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Abstract

New algorithms are presented for factoring polynomials of
degree n over the finite field of q elements, where q is a
power of a fixed prime number. When log q = n1+a, where
a > 0 is constant, these algorithms are asymptotically faster
than previous known algorithms, the fastest of which re-
quired time Ω(n(log q)2),† or Ω(n3+2a) in this case, which
corresponds to the cost of computing xq modulo an n de-
gree polynomial. The new algorithms factor an arbitrary
polynomial in time O(n3+a+o(1) +n2.69+1.69a). All measures
are in fixed precision operations, that is in bit complexity.
Moreover, in the special case where all the irreducible fac-
tors have the same degree, the new algorithms run in time
O(n2.69+1.69a). In particular, one may test a polynomial for
irreducibility in O(n2.69+1.69a) bit operations. These results
generalize to the case where q = pk, where p is a small prime
number relative to q.

1 Introduction

The expected running time of randomized algorithms for
factoring a polynomial over a finite field is measured in
both the degree of the polynomial, n, and the cardinal-
ity of the field, q. The cost of the field arithmetic it-
self depends on the data structure representing field ele-
ments. Usually, each field operation costs O((log q)1+o(1))
fixed precision integer operations. Which of the known al-
gorithms performs best in the sense of asymptotic running
time depends on the size q relative to the degree n. If
log q = O(nb) with b < 0.454 the algorithms by Kaltofen
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and Shoup [15] require O(n1.815+0.408b) expected arithmetic
operations in Fq, the field with q elements. If log q = Θ(nc)
with 0.454 ≤ c ≤ 1.375 the algorithm by von zur Gathen and
Shoup [10] uses O((n2 +n log q)(log n)2 loglog n) field opera-
tions. For any larger q the dominant complexity of any algo-
rithm is O(n1+o(1) log q) field operations, which arises from
computation of xq modulo the polynomial to be factored and
which already the Berlekamp [3] algorithm achieves (see also
[21, 8], and [6]).

Here we focus on the latter case when additionally q = pk

with p prime and where Fq is represented in the Kronecker
style as Fp[z]/(ϕ(z)), where ϕ is an irreducible polynomial
over Fp of degree k. For the sake of introduction, we shall
set k = O(n1+a), where a ≥ 0 is constant, and p = O(1).
Arithmetic operations in Fq become polynomial operations

of computational complexity O(n1+a+o(1)). The no(1) factor
represents logarithmic factors arising in the FFT based poly-
nomial multiplication algorithms [22, 7]. Using any of the
algorithms stated above, the number of fixed precision inte-
ger operations for factoring a polynomial of degree n over Fq

is then O(n(log q)2+o(1)), or, in terms of a, O(n3+2a+o(1)).
In this paper we show that under the described circum-

stances the fixed precision complexity of computing all ir-
reducible factors of a polynomial of degree n over Fq is

O(n3+a+o(1)+n2.69+1.69a). Our new algorithm uses random-
ization and the measure is the expected number of fixed pre-
cision operations. Furthermore, we establish a stronger re-
sult for the restricted so-called equal degree factoring prob-
lem. The restricted problem assumes that all irreducible
factors have the same known degree, in which case we can
factor an n degree polynomial in O(n2.69+1.69a) expected
fixed precision operations. Furthermore, one may test a
polynomial for irreduciblity, or if all its irreducible factors
have the same degree, in O(n2.69+1.69a) deterministic fixed
precision integer operations. Below we will also give the
precise complexity for general p and k. Our solution is a
twist of an algorithm by von zur Gathen and Shoup [10].
As an intermediate result, we solve the problem of comput-
ing xq modulo a polynomial of degree n over Fq faster than
Θ(n(log q)2) fixed precision operations = Θ(n) (polynomial
arithmetic) × log q (raising to power of q) × Θ(log q) (fixed
precision cost for arithmetic in Fq).
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2 Known Facts

The distinct degree factorization algorithm separates those
factors that have differing degrees. It is based on a basic
fact about finite fields,

xqi

− x =
Y

f irreducible over Fq

deg(f) divides i

f(x).

This factorization implies several very useful algorithms.
For one, it is easy to test f for irreducibility. One must
have, with n = deg(f), that xqn − x ≡ 0 (mod f(x)) and

GCD(f(x), xqn/t − x) = 1 for all prime numbers t dividing
n. This test can be improved [24, Section 6]. A similar cri-
terion (see von zur Gathen and Shoup [10, Fact 7.4]) tests
if all factors of f have the same degree and if so determines
that common degree.

Next, we give the classical distinct degree factorization
algorithm, which as Joachim von zur Gathen tells us was
already known to Gauss; Lidl and Niederreiter [19] attribute
the method to Arwin [1]. First, we write

f [i] =
Y

g irred. factor of f
deg(g) = i

g

The algorithm finds all factors f [i] of f as follows.

f∗ ← f ; /* squarefree */

for i← 1,...,⌊n/2⌋ do

{f [i](x)← GCD(−x + xqi

mod f∗(x), f∗(x));

f∗ ← f∗
.

f [i];

}

f [deg(f∗)] ← f∗; /* factor with degree > ⌊n/2⌋*/
This algorithm requires fast polynomial residue arithmetic,
fast polynomial greatest common divisor (GCD) computa-
tion, computing high modular powers of x, etc. Table 1
summarizes the major algorithms employed for these tasks.
There f(x) ∈ Fq[x] has degree n, and g(x), h(x) are modu-
lar residues. All counts are in terms of arithmetic operations
in Fq. It is useful to express the running times in terms of
M(n), the function that bounds the asymptotic complexity
of the used polynomial multiplication algorithm, and C(n),
the function that that bounds the used modular polynomial
composition algorithm, which is problem 4 in Table 1. The
best M(n) is n log n loglog n.

We shall expand on the meaning of this entry 4 in Ta-
ble 1. For fast modular polynomial composition matrix mul-
tiplication is used. By ω we shall denote an (achievable) ma-
trix multiplication exponent, i.e., when there is an algorithm
that multiplies two n× n matrices in O(nω) arithmetic op-
erations. For classical multiplication ω = 3 and the fastest
method has ω = 2.375477 [9]. The following is an adapta-
tion of a result by Brent and Kung [5] (see [10, fact 5.1]).

Lemma 1 Let F be a monic polynomial in R[x] of degree
n, where R is a commutative ring, and let G and H be poly-
nomials in R[x] of degree < n. Then the polynomial com-
position of G and H modulo F , G(H(x)) mod F (x) can be

computed in O(n(ω+1)/2) arithmetic operations in R. In par-
ticular, the running time O(n1.69) can be achieved.

On January 15, 1997 we received an electronic mes-
sage from Xiaohan Huang and Victor Pan that the matrix
multiplication problem of dimensions ⌊√n⌋ × ⌊√n⌋ times
⌊√n⌋ × n used for the proof of Lemma 1 can be performed
in O(n1.666977) arithmetic operations [13]. One immediately
obtains slight improvements of the estimates in Lemma 1
to O(n1.67) and of all expontents given in the following sec-
tions (replace the decimal digits .69 by .67). Indeed, many
of the new factorizations algorithms [10, 15] are speeded by
improving the running time of the modular polynomial com-
position problem. In our theorems we express the running
times in terms of C(n), a function that bounds the asymp-
totic cost of modular polynomial composition. Using the
algorithm by Brent and Kung we obtain C(n) = n1.69 and
using the one by Huang and Pan C(n) = n1.67.

3 The Equal Degree Factorization Algorithm

The assumption for our factoring problem over Fq, where
q = pk and p a prime number, is that the input polynomial
f has irreducible factors of one and the same degree d, which
is known. The polynomial is free of repeated factors.

Algorithm E This algorithm takes as input a square-free
polynomial f ∈ Fq[x] of degree n and a positive integer d.
The input polynomial must be a product of r = n/d ir-
reducible polynomials of degree d. The output is the list
f1, . . . , fr of the irreducible factors of f .

Step E1 Pick a random element α ∈ Af , where Af =
Fq[x]/(f(x)) is the polynomial algebra isomorphic to
F

r
qd .

In Af compute the following trace-like map:

β = TF
qd /Fp(α) = α + αp + αp2

+ · · ·+ αpkd−1

. (1)

Step E2 If p > 2, compute the following quadratic resi-
duosity-like map: γ = β(p−1)/2; if p = 2 set γ = β.

Step E3 Let γ = (g mod f). Recursively factor g1 =
GCD(g, f), g2 = GCD(1 + g, f) and, if p > 2, g3 =
f/(g1g2).

The possibility of splitting the equal degree factors, similarly
to the distinct degree factorization algorithm of Section 2,
appears to have been first realized by Cantor and Zassenhaus

[8]. They use the map α(qd−1)/2 if p > 2 and work in a
quadratic extension of Fqd if p = 2. Ben-Or [2] introduced
the trace of the Frobenius map used in Step E1, which is
also used in the algorithm of von zur Gathen and Shoup
[10].

Algorithm E is based on the fact that the trace of Frobe-
nius maps random elements of Fqd , the images of α modulo
the irreducible factors of f , to random residues of Fp. This
is most easily seen from the identity

xqd

− x =
Y

a∈Fp

(a + x + xp + · · ·+ xpkd−1

).

Since Fqd is the splitting field of the left side and any ele-
ment of Fqd is a root of the right side, the left side must
divide the right side. As the degrees and leading coefficients
agree, both sides must be equal. The expected depth of
the recursion is O(log r) [10, proof of theorem 3.7], therefore
the running time of a single invocation determines within a
factor of O(log r) the overall expected running time.
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Problem Running time In terms of M(n), C(n) Inventors of algorithm

1. g · h (mod f) O(n(log n) loglog n) O(M(n)) Schönhage & Strassen 1969 [23]
Schönhage 1977 [22] (p = 2)
Sieveking 1972 [25]/Kung 1974 [18]

2. GCD(f, g) O(n(log n)2 loglog n) O(M(n) log n) Knuth 1971 [16]/Moenck 1973 [20]

3. gq (mod f) O(n1+o(1) log q) O(M(n) log q) using Pingala 200 b.c. (see [17, Sec. 4.6.3])

4. g(h(x)) (mod f(x)) O(n1.69) O(C(n)) Brent & Kung 1978 [5]
Coppersmith & Winograd 1987 [9]

5. xqn

(mod f(x)) O(n1.69) O(C(n) log n) von zur Gathen & Shoup 1991 [10]
given xq (mod f(x))

6. g(h1), ..., g(hn) (mod f) O(n2+o(1)) O(M(n2) log n) using Moenck & Borodin 1972 [4, 10]

7. xq2

, ..., xqn

(mod f(x)) O(n2+o(1)) O(M(n2) log n) von zur Gathen & Shoup 1991 [10]
given xq (mod f(x))

Table 1: Arithmetic cost of basic polynomial arithmetic over Fq

4 Fast Trace of Frobenius Maps

The running time of Algorithm E is largely dependent on
the speed of computing the trace of the Frobenius map
in Af . It is this step that we speed up. We make the
following assumption about the representation of elements
in Af . The coefficient field Fq, where q = pk, is repre-
sented as Fq = Fp[z]/(ϕ(z)) where ϕ is a monic irreducible
polynomial over Fp of degree k. The input polynomial
f(x) ∈ Fq[x] is monic and square-free. Elements in the alge-
bra Af = Fp[x, z]/(f(x, z), ϕ(z)) are represented as polyno-
mials in x and z with degree in x less than n and degree in
z less than k.

Algorithm T This algorithm takes as input a polynomial
f ∈ Fq[x], an element α in the algebra Af = Fq[x]/(f(x)),
and an integer i > 1.

It returns the quantities

βi = αp + αp2

+ · · ·+ αpi ∈ Af ,

ξi = (xpi

mod f(x)) ∈ Af ,

ζi = (zpi

mod ϕ(z)) ∈ Fq.

Step T1 Let j = ⌊i/2⌋. Recursively compute βj , ξj , and
ζj . Note that if i = 1 β1 = αp is found by binary
exponentiation, as is ξ1 and ζ1.

Step T2 Compute

βpj

j = (αp + · · ·+ αpj

)pj

= αpj+1

+ · · ·+ αp2j

as follows:

βpj

j =

 

n−1
X

l=0

cl(z)xl

!pj

mod (f(x), ϕ(z))

=

n−1
X

l=0

cl(z)pj

(xl)pj

mod (f(x), ϕ(z))

=

n−1
X

l=0

cl(z
pj

)(xpj

)l mod (f(x), ϕ(z))

=

n−1
X

l=0

cl (ζj) ξl
j mod (f(x), ϕ(z));

thus first compute for l = 0, . . . , n − 1, c̃l(z) =
(cl(ζj) mod ϕ(z)) by modular polynomial composition

over Fp. Then compute βpj

j =
Pn−1

l=0 c̃l(z)ξl
j mod

(f(x), ϕ(z)) by modular polynomial composition over

Fq. Finally, set β2j = βj + βpj

j .

Similarly, compute ξ2j = ξpj

j and ζ2j = ζpj

j . If i = 2j
one is done. Otherwise, perform the next step.

Step T3 Compute β2j+1 = β1 + βp
2j , where βp

2j(x, z) =

β2j(ξ1, ζ1) mod (f(x), ϕ(z)). Similarly, compute ξ2j+1

= ξp
2j and ζ2j+1 = ζp

2j .

We now estimate the running time of Algorithms T
and E. Arithmetic in Fq is reduced to polynomial arith-
metic over Fp. The costliest arithmetic operation is the
reciprocal, which can be accomplished in O(M(k) log k) op-
erations in Fp. Each recursive invocation of Algorithm T
performs O(n) modular polynomial compositions over Fp at
a total cost of O(nC(k)) arithmetic steps in Fp. Further-
more, O(1) modular polynomial compositions over Fq are
executed, at a total cost of O(C(n)M(k)) operations in Fp.
The remaining additions are dominated by these measures,
except the computation of β1 and ξ1, which are done in
O(log(p)M(n)M(k)) operations in Fp. The expected depth
of the recursion tree of Algorithm E is O(log r). Each call on

186



each level performs O(log(kd)) invocations of Algorithm T,
and one GCD computation over Fq. Other than making f
monic at the beginning, only in this GCD computation one
performs O(input degree) reciprocals. Therefore, the extra
log k factor introduced by the reciprocals in the GCDs is
accounted for in the following estimates.

Theorem 1 For Fq = Fp[z]/(ϕ(z)) with deg(ϕ) = k Algo-
rithm E can be implemented so as to use

O( log(r) log(kn) (n C(k)
+ C(n) M(k)
+ log(p) M(n) M(k)) )

expected operations in Fp.

Note that the log r factor can be removed from some of the
summands in the above asymptotic estimate by the tech-
niques of [10, Section 4]. In the special case where q = 2n

the running time is with the fastest known matrix exponent
O(n2.69) bit operations, that is, sub-cubic.

As explained in Section 2, a fast algorithm for computing

xqn/t

mod f(x) for all prime numbers t dividing n and a fast
greatest common divisor algorithm results in an efficient ir-
reducibility test. Similarly, [10, Fact 7.4] one can test if the
irreducible factors have all one and the same degree and
determine that degree. These tests do not require random-
izations. Let ̟(n) be the number of distinct prime factors

of n; e.g., ̟(325) = 2. In the worst case, ̟(n) = O( log n
loglog n

),

while in the average case ̟(n) = O(loglog n) [11, Sec-
tion 22.10]. Using the methods of Shoup [24, Section 6],
one easily obtains the following theorem.

Theorem 2 For Fq = Fp[z]/(ϕ(z)) with deg(ϕ) = k one can
determine if a polynomial over Fq is irreducible, or if all its
irreducible factors are of equal degree, and if so determine
the common degree, with

O( log(̟(n)) log(kn)(n C(k)
+ C(n) M(k)
+ log(p) M(n) M(k)) )

deterministic operations in Fp.

5 Distinct Degree Factorization

We can also apply the methods of Section 4 to the distinct
degree factorization algorithm of von zur Gathen and Shoup
[10], or the black box Berlekamp algorithm [14, 15], and
speed the entire factorization process for high algebraic ex-
tension. For simplicity, we describe the changes to the dis-
tinct degree factorization algorithm of von zur Gathen and
Shoup. The running time of their algorithm is

O(n2+o(1) + n1+o(1) log q) (2)

expected operations in Fq, where n is the degree of the input
polynomial f . Their idea is based on the distinct degree
algorithm given in Section 2 and computes from xq mod
f(x) the powers

xq2

mod f(x), . . . , xqn

mod f(x)

using O(n2+o(1)) field operations (see Table 1, Problems 6
and 7). For q = pk with k = O(n1+a), where a > 0 is con-
stant, this leads under the Kronecker model for arithmetic
in Fq to

O(n3+2a+o(1) log p)

expected operations in Fp for computing the full distinct
degree factorization of f .

We now observe that the n1+o(1) log q term in (2) is con-
tributed solely from the computation of xq mod f(x) over
Fq (and the cost of equal degree factorization). However, in
Section 4 we give a method for computing xq mod f(x) in

O(n2.69+1.69a + n2+a+o(1) log p)

arithmetic operations in Fp. Here and in the following the
summand 0.69 represents (the exponent in C(n)) − 1. Thus
we have the following improvement to general factorization,
relying on the Cantor/Zassenhaus approach with the von zur
Gathen and Shoup distinct degree factorization algorithm
and our equal degree modification.

Theorem 3 A polynomial over Fq with q = pk can be fac-
tored into its irreducible factors in

O( M(n2) log(n) M(k)
+ log(n) log(nk) (n C(k)

+ log(p) M(n) M(k)) )

expected operations in Fp. In particular, if k = O(n1+a),
where a > 0 is constant, a polynomial can be factored into
its irreducible factors in

O(n3+a+o(1) + n2.69+1.69a + n2+a+o(1) log p) (3)

expected operations in Fp.

The following observation may further clarify the result.
Let q = 2k with k = Ω(n1.46). The von zur Gathen/Shoup
factorization method, as well as the fast Berlekamp method,
consumes O(n(log q)2+o(1)) fixed precision integer opera-
tions, while our speeded method only uses O(n(log q)1.69)
fixed precision operations.

We wish to remark that the n2.69+1.69a term in the run-
ning time (3) of the above theorem, or an n2.67+1.67a term
derived from a C(k) = O(k1.67) modular polynomial com-
position algorithm (see last paragraph of Section 2), can be
further improved if one carries out the n modular polynomial
compositions of degree k needed in Step T2 of Algorithm T
simultaneously by a single rectangular matrix multiplication
[12].

Acknowledgements: We like to thank the two refer-
ees for catching several inaccuracies, and Xiaohan Huang
for sending us his new results on fast rectangular matrix
multiplication.
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