J. Symbolic Computation (2008) 23, 503-515

Teaching Computational Abstract Algebra'

ERICH KALTOFEN #
Department of Mathematics, North Carolina State University
Raleigh, N.C. 27695-8205, U.S.A.

(Received January 1995)

We report on the contents and pedagogy of a course in abstract algebra that was taught
with the aid of educational software developed within the Mathematica system. We
describe the topics covered and the didactical use of the corresponding Mathematica
packages, as well as draw conclusions for future such courses from the students’ comments
and our own experience.

1. Introduction

In the Spring semester of 1990 we undertook the educational experiment of teaching
undergraduate mathematics and computer science students some fundamental notions of
algebra by using computers. The course was entitled Computational Abstract Algebra and
offered at Rensselaer Polytechnic Institute as a cross-listed mathematics and computer
science course. Twelve students enrolled in it, five of whom were graduate students. The
guiding principle of the experiment was to present the notions of abstract algebra in
a constructive manner following the style of (van der Waerden 1940) text book. More-
over, full-fledged Mathematica (Wolfram 1991) implementations of the discussed meth-
ods were written by me. Students were asked to take the Mathematica packages and
solve homework and examination problems with them. We fully intended to include both
pencil-and-paper theorem proving and on-the-computer problem solving.

The topics covered in this experimental course are not typical for an abstract algebra
course. There was a very limited coverage of group theory, mostly that of properties of
the multiplicative group of finite fields, and an extensive coverage of integral domains.
Homomorphisms were introduced in the context of modular and ring ideal arithmetic.
In place of the classical material, many applications of algebraic techniques were dis-
cussed. Modular maps were applied to integer factorization by the Pollard algorithm and
to polynomial factorization by the Cantor-Zassenhaus algorithm. Euclidean division of
polynomials was applied to polynomial real and complex root computation by Sturm
sequences. The concepts of quotient rings and reduction modulo an ideal was applied to

T This material is based on work supported in part by the National Science Foundation under Grants
No. CCR-87-05363 (educational s upplement) and No. CCR-9319776. A major part of this work was
done while the author was at the Department of Computer Science at Rensselaer Polytechnic Institute.

1 E-mail: kaltofen@eos.ncsu.edu

0747-7171/97/010001 + 13 sy960104 $25.00/0 © 2008 Academic Press Limited

504 E. Kaltofen

both the construction of a Grobner basis of a system of multivariate polynomial equations
and to the computation of the Hermite normal form of a matrix.

In this paper the course content and software is described, and conclusions are drawn
from the students’ reactions and the author’s own experience. All course material can
be retrieved from its home directory http://www4.ncsu.edu/“kaltofen/public.html/
Courses/ComputAlgebra/Mathematica.

2. Syllabus

The main purpose of the course was to demonstrate the power of mathematical abstrac-
tion. The large fraction of the course centered on the application of Euclid’s algorithm.
Here are the subjects that the author covered, with the amount of time spent on them
and in the order in which they were presented. The first half of the semester consisted
of an in-depth study of the properties of the integers and the abstraction to a Euclidean
domain, with full mathematical proofs. The second half constituted an overview of sev-
eral applications, where mathematical facts were demonstrated with Mathematica rather
than rigorously proven. At Rensselaer Polytechnic Institute a semester-long course meets
three times a week for 50 minutes each class. There are 14 weeks in each semester.

1 Peano arithmetic (3 weeks): Introduction to integer addition, multiplication, and
exponentiation in an axiomatic way. Higher order binary integer operations, such
as towers of exponentiations and Ackermann-like functions. Furthermore, exponen-
tial speed-up of exponentiation by repeated squaring and correctness proof of the
algorithm. Demonstration of the underlying principle by the “Russian peasants’
method” for integer multiplication. Primality testing by the little Fermat theorem.

2 EBuclidean domains (3 weeks): Integer greatest common divisors (GCDs) by the Eu-
clidean algorithm. The abstract notion of Euclidean division and Euclidean domain.
Speeded integer GCDs by taking absolutely smallest remainders. The Gaussian in-
tegers as a Fuclidean domain. Univariate polynomials over the rationals as a Eu-
clidean domain. Quotient sequences and continued fractions. Unique factorization
in Euclidean domains.

3 Integer factorization (2 weeks): Finding periods in periodic sequences by the Floyd
and Brent algorithms. The Pollard-p algorithm for factoring integers and its anal-
ysis.

4 Real root finding (1.5 weeks): Sturm’s theorem and the bisection method.

5 Complex root finding (1.5 weeks): The argument principle. The Routh-Hurwitz
method for computing the winding number along a polygonal contour (see §4).

6 Grébner basis (1 week): The notions of term order and reduction by a set of mul-
tivariate polynomials over the rationals. Buchberger’s algorithm for computing a
Grobner basis and its Church-Rosser property.

7 Polynomial factorization (1 week): Finite fields and squarefree decomposition of
polynomials modulo a prime integer by differentiation. The distinct-degree factoriza-
tion algorithm and the Cantor-Zassenhaus algorithm. Factorization over the rational
numbers by use of a sufficiently large prime modulus and by factor combination.
Application to computing square roots of residues modulo a prime number.

8 Diophantine linear equations (1 week): The Hermite normal form of an integer
matrix and integer solutions to linear systems of integer equations.

Teaching Abstract Algebra 505

The course was intended to be substitutable for an abstract algebra course and therefore
had the same prerequisite courses, namely a calculus and linear algebra course sequence.
The course was taken by three undergraduate mathematics students, three undergraduate
computer science students, two mathematics and one computer science students in the
master of science program, and two mathematics students in the Ph.D program. Although
the course covered a wide spectrum of skills, from the ability to give mathematically sound
proofs to formulating algorithms in the Mathematica language, deficiencies in preparation
for it were minor. The main goal of the course, namely to learn the principles and uses
of mathematical abstraction, appears to have been accomplished with all students.

The selection of the topics poses a serious problem. The author knows of no textbook
that covers a substantial fraction of the above topics. The main textbooks for the course
were (Lipson 1981) and (Wolfram 1991). Lipson’s book covers the first two topics, Peano
arithmetic and the Euclidean algorithm over an abstract Euclidean domain. The integer
and polynomial factorization material was taken from (Knuth 1981). Sturm’s theorem
was taken from (Jacobson 1974) and the Routh-Hurwitz theorem from (Gantmacher
1960). We wrote our own lecture notes both on the Grébner basis algorithm based on
Buchberger (1985) survey article and on the Hermite normal form algorithm (see, e.g.,
(Sims 1984)). Very little time, perhaps one lecture in total, were devoted to teaching
the subtleties of Mathematica and its programming language, as this was designed as a
course in mathematics and not in programming.

Students’ grades were determined from seven sets of homework problems (see subdi-
rectory Homeworks), one mid-semester in-class written examination, and one take-home
final examination (see subdirectory Exams). Furthermore, the students had to do one
programming project at the end of the semester. Students were allowed to form teams of
two for carrying out their projects. One of the projects was, for example, the implemen-
tation of Uspensky’s method (see, e.g., (Collins and Loos 1982)) for computing the real
roots of a polynomial. Due to the template-like structure of the packages provided by
me, the students had no difficulty implementing their algorithms, as the procedures from
an algorithm-design point of view were quite simple. None of the homework problems
required programming, but several of them could only be done by using Mathemat-
ica and the provided packages. The problems on the final examination were designed
specifically so that they required the assistance of Mathematica in their solution. For
example, Problem 3 on the final exam was to find an integer solution to the equation
2% 4+ y2 = 10%° 4 13 via the Gaussian integer GCD of 10%° + 13 and z + i, where z is a
residue satisfying 22 +1=0 (mod 10% + 13).

3. Software Written for the Course

The students were given Mathematica packages for all topics, with the exception of
Grobner basis computation and Hermite form computation. These two latter packages
were produced by student teams as semester-end projects. In order to demonstrate the
principles of abstract algebraic domains, the software was designed genericly (Musser and
Stepanov 1989). Genericity means that the supplied procedure definitions are usable for
inputs in an unspecified domain, and was accomplished in Mathematica by the use of
function arguments. As an example, consider the extended Euclidean algorithm. Following
is the Mathematica code for the generic procedure defined in the package Euclid.

ExtendedGeneric: :usage =

506 E. Kaltofen

"ExtendedGeneric[a_, b_, quotient_, unitnormalize_]

returns {g, s, t} such that g == GCD[a, b] and s a +t b =g,
where quotient must be bound to a quotient function on the type
of elements in a and b and unitnormalize must be a function
for normalizing the GCD to g by multiplying by a unit."

ExtendedGeneric[a_, b_,
quotient_, (* the quotient function *)
unitnormalize_:Identity
(* function returning its unit-normalized argument*)
1:=
(*x The extended Euclidean algorithm for Euclidean domains *)
Block[{x, y, q, sx, sy, tx, temp, g, ul},
Xx =a; y=>b; sx =1; sy = 0;
While[y =!= 0, (* != does not work on polynomials *)
ETrace[StringForm["Dividend=‘¢, Divisor=‘‘, sy=‘‘", x, y, syl 1;
q = quotient[x, yIl;
temp = y; y = Expand[x - q yl; x = temp;
If[y =!= 0,
(* unit-normalize the new remainder *)
temp = unitnormalizel[y];
u = quotient[temp, yl; y = temp;
temp = sy; sy = Expand[u (sx - q sy)]; sx = temp,
(x else *) sx = sy
]
1;
tx = quotient[Expand[x - sx al], b];
Return[List[x, sx, tx]]
]

Next, we exhibit how this procedure can be run with various Euclidean domains. Our
examples are the integers with two different Euclidean divisions, the Gaussian integers,
and rational polynomials.

In[6]:= Euclid‘ETracel[s__]:=Print[s]

In[7]:= ExtendedGeneric[4284179, 4288507, System‘Quotient, Abs]
Dividend=4284179, Divisor=4288507, sy=0

Dividend=4288507, Divisor=4284179, sy=1

Dividend=4284179, Divisor=4328, sy=-1

Dividend=4328, Divisor=3787, sy=990

Dividend=3787, Divisor=541, sy=-991

Out [7]= {541, -991, 990}

In[8]:= (* Using a quotient function that leaves absolutely smallest remainders *)
ExtendedGeneric[4284179, 4288507, Numbers‘Quotient, Abs]

Dividend=4284179, Divisor=4288507, sy=0

Dividend=4288507, Divisor=4328, sy=-1

Dividend=4328, Divisor=541, sy=-991

Out[8]= {541, -991, 990}
In[9] := ExtendedGeneric[185 - 195 I, -162 - 376 I, Gaussian‘Quotient,

Gaussian‘Normalize]
Dividend=185 - 195 I, Divisor=-162 - 376 I, sy=0

Teaching Abstract Algebra 507

Dividend=-162 - 376 I, Divisor=191 + 33 I, sy=-1
Dividend=191 + 33 I, Divisor=39 + 37 I, sy=-2 + I

Out[9]= {39 + 37 I, -2 + I, 1 + I}

In[10] := Euclid‘ETrace[s__]:=s

In[11]:= £ = RandomPoly[4, 10, x]

2 3 4
Qut[11]= -2 + 9 x -9 x +8x +x
In[12]:= g = RandomPoly[3, 10, x]

2 3
Qut[12]= -2 - 2 x + 10 x + 7 x

In[13]:= ExtendedGeneric[f, g, Function[PolynomialQuotient[#1, #2, x]],

Function[#]]
2
2572734630 1532626012 54848814066 x 786769 x
Out [13]= { -—, -— + + R
1609373689 4368300013 30578100091 762223
2 3
35169361069 28598266381 x 37465939780 x 786769 x
> -(-- -) o+ -—= - mmmm—m——————e— - o }
30578100091 30578100091 30578100091 5335561

In[14] := ExtendedGeneric[f, g, Function[PolynomialQuotient [#1, #2, x]],
Function[MakeMonic[#,x]]] (* monic remainders *)
2 2 3
6818 11619 x 40117 x 44701 36349 x 4762 x 5731 x
Out[14]= {1, -———- + o + oo , —(=———- D }
31065 10355 62130 62130 62130 6213 62130

Already in this simple algorithm, a non-trivial observation can be made. By normalizing
the remainders to leading coefficient 1 in the polynomial remainder chain, the occurring
reduced rational coefficients stay smaller. The mathematical explanation of this phe-
nomenon by the fundamental theorem of subresultants could, however, not be given in
this course.

We now list the packages and their major procedures. The Mathematica code can be
retrieved from the subdirectory Packages and Mathematica scripts (“notebooks”) for
demonstration of the packages’ functionality from the subdirectory Notebooks.

Numbers: The functions PeasantMultiplication, BinaryExponentiation, and Generic
Exponentiation all demonstrate the doubling algorithm for fast “exponentiation”;
FermatPrimeQ is the Fermat primality test (which fails on Carmichael numbers);
Cyclelndices is Floyd’s method for finding a cycle in a periodic function; Pollard
Rho is the Pollard p integer factoring algorithm. Demo notebooks expo, rho.

Gaussian: Euclidean quotient, remainder, and unit normalization functions for Gaussian
integers. Used for examples of the Euclidean algorithm (see above).

Polynom: Auxiliary functions for polynomial manipulation, such as RootBound and Fac
torCoefficientBound that bound the absolute values of the roots and coeffi-
cients of irreducible factors of integer polynomials; both are used in the packages
Cauchy and Factor; function SwinnertonDyer compute the so-called Swinnerton-

508 E. Kaltofen

Dyer polynomials that constitute especially difficult inputs for the polynomial fac-
torization algorithms (see demo notebook factor).

Euclid: Functions that implement the Euclidean algorithm and its derivatives gener-
icly, such as ExtendedGeneric, the extended Euclidean algorithm (see above) and
ContFractGeneric, which finds a quotient sequence in an abstract Euclidean do-
main. The latter function is used in the packages Sturm and Routh. Demo notebooks
xgcd, cont_frac.

Sturm: The function RealRoots locates the real roots of a rational polynomial to a given
precision by Sturm’s bisection method. The auxiliary function Sturm‘SturmSequence
computes the sequence of polynomial quotients that correspond to a Sturm sequence
of a rational polynomial and its derivative. Demo notebooks rroots, cheby.

Cauchy: Functions for visualizing complex polynomial functions and the argument prin-
ciple. See §4. Demo notebook cauchy.

Routh: The function ComplexRoots locates the complex roots of a rational polynomial
to a given precision by the Routh-Hurwitz algorithm. See §4. The auxiliary function
Routh ‘SturmSequence computes the the Sturm sequence of two rational polynomi-
als needed for the Cauchy index computation. Demo notebook croots.

Factor: Function FactorPolyMod factors an integer polynomial modulo a prime num-
ber using the Cantor-Zassenhaus method; function FactorSqfPrimPoly factors a
squarefree primitive integral polynomial using the large primes Cantor-Zassenhaus
method and factor combination. No Hensel lifting is necessary, since the prime mod-
ulus is chosen larger than the factor coefficient bound. Demo notebook factor.

Groebner: David Ng’s educational package for the Buchberger algorithm for computing
Grdobner bases. The function Basis finds the reduced Grobner basis with respect to
lexicographic variable order. Demo notebook groebner.

4. Visualization of a Mathematical Fact: Complex Root Finding

We now discuss the use of Mathematica for the teaching of a classical topic, that of
finding complex roots of a polynomial. The fundamental theorem of algebra combines
the subjects of functions in a complex variable, real analysis, and abstract algebra. In the
course we begin our discussion with the argument principle: the change of the argument
of the value of a polynomial function along a simple closed contour is 27 (i.e., 360°) X
the number of roots contained within the contour. It is assumed that there are no roots
on the curve and that the path follows a counterclockwise direction. Figure 1 depicts
a visualization of this mathematical fact. We plot the absolute value of the polynomial
function 23 — 2 as the height of the surface over the Gaussian plane and the argument as
the color. For purpose of reproduction here we use a grey-level ranging from 0 = black to
2m = white. On a computer in class we would use rainbow-like hue values ranging from
red, to yellow, green, blue, purple, pink, back to red. The roots are seen as vortices of
color. On a contour drawn around all three roots one will encounter three full changes of
the color spectrum. The students are made aware of the four-dimensionality of the shown
structure, the fourth dimension being the color.

Further study of the phenomenon is made possible by the plots provided in the package
Cauchy ‘. Figure 2 plots the chosen rectangular contour and the positions of the three
complex roots of the function 23 —2. Triangular and circular contours are also provided by
the package. This plot is meant as an aid for the spacecurve depicted in Figures 3 and 4.
As the z-coordinate progresses from 0 to 4, where each unit increment corresponds to

Teaching Abstract Algebra 509

Figure 1. Cauchy‘PlotComplexFunction[z"3-2, z,
{-2, 2}, {-2, 2}, PlotPoints->30]

an edge of the rectangular contour, the z-y values correspond to the real and imaginary
parts of the function value. Viewing the spacecurve from directly above, one sees the two
revolutions around the origin, which is a change of argument by 47. Immediately, the
problem of measuring the change of argument when the contour runs through the origin,
that is, when a root lies on it, is exhibited. In the subsequent algorithm this situation
must be avoided. The students were encouraged to use these visualization tools to confirm
the theorem on Mathematica for their choices of polynomials.

At this point in the course, the students already know Sturm’s theorem, which measures
a global quantity, namely the number of real zeros in an interval, by local observations,
namely the number of sign variations of the Sturm sequence at the endpoints. Its general-
ization to the measurement of the change of argument by computing some local quantity
at the vertices of the polygonal contour is, however, not at all obvious. From Figure 4 one
can argue that it suffices to count the crossings of the real axis from positive to negative or
negative to positive imaginary values on each side of the imaginary axis. Since the poly-
nomial function on each straight edge of contour can be expresses as f(z) = u(t) + iv(t),
where u and v are polynomials in the real parameter ¢ with 0 < ¢t < 1, the real roots of v
in relation to the real roots of u appear useful for counting the crossings. The author has
given these considerations as a motivation for the Cauchy index of w/v, which ultimately
yields an analog to Sturm’s bisection method for complex root isolation and approxima-
tion problem. The special case f(it), where —oo < t < 00, counts the number of roots on
the right half-plane and is Routh’s 1875 stability criterion.

Various implementations and papers on this approach have been written in the more
recent past (Pinkert 1976, Collins 1977, Wilf 1978, Collins and Krandick 1992). The
author’s package is purely educational and does not account for any efficiency consid-
erations. We should mention, though, that the sign variation of the Sturm sequence for
u,v at any endpoint of a line segment must be adjusted when v = 0 at that endpoint.

510 E. Kaltofen

-0.5

-1.5

Figure 2. Cauchy‘PlotRootsContour[z"3 - 2, z,
ComplexRectangle[-2-2 I, 2+I/2, t], {t, 0, 4}]

Figure 3. Cauchy ‘PlotArgumentPrinciple[z”3 - 2, z,
ComplexRectangle[-2-2 I, 2+I/2, t], {t, 0, 4}]

Teaching Abstract Algebra 511

-10

-10 0 10

Figure 4. Cauchy ‘PlotArgumentPrinciple[z”3 - 2, z,
ComplexRectangle[-2-2 I, 2+I/2, t], {t, 0, 4},
ViewPoint->{0,0,100}]

As can be proven, one may simply add % to the computed variation in order to obtain
the correct count (see the function Routh‘Variation). A partial trace of the author’s
implementation of the bisection method follows.

In[5]:= Routh‘ComplexRoots[z"3 - 2, z, 1/8]
29 997 35 128

-1, -¢--) +t, -(-—--), (=) ++t, -(---), -32 + 64 t, -96, 0}, t,
64 12288 64 3

lineS

> {0, 3}, {1, 13}

1 1 2t

lineE = {{-1, -(-) +t, -6, -48 + 96 t, -44, -(-) + ——-}, t, {0, 2}, {1, 1}}
2 3 3
35 997 29 128

lineN = {{-1, -(-=) + t, -(-—---), —(==) +t, -(---), -32 + 64 t, -96, O}, t,
64 12288 64 3

> {0, 3}, {1, 1}}
1 124 1 2t

lineW = {{-1, -(-) + t, -10, -48 + 96 t, -(---), -(-) + ——-}, t, {0, 2}, {1, 1}}
2 3 3 3

Box searched: {-2 -2 I, 2-21I, 2+ 21, -2+ 2 I}, Delta arg =3

2 3
New sequence between -2 I and 2 I, ss={-1, -4 + 24 t - 48t + 32t }

1
> , vertratio=-

512 E. Kaltofen

2
1 real root(s) on contour
New sequence between 2 - I and -2 - I, ss=

11 11 5 32 1
> {-1, -(-=) +t, -(---), - -t, -(--), 32 - 64 t, -48, 0}, horzratio=-

16 768 16 3 4
Box searched: {-2 - 2 I, -2 I, -I, -2 - I}, Delta arg =1

10.5 Second

5 17 I 5 37 I 21 I
Out[6]= {-(-) - ===, (=) + ===, —= + -}
8 16 8 32 16 32

In the above, e.g., 1ineS shows the quotient sequence of u(t) and v(t) along the South-
ern edge of the enclosing rectangle and the variations at ¢ = 0, in this case 3, and ¢t = 1,
namely 1. The corresponding Cauchy index is thus 2, and the sum of the Cauchy indices
of all edges is 6, which is the change of argument + m. Hence there are all 3 roots within
the first contour. Now bisectors are drawn and the roots enclosed in the respective quad-
rants are counted. The second bisector contains one of the roots and is replaced by one
lying an imaginary unit lower. Again, the students are encouraged “to play” with the
package in order to gain mathematical insight. They can design their own contours and
count the argument change for different polynomials and they can construct invalid (e.g.,
root on contour) and boundary cases (e.g., endpoint on real axis). Finally, we show the
Mathematica code that performed the initial computation shown.

ComplexRoots[f_, z_, precision_]:=
Block[{b, SW, SE, NW, NE, ssS, ssE, ssN, ssW,
lineS, lineE, lineN, lineW, Darg, t=Global‘t},

b = Polynom‘RootBound[f, z];
SW = -b-Ix*b; SE = b-I*b; NE = b+I*b; NW = -b+Ix*b;

ssS = Routh‘SturmSequence[SeparateFunctionOnLine[f, z, SW, SE, t], tl;
lineS = List[ssS, t, {0, Variation[ssS, t, 0]}, {1, Variation[ssS, t, 1]1}];
RTrace[StringForm["lineS = ‘¢", lineS]];

ssE = Routh‘SturmSequence[SeparateFunctionOnLine[f, z, SE, NE, t], t];
lineE = List[ssE, t, {0, Variation[ssE, t, 0]}, {1, Variation[ssE, t, 11}];
RTrace[StringForm["lineE = ‘¢", lineE]];

ssN = Routh‘SturmSequence[SeparateFunctionOnLine[f, z, NE, NW, t], t];
lineN = List[ssN, t, {0, Variation[ssN, t, 0]}, {1, Variation[ssN, t, 11}];
RTrace[StringForm["lineN = ‘¢", lineN] 1];

ssW = Routh‘SturmSequence[SeparateFunctionOnLine[f, z, NW, SW, t], tl;
lineW = List[ssW, t, {0, Variation[ssW, t, 0]}, {1, Variation[ssW, t, 11}];
RTrace[StringForm["lineW = ‘¢", lineW]];
Darg = (vStart[lineS] - vEnd[lineS] +

vStart[lineE] - vEnd[lineE] +

vStart[lineN] - vEnd[lineN] +

Teaching Abstract Algebra 513

vStart[lineW] - vEnd[lineW]
) /2

If [Darg != Exponent[f, z],
Print["Inconsistency in Routh\‘ComplexRoots"];
Return["Error in Routh\‘ComplexRoots"]

1;

Return[BoxRoots[f, z, {SW, SE, NE, NW}, Darg,
{1ineS, lineE, lineN, lineW}, precision]
]
] (* end ComplexRoots *)

We have chosen the Routh-Hurwitz approach to root finding as a demonstration of
applying abstract algebraic tools such as the Euclidean algorithm for polynomials to a
concrete computational problem. A main point is that the generic code written for con-
tinued fraction expansion of a rational function in a Euclidean domain is used directly in
our application. Therefore, the concepts learned from abstract algebra require no trans-
lation for the analytical application. Moreover, the graphical tools in modern symbolic
mathematical systems allow for unusual visualizations of complex polynomials.

5. Assessment

In general, the students reacted quite positive to the course. Judging from the end-
of-semester course evaluations, however, the course format was not uniformly endorsed
by the students. Surprisingly, most students suggested to incorporate Mathematica to
a greater extent in the course, perhaps even have a Mathematica laboratory, while at
the same time de-emphasising mathematical proofs. In terms of subject selection, the
students felt that the material covered was too vast, and that some basic topics should
be covered to greater depth. On the question “which topics were most interesting/least
interesting to you?” individual responses were

most interesting least interesting

GCDs, Hermite forms complex root finding
Euclid’s algorithm Nullstellensatz

integer factorization ring theory (ideals, UFDs)
Grobner basis integer factorization

integer factoring, root finding Hermite forms
complex root finding
root finding, Peano arithmetic integer factorization

Such mixed reaction can be viewed positively in that no subject was disliked by a large
subset of the students. The selection of topics needs further consideration. Clearly, group
theory could be incorporated in a computational manner by use of a special purpose
system such as GAP or MAGMA (Bosma et al. 1994). Alternately, Mathematica code
for permutation groups could be developed. In turn the topic of complex root finding or
polynomial factorization could be dropped without the loss of coherence.

The usage of a computer algebra system in a course of abstract algebra was an unquali-
fied success of this educational experiment. As mentioned above, the students would have
liked even more computer involvement in the course. We realize that since the course was

514 E. Kaltofen

offered only once five years ago with twelve students enrolled such a conclusion might
be premature. At Rensselaer Polytechnic Institute, a graduate course entitled Symbolic
Mathematical Computation is offered bi-annually. We have been using tools as the ones
described here in the graduate course in the subsequent years. A main difference is that
in the Symbolic Mathematical Computation course algorithm and system design issues
become the subject matter.

Computer visualization of mathematical facts such as the argument principle or a
reduction in a Grobner basis appear to be very powerful teaching tools. In particular,
the abstract algebra subject matter, a significant part of which comes from the 19th
century, is transformed into a modern mathematical problem solving tool by the computer
algorithmic approach. It never was the author’s intention to provide the best-known
computer solutions to the problems considered, but instead provide educational programs
that reflect the mathematics taught in class most clearly. For instance, the fastest infallible
complex root finders do not use Sturm sequences (Schonhage 1982), although they are still
based on Cauchy integration. It was pointed out to the students that the Mathematica
library routines in many instances use more sophisticated algorithms, but that in many
cases they are based on the same underlying mathematical principles.

The course was also taken by computer science students. For them, the demonstration of
software design using parametric types is an added pedagogical bonus. Indeed, computer
algebra systems like AXIOM (Jenks and Sutor 1992) are specifically designed to facilitate
such generic algebraic programming. Surely, the course packages could have as easily been
written in AXIOM or the GAUSS subsystem of MAPLE (Monagan 1993). Although
the development effort for such software may appear high at first, the freely available
Mathematica code developed by us should help in the computer approach to algebra
teaching elsewhere.

A surprising aspect of reform in higher mathematical education is that systems like
Mathematica and Maple have had major impact on the teaching of calculus. I believe that
they are equally—if not better—suited to modernize instruction in linear algebra and ab-
stract algebra. To some extent, the algorithms present in such systems are more advanced
in those subjects and mathematical abstraction has been incorporated in their design out
of a necessity of covering a wider range of mathematics. Clearly, the author’s attempt
in squeezing modern algebra in a single semester course caused me to omit traditional
subjects, such as group and Galois theory. The author’s subject selection was intended
to fit the needs of non-mathematics students, as modern symbolic mathematical software
makes algebra a powerful problem solving tool for general scientists and engineers.

Acknowlegdement

I would like to express my gratitude to the two unnamed referees, whose suggestions
have improved the final version of the paper.

References

Bosma, W., Cannon, J., Matthews, G. (1994). Programming with algebraic structures: design of the
magma language. In von zur Gathen, J., Giesbrecht, M., editors, Proc. Internat. Symp. Symbolic
Algebraic Comput. ISSAC ’94, pages 52-57, New York, N. Y. ACM Press.

Buchberger, B. (1985). Grobner bases: An algorithmic method in polynomial ideal theory. In Bose,
N. K., editor, Recent Trends in Multidimensional Systems Theory, pages 184-232. D. Reidel Publ.
Comp., Dordrecht (Holland).

Teaching Abstract Algebra 515

Collins, G. E. (1977). Infallible calculation of polynomial zeros to specified precision. In Rice, J. R.,
editor, Mathematical Software III, pages 3568, New York. Academic Press.

Collins, G. E., Krandick, W. (1992). An efficient algorithm for infallible polynomial complex root isola-
tion. In Wang, P. S., editor, Proc. Internat. Symp. Symbolic Algebraic Comput. ISSAC ’92, pages
189-194, New York, N. Y. ACM Press.

Collins, G. E., Loos, R. (1982). Real zeros of polynomials. In et al, B. B., editor, Computer Algebra, 2nd
ed., pages 83-94, Vienna. Springer Verlag.

Gantmacher, F. R. (1960). The Theory of Matrices, Vol. 1. Chelsea Publ. Co., New York, N. Y.

Jacobson, N. (1974). Basic Algebra I. W. H. Freeman & Co., San Francisco.

Jenks, R. D., Sutor, R. S. (1992). aziom The Scientific Computing System. Springer Verlag, New York.

Knuth, D. E. (1981). The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Ed. 2.
Addison Wesley, Reading, MA.

Lipson, J. (1981). Elements of Algebra and Algebraic Computing. Addison-Wesley Publ., Reading, Mass.

Monagan, M. B. (1993). Gauss: A parameterized domain of computation system with support for signa-
ture functions. In Miola, A., editor, Proc. DISCO ’93, volume 722 of Springer Lect. Notes Comput.
Sci., pages 81-94.

Musser, D. R., Stepanov, A. A. (1989). The Ada Generic Library: List Processing Packages. Springer
Verlag, New York, NY.

Pinkert, J. R. (1976). An exact method for finding roots of a complex polynomial. ACM Trans. Math.
Software, 2(4):351-363.

Schénhage, A. (1982). The fundamental theorem of algebra in terms of computational complexity. Tech.
report, Univ. Tiibingen.

Sims, C. C. (1984). Abstract Algebra, A Computational Approach. Wiley, New York.

van der Waerden, B. L. (1940). Moderne Algebra. Springer Verlag, Berlin. English transl. publ. under
the title “Modern algebra” by F. Ungar Publ. Co., New York, 1953.

Wilf, H. S. (1978). A global bisection algorithm for computing the zeros of polynomials in the complex
plane. J. ACM, 25(3):415-420.

Wolfram, S. (1988 and 1991). Mathematica A System for Doing Mathematics by Computer. Addison-
Wesley, Redwood City, California.

