, “bridges” to different computer algebra systems
require only a small amount of customized code. Thus, our bridges
are the only application-dependent portion of the FoxBox server
interface. Naturally, each different computer algebra system re-
quires its own particular bridging code.

4 Algorithmic Improvements

We briefly summarize several improvements to algorithms from the
literature that are made in their Fox Box implementations.

4.1 Sparse Conversion

We implemented Zippel’s [32] sparse interpolation algorithm with
the following modifications. Instead of interpolating the poly-
nomial f(xq,...,Xn) we interpolate f(X1Xg,...,XnXg). We thus
have added a variable in the outer loop of Zippel’s algorithm,
which costs additional time, but we can prune the support struc-
ture for the undetermined coefficient vector when determining
f(X1X0, - - -, XiX0,8i+1X0, - - -, @nX0), Where a1, ...,ap are the anchor
points for the sparse interpolation process. The degree in x; in a
term whose degree in X is d cannot be higher than d due to the
substitution above. Clearly, this trick does not always yield a lower
count of polynomial evaluations. In the example N = 10 of Ta-
ble 5 of Section 5 pruning reduced the number of polynomial val-
ues needed from 4,675 to 2,623.

Furthermore, we use the algorithm by Kaltofen and Laksh-
man [22] in the substep of solving a transposed Vandermonde sys-
tem, although we have implemented one intermediate step, namely
evaluation of a univariate polynomial at many points, with stan-
dard quadratic time polynomial arithmetic. The use of the algo-
rithm from [22] reduces the required space complexity to linear in
the number of terms of the sparse polynomial. At the current time
our polynomial wrapper/adapter neither requires nor implements
a method for multipoint polynomial evaluation, and we therefore
cannot generically plug into NTL 2.0’s fast code. However, the nec-
essary changes to FOXBoX are simple by migrating to the polyno-
mial wrapper/adapter classes all univariate polynomial algorithms,
like multi-point evaluation and subresultant PRS, that are needed
internally. A specific wrapper/adapter can then either call our al-
gorithms or the ones provided by the base arithmetic. We will cer-
tainly do that in the upcoming revision of FOxBoxX.

4.2 Factorization

A major bottleneck in the complexity of the black box factors con-
structed by the Kaltofen-Trager algorithm [25] is the necessity to
interpolate in Step A of that algorithm the bivariate polynomial in
XandY

f(X+bg,Y (p2 —ap(py —by) —hy) +aX + by,

¥ (pn—an(py—by) —bn) +anX +bp), Y

35

where f is the polynomial in n variables that is factored. Here a;,
b; and p; are elements in a field L. Pruning as discussed in §4.1
above reduces the number of evaluations of f to about half. Since
the image (1) is used for lifting the the factors, it is possible to fur-
ther reduce the work for factors of small degree d by allowing the
black box for f to be probed at points in the truncated power series
domain M = L[Y]/(Y9+1). FoxBox’s design allows for construc-
tion of extended domain objects (see §2.4) in which case one can
switch to univariate interpolation over the truncated power series
domain M. The complexity of evaluating a factor is then speeded
by a factor of magnitude O(d?/deg(f)) provided that the extended
black box for f over M runs a factor O(d?) slower, i.e., assuming
classical power series arithmetic.

4.3 Greatest Common Divisor

Our implementation has followed the algorithm in [7] with a mi-
nor space improvement. In Step B the polynomial y(X,Y) is not
explicitly constructed. Instead, its value y(p1,1) is computed in-
crementally during the bivariate interpolation process.

4.4 Separation of Numerator and Denominator

Similarly as in the GCD algorithm, the Kaltofen-Trager algo-
rithm [25] for evaluating the numerator and denominator black
boxes can be terminated early when in Step A of their algorithm
the assignment i; < 1 is made.

5 Challenge Problems

We now report on the results of several benchmark problems,
which exercise each of the components within FOXxBox. For each
benchmark problem we provide the total CPU time. We used the
GNU C/C++ compilers (version 2.7.2). Each of our benchmarks
are problems that cannot be solved by traditional symbolic meth-
ods due to exponential intermediate expression swell. Hence, the
benchmark problems reported herein represent the first symbolic
solutions of such problems.

5.1 Factorization Challenge
Consider a symmetric n x n Toeplitz matrix Sp,

an-1 ap—2 ... ajg ap
an—2 an-1 ... ap ai
Sn = .
ap az an-1 an-2
ao ap an-2 an-1

The elements along the leading diagonal or along any other diago-
nal parallel to the leading diagonal are equal and the matrix is sym-
metric. The determinant of a symmetric Toeplitz matrix, Sp, has
two factors over the rational numbers Q. We selected the problem
of computing a factor of a symmetric Toeplitz matrix to benchmark
FoxBox’s symmetric Toeplitz common object, the factors black
box object, and the sparse conversion algorithm. The solution to
such a problem within the calculus of black boxes is to first con-
struct a symmetric Toeplitz common object and factors black box.
This factors black box evaluates both irreducible factors of the de-
terminant of the aforementioned symmetric Toeplitz common ob-
ject.

Table 4 provides total CPU times for the construction of the
factors black box of 10 different symmetric Toeplitz matrices. Our
application employs the SACLIB rational polynomial arithmetic
wrapper/adaptor as the base arithmetic and executes utilizing 60
megabytes of memory.

The second phase in the solution of the factorization benchmark
problem is to compute the homomorphic image of a factor black
box object. The result of such a map is a new black box object

N CPU Time N CPU Time
11 oho2/ 16 oh43’
12 ohos’ 17 1hos’
13 ohoo’ 18 1h42
14 oh16’ 19 2h30/
15 oh2e’ 20 3h42’

Table 4: Total CPU times (hoursPminutes’) required to construct a
factors black box (over Q) that can evaluate both irreducible factors
of the determinant of a symmetric Toeplitz matrix. The processor
is a Sun Ultra 1/170 (128MB), Solaris 2.5.

that evaluates the value of the pre-image modulo a prime. Finally,
we perform a modular sparse conversion to retrieve the factor’s
distributed representation. This portion of the benchmark appli-
cation utilized the NTL 2.0 modular polynomial arithmetic wrap-
per/adaptor for 30 bit prime moduli. Table 5 provides the complete
CPU times for the factorization benchmark problem.

N CPU Time Degree # Terms

10 120’ 5 931
11 134/ 5 847
12 10h4’ 6 5577
13 15h24’ 6 4982

Table 5: CPU times (hoursPminutes’) to retrieve the distributed rep-
resentation of a factor from the factors black box of a symmetric
Toeplitz determinant black box. Construction is over Q evaluation
isin GF(lO8 +7) for N = 10,11, and 12 (Pentium 133, Linux 2.0)
and GF(230 — 35) for N = 13 (Sun Ultra 2 168MHz, Solaris 2.4).

It appears from our empirical data that for even dimension
Toeplitz matrices, both factors of the determinant are of degree N /2
and have an identical number of terms. For odd dimension Toeplitz
matrix determinants, one factor is of degree [N/2| and the other
has degree [N/2]. It can be observed that for odd N the factor
with degree |[N/2| has fewer terms than a factor of an N — 1 di-
mension Toeplitz matrix determinant. Indeed, providing an exact
formulation for the number of terms and degree of each factor of
an N dimensional Toeplitz matrix is a subject of future work.

Our pruning sparse conversion algorithm proved quite useful
for this particular set of challenge problems. By pruning terms that
have been marked as “completed” the pruning sparse conversion
algorithm was able to dramatically reduce the overall size of the
resulting linear systems and as a direct consequence reduced the
number of black box evaluations. For instance, the problem of con-
verting to sparse representation a factor of a 10 by 10 symmetric
Toeplitz determinant required only 2623 black box calls while the
algorithm without pruning employed 4675 black box evaluations.
Indeed, it was a combination of the concepts of black box homo-
morphic maps, term pruning and NTL’s fast modular arithmetic that
provided the tools necessary for the successful completion of our
factorization challenge problems.

5.2 Greatest Common Divisor Challenge
Vandermonde’s matrix V (P) formed from elements of a list P =
(X1, ..., Xn) is a square matrix that has as its (i, j)-th entry P[i]) =1 =

xi‘_l, where 1 < i, j <n. The determinant of VVandermonde’s matrix

can be expressed by the following equation:

det(V (X1,...,Xn)) = (Xj —xi).

1<i<j<n

36

Let us denote Vi = det(V(xq,...,Xn)) and V, =
det(V (x1,...,Xk,Yki1,---,Yn)). The greatest common divisor
of V; and V5, can be expressed as the following product:

G(X1,...,Xk) = GCD(V1,V7) = (Xj —Xi)-
1<i<j<k

We selected the problem of computing the greatest common divi-
sor of V; and V, for k = 2 and n = 10, 15, 20,25, 30. For all values
of n, the final result of our benchmark problem is the polynomial
G(x1,X2) = X1 —X2. These computations provide benchmark tim-
ings for FoxBox’s Vandermonde common object, greatest com-
mon divisor black box object, and sparse conversion algorithm.
The solution of this problem within the black box framework is
to first construct two Vandermonde black box objects. One repre-
senting V1 and the other V,. Secondly, we employ the greatest com-
mon divisor black box algorithm to create a black box representing
the greatest common divisor of the aforementioned Vandermonde
common objects. Finally, we perform a sparse conversion to re-
trieve the distributed representation of the previously constructed
greatest common divisor black box.

Table 6 provides the complete CPU times and work measures
for the greatest common divisor benchmark problems. Timings for
our arithmetic over Q and in GF(10%6 4 61) employed SACLIB’s
rational polynomial arithmetic wrapper/adaptor and the NTL 1.0
fast modular polynomial arithmetic wrapper/adaptor respectively.
These benchmark applications performed their computations on a
Sun Ultra 1/170 with a resident set of 60 megabytes of memory.

N Q GF(P)
10 ohoy/ oho’
15 oh14’/ oho/
20 143’ oho’
25 gh42/ ohy/
30 35M36’ ohs’

Table 6: Total CPU time (hoursPminutes’) required to retrieve the
distributed representation of the GCD of two Vandermonde matri-
ces with two variables in common, each symbolic object is in black
box representation. Timings are provided for arithmetic over Q and
in GF(10% 4 61). The processor is a Sun Ultra 1/170 (256MB),
Solaris 2.5.

6 Conclusions

The creation of FOxBoX demonstrate several new aspects of sym-
bolic computation. First, we show that the black box representa-
tion of objects has pushed the size of symbolic expressions beyond
what standard data structures could handle before. Second, we
conclude that abstract domain types can be implemented in a gen-
eral computer language without significant loss of efficiency, the
so-called generic programming methodology. Third, we establish
that special purpose components can be seamlessly incorporated
into widely-used general purpose symbolic systems and that at the
same time these components can employ varying external symbolic
arithmetic packages. This is our “plug-and-play” design objective.
Finally, we retain parallelizability of all of our algorithms.

The FoxBox system is far from finished. We do not pro-
vide sparse interpolation procedures for non-standard bases [14] or
black box linear algebra [23, 6]. We have not compared ours with
alternative algorithms, for instance for factorization [29]. Servers
to Magma, Mathematica, and MuPAD are not written. The system
should be ported from our Unix platforms (Solaris, Linux, AlX)
to Windows 95/NT. Distributed task management and scheduling

must be improved. The propagation of success probabilities in our
randomized algorithms for nested black box construction is to be
investigated. Wen-shin Lee has started to derive the necessary prob-
ability estimates.

FoxBox is the most complex program that the authors have
built so far, for it fits between the non-specialist consumer of sym-
bolic mathematics software and the highly tuned expert software
for performing fundamental tasks such as polynomial factoriza-
tion. FoxBox must run under different operating systems, allow
for parallel computation, and be easy to reconfigure for new plu-
gin and client systems. We believe that FOxBox demonstrates
how a small team of developers can produce efficient software of
such wide applicability by using a general purpose symbolic sys-
tem for rapid algorithmic prototyping and by generic programming
methodology for producing compilable code into which multiple
existing libraries can be plugged.

Acknowledgement: Plugging into fast single word modular
polynomial arithmetic instead of full precision modular arithmetic
was recommended to us by Michael Monagan. That speeded one of
the factorization challenges in §5.1 twenty-six fold. The packing of
our Maple code into PROTOBOX is done with the help of Wen-shin
Lee. We thank the referees for their comments.

References

Note: many of Erich Kaltofen’s publications are accessible through
links in the online BIBTEX bibliography database at www.math.
ncsu.edu/"kaltofen/bibliography/.

[1] ABBOTT, J., DiAaz, A., AND SUTOR, R. S. A report on
OpenMath a protocol for the exchange of mathematical infor-
mation. SIGSAM Bulletin 30, 1 (1996), 21-24.

ABDALI, S. K., CHERRY, G. W., AND SOIFFER, N. An
object-oriented approach to algebra system design. In Proc.
1986 Symp. Symbolic Algebraic Comput. Symsac ’86 (New
York, N. Y., 1986), B. W. Char, Ed., ACM, pp. 24-30.

(2]

ABELSON, H., AND SussMAN, G. J. Structure and In-
terpretation of Computer Program. MIT Press, Cambridge,
Massachusetts, USA, 1985.

(3]

CHAN, K. C., Diaz, A., AND KALTOFEN, E. A distributed
approach to problem solving in Maple. In Maple V: Mathe-
matics and its Application (Boston, 1994), R. J. Lopez, Ed.,
Proceedings of the Maple Summer Workshop and Sympo-
sium (MSWS’94), Birkhauser, pp. 13-21.

(4]

Diaz, A. FoxBox a System for Manipulating Symbolic Ob-
jects in Black Box Representation. PhD thesis, Rensselaer
Polytechnic Instit., Troy, New York, May 1997.

(5]

Diaz, A., HiTz, M., KALTOFEN, E., LoBO, A., AND
VALENTE, T. Process scheduling in DSC and the large
sparse linear systems challenge. J. Symbolic Comput. 19, 1-3
(1995), 269-282.

(6]

DiAz, A., AND KALTOFEN, E. On computing greatest com-
mon divisors with polynomials given by black boxes for their
evaluation. In Levelt [27], pp. 232-239.

(7]

DiAZ, A., AND KALTOFEN, E. The FoxBox
source code. http://www.math.ncsu.edu/ kaltofen/
software/foxbox, Jan. 1998. Version 1.1.

(8]

ERLINGSSON, U., KALTOFEN, E., AND MUSSER, D.
Generic Gram-Schmidt orthogonalization by exact division.
In Lakshman Y. N. [26], pp. 275-282.

(9]

37

[10] FREEMAN, T. S., IMIRZIAN, G., KALTOFEN, E., AND
LAKSHMAN YAGATI. DAGWOOD: A system for manipulat-
ing polynomials given by straight-line programs. ACM Trans.
Math. Software 14, 3 (1988), 218-240.

[11] GeDDES, K. O., CZAPOR, S. R., AND LABAHN, G. Al-
gorithms for Computer Algebra. Kluwer Academic Publ.,

Boston, Massachusetts, USA, 1992.

[12] GEeisT, A., BEGUELIN, A., DONGARRA, J., JIANG, W.,
MANCHEK, R., AND SUNDERAM, V. PVM Parallel Vir-
tual Machine A Users’ Guide and Tutorial for Network Parl-
lel Computing. MIT Press, Cambridge, Massachusetts, USA,

1994.

[13] GRANLUND, T. The GNU Multiple Precision Arithmetic Li-

brary. Free Software Foundation, Cambridge, MA, 1993.

[14] GRIGORIEV, D. Y., AND LAKSHMAN Y. N. Algorithms for
computing sparse shifts for multivariate polynomials. In Lev-

elt [27], pp. 96-103.

GRoPP, W., LUSK, E., AND SKJELLUM, A. Using MPI
Portable Parallel Programming with the Message-Passing In-
terface. MIT Press, Cambridge, Massachusetts, USA, 1994.

[15]

HONG, H., NEUBACHER, A., AND SCHREINER, W. The
design of the SACLIB/PACLIB kernels. In Design and Im-
plementation of Symbolic Computation Systems (Heidelberg,
Germany, 1995), A. Miola, Ed., vol. 722 of Lect. Notes Com-
put. Sci., Springer Verlag, pp. 288-302.

[16]

[17] ISSAC *94 Proc. Internat. Symp. Symbolic Algebraic Comput.

(New York, N. Y., 1994), ACM Press.

[18] JENKS, R.D., AND SUTOR, R. S. axiom The Scientific Com-

puting System. Springer Verlag, Heidelberg, Germany, 1992.

[19] KALTOFEN, E. Greatest common divisors of polynomials
given by straight-line programs. J. ACM 35, 1 (1988), 231-

264.

[20] KALTOFEN, E. Factorization of polynomials given by
straight-line programs. In Randomness and Computation,
S. Micali, Ed., vol. 5 of Advances in Computing Research.

JAI Press Inc., Greenwhich, Connecticut, 1989, pp. 375-412.

[21] KALTOFEN, E. On computing determinants of matrices with-
out divisions. In Proc. 1992 Internat. Symp. Symbolic Al-
gebraic Comput. (ISSAC’92) (New York, N. Y., 1992), P. S.

Wang, Ed., ACM Press, pp. 342-349.

[22] KALTOFEN, E., AND LAKSHMAN YAGATI. Improved sparse
multivariate polynomial interpolation algorithms. In Sym-
bolic Algebraic Comput. Internat. Symp. ISSAC ’88 Proc.
(Heidelberg, Germany, 1988), P. Gianni, Ed., vol. 358 of Lect.

Notes Comput. Sci., Springer Verlag, pp. 467-474.

[23] KALTOFEN, E., AND LOBO, A. Factoring high-degree poly-
nomials by the black box Berlekamp algorithm. In ISSAC’94

[17], pp. 90-98.

KALTOFEN, E., AND LOBO, A. On rank properties of
Toeplitz matrices over finite fields. In Lakshman Y. N. [26],
pp. 241-249.

[24]

[25] KALTOFEN, E., AND TRAGER, B. Computing with poly-
nomials given by black boxes for their evaluations: Greatest
common divisors, factorization, separation of numerators and

denominators. J. Symbolic Comput. 9, 3 (1990), 301-320.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

LAKSHMAN Y. N., Ed. ISSAC 96 Proc. 1996 Internat. Symp.
Symbolic Algebraic Comput. (New York, N. Y., 1996), ACM
Press.

LEVELT, A. H. M., Ed. Proc. 1995 Internat. Symp. Symbolic
Algebraic Comput. ISSAC’95 (New York, N. Y., 1995), ACM
Press.

MUSSER, D. R., AND SAINI, A. STL Tutorial and Ref-
erence Guide C++ Programming with the Standard Tem-
plate Library. Addison-Wesley Publ. Comp., Reading, Mas-
sachusetts, 1996.

RUBINFELD, R., AND ZIPPEL, R. A new modular interpo-
lation algorithm for factoring multivariate polynomials. In
Algorithmic Number Theory (Heidelberg, Germany, 1995),
vol. 877 of Springer Lecture Notes Comput. Sci., Springer
Verlag, pp. 93-107.

SHouP, V. NTL: A library for doing number theory. Link on
web document http://www.cs.wisc.edu/ shoup/, Univ.
Wisconsin, Dept. Comput. Sci, 1998.

WATT, S. M., BROADBERY, P. A., DOOLEY, S. S., IGLI0O,
P., MORRISON, S. C., STEINBACH, J. M., AND SUTOR,
R. S. A first report on the A! compiler. In ISSAC’94 [17],
pp. 25-31.

ZIPPEL, R. Interpolating polynomials from their values. J.
Symbolic Comput. 9, 3 (1990), 375-403.

38

