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The Kharitonov theorem provides a means of performing sensitivity analysis for the com-
plex roots of polynomials whose coefficients (in power base) are perturbed. In particular,
it gives a computationally feasible algorithm for testing if the roots remain contained
on the left hand side of the Gaussian plane if one perturbes each coefficient of a monic
polynomial by a given amount. We survey an abstract approach that leads to general-
izations from the literature and our own, which imposes containment of the roots within
a circular sector centered in the origin of the Gaussian plane.

1. Introduction

For the problem of computing complex roots of polynomials, it is well known that
the location of the roots may be very sensitive to coefficient perturbations (Wilkinson
1964). In this paper we deal with the problem of diagnosing if a polynomial has such
behaviour. In the past, various results deriving bounds of root displacement of a complex
polynomial from the size of perturbations of the coefficients were published (e.g., the
ones cited in (Marden 1966)). Conversely, theorems elucidating the relationship between
coefficient perturbations and root locations are rare, or lead to impractical algorithms
in terms of computational costs. One of the few exceptions is the seminal result by V.
L. Kharitonov (1978a). He showed that for interval polynomials with real coeflicients,
it is necessary and sufficient to test just four special members of the polynomial family
in order to decide that all polynomials have their roots in the left half of the Gaussian
plane (i.e., that they are Hurwitz). He extended his result to complex coefficients in a
follow-up paper; eight test polynomials are required in this case.

Sensitivity analysis is an important methodolgy for dealing with symbolic/numeric
problem formulations. The inputs are given with imprecise, i.e., floating point coefficients
and the algorithms must decide whether within a given perturbation of the coefficients
problem instances exist that satisfy the wanted properties. A classical problem is the
perturbation of the coefficients to make inconsistent system of linear equations solvable.

T This material is based on work supported in part by the National Science Foundation under Grants
No. CCR~9319776.
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In fact, the method of least squares finds the smallest such perturbation of the constant
right side coefficient vector, and total least squares methods solve the general problem,
all measuring distance in the [ norm, i.e., the standard Euclidean norm. The Eckart &
Young Theorem finds the distance of a non-singular input matrix to the nearest singular
matrix (see Demmel (1987)). The singular value decomposition of a matrix generalizes
this result to compute the distance to the nearest matrix of a given rank. Karmarkar
and Lakshman Y. N. (1996) computed for two polynomials with complex coefficients
the closest pair of polynomials, again measured in ls norm of the combined coefficient
vector, that share a common root. The Kharitonov theorem yields a contribution of such
a problem formulation in the area of complex root finding.

Despite of having been published in a Western journal (Kharitonov 1979), the theo-
rem remained widely unknown until 1983, when it was introduced to the control theory
community by Barmish and Bialas. Especially in the late eighties it sparked increased
research activities in the area of robust control. The significance of Kharitonov’s the-
orem to computer algebra has not been recognized so far. We summarize some of the
results, and give a general procedure to extend Kharitonov’s method to other domains
and norms. There is an interesting interdependency between root domain, norm, and the
set of test polynomials, which is not fully explored yet. Some general conditions for the
existence of Kharitonov-like test sets for complex domains have been derived. However,
for most cases, exponentially many members are required. Evidently, for test sets of fi-
nite cardinality, we immediately obtain a polynomial time decision procedure for root
clustering in a given domain of a whole family of polynomials. As the result of Tempo
(1989) illustrates, it can be benefical to allow more general (weighted) norms instead of
restricting ourselves to [, norms.

After some notational prelimnaries in section 2, we introduce the zero exclusion prin-
ciple (appealing to a simple topological argument) in section 3. The original proof of
Kharitonov’s theorem was based on the Hermite-Biehler theorem. In section 4, we present
a proof using geometric arguments, basically following Minnicelli et al. (1989). The proof
becomes just one particular instance of a more general procedure for deriving test sets
in a generic way, only making use of the zero exclusion principle. Another such example
(for robust Schur stability) will be discussed in section 5, together with selected results
on the complexity of more general settings. We point out the problems and limitations
of interval polynomials. Finally, in section 6, we extend the result by Tempo (1989),
giving further evidence that more general norms can be useful for extending the range
of applicable stability domains. We conclude with a brief outlook on further areas of
research.

2. Preliminaries

We are looking at families, i.e., sets F of univariate polynomials over the rational or
complex numbers. The individual polynomials are denoted by

f(z,a) = 2" 4 ap_12"" '+ -+ +a12+ag, where a=(ag,...,an_1)".

The families collect those f(z,a) whose coeflicient vectors a are the values of continuous
functions or are defined by constraints. We restrict ourselves to monic polynomials, i.e.
the highest order coeflicient will always be 1. It also means that all members of the family
have the same degree n, thus avoiding any “degree-drop” problem.
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DEFINITION 1. We distinguish the following domains:

coefficient space A the subset of R™ or C™ which is contains all
the coefficient vectors a.
root space R(A) the set of all (complex) roots of an entire family
of polynomials F = {f(z,a) |a € A}.
image space F(z0) the image of A under the maps f € F evaluated at z = 2

For the following, let D C C be an open domain whose boundary 9D has a piecewise
smooth (C?), and positively oriented parametrization t — w, t € Ip, where Ip is a real
interval. Either interval boundary may be at infinity.

We adopt the following definition from control theory:

DEFINITION 2. Given a simply connected domain D C C, the family F of polynomials
f(z,a) is called D-stable if R(A) C D.

Special cases are: Hurwitz stability if D = {z| R(z) < 0} is the left half-plane
Schur stability ift D ={z]||z| <1} is the open unit disk.

An important property of D-stable polynomials is stated in the following lemma:

LEMMA 1. Let f monic, and D C C a simply connected, convex domain, where the
contour 9D is a positively oriented Jordan curve with parametrization t — w(t), as
defined above. Then arg(f(w(t))) is a continuous and strictly increasing function of t.

ProoOF. The property is a direct consequence of the argument principle. See also Marden
(1966) for a geometric interpretation. O

For real coefficients given by intervals, and D being the left half-plane, we can now state
the original version of Kharitonov’s theorem as follows:

THEOREM 1. (Kharitonov 1978a)
Let f(z,a) = 2" 4+ ap_12"" 1 + - + a1z + ag with a € R™. The family of polynomials
( “interval polynomial”)
F = {f(z,a) | a, <ap <ax, 0<k<n}
is Hurwitz if and only if the four vertex polynomials

ki1 = g1+ k12 = g1+ ho
k21 = go+ M k22 = go + ho

are Hurwitz, where
91(2)  =ag+a2* + a2t + -

g2(2)  =ag +ayz® +agt+ -

hi(z) =a;z+az3z3+ag2®+---

ho(2) =a12z+az2® +a@52° + - -
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The generalization to the case of complex coefficients and eight test polynomials is
straight-forward (see Kharitonov (1978b) and Minnichelli et al. (1989)). It actually uses
two sets of polynomials, four for the upper half-plane, and four for the lower half-plane re-
spectively. A proof of theorem 1 will be presented in section 4. Clearly, any algorithm for
testing individual polynomials for the Hurwitz property yields an efficient algorithm for
the entire interval family. Algorithms based on Sturm sequences can be found in (Gant-
macher 1959). Modern algorithms are based on approximately computing the integral
along the imaginary axis (Schonhage 1982, Schonhage et al. 1994).

3. The Zero Exclusion Principle

Theorems regarding the root locations of polynomials are usually based one way or
another on the argument principle of complex variables (see Marden (1966) and Gant-
macher (1959)). However, they do not easily carry over to statements for families of
polynomials. Another fundamental principle is more suitable for that purpose, and its
(implicit) use in robust stability analysis goes back at least to (Frazer and Duncan 1929).

THEOREM 2. (Zero Exclusion Principle)
Let F be defined by a connected set A C R™ (or A C C"). If f(z,a) is D-stable for some
acA and0¢ f(w(t),A) for allt € Ip, then F is D-stable.

PROOF. (see, e.g., (Rantzer 1992))

For 0 <k < n, let Ay, = {a € A| f(z,a) has exactly k zeros in D}. Then A = |J;_, Az,
where each Ay is open by the continuity of the map from coefficient space onto root
space and the premise that D is open. Topologically, the connected set A cannot be the
union of disjoint open nonempty sets. Given the assumption that A, contains at least
one element, the sets Ay, ..., A,_1 have to be empty, and thus A = A4,,. O

From the proof, one can see immediately that the criterium applies not only to deter-
mination of root clustering but also to root separation. Under the different assumption
that there is some a € A for which f(z,a) has exactly m roots in D (0 < m < n), we
end up with A = A,,. The rather strong condition that 0 ¢ f(w(t),A) for all t € Ip
prevents zeroes from crossing 9D into and out of D when walking along 9D. Continuity
is the crucial property, and since f(w(t),a) also depends continously on ¢, the condition
for ¢ can be replaced by the two requirements:

0¢ f(w(t),A) for some t € Ip, and 0¢df(w(t),A) forall t € Ip\ {t}.

This second formulation is computationally more favorable, if there is an easy way of
expressing df(w(t), A). In general, however, f(w(t),A) has a highly non-trivial shape,
and the test implied by the theorem becomes intractable. Instead of applying the pro-
cedure to the whole family F, one tries to select a (finite) subset 7 of test polynomials,
given by a subset A7 C A. Test sets usually span polytopes or rectangular n-dimensional
boxes in coefficient space. Necessity for D-stability is obvious, since 7 C F. To make the
test a sufficient criterium, one has to guarantee that f(w(t),a) is contained in the space
spanned by the test polynomials for all ¢ € Ip and for all a € A. Usually, this is the
more challenging part. Although the image space F(w(t)) does, in general, not cover the
entire convex hull H(t) of the image space of the test polynomials, because of continuity,
zero would have to pass through the boundary of the convex hull prior to entering it.
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More precisely, if 0 € F(w(t)) for some particular ¢ € Ip, there has to be some t € Ip,
such that 0 € OH (t). We now can outline a general decision procedure for D-stability of
a whole family F of polynomials by testing the subset 7 C F:

Containment Determine the convex hull H(t) of the image f(w(t), A7) at t € Ip.
Show for any t € Ip that f(w(t),A) C H(t).

“Basis” Find some ¢ € Ip (or at infinity), such that 0 ¢ H (¢).

“Induction” Show that 0 cannot enter H(t) for all the other t € Ip \ {t}.

4. Proof of the Theorem

As a first example for the application of the zero exclusion principle, we show a proof
for Kharitonov’s theorem following Minnichelli et al. (1989). First, we have to define
the border of the domain D, in this case the border of the left half-plane. Although D
is unbounded, we can think of the root space being contained in a half-circle around
the origin of the complex plane (see figure 1). As the radius of the half-circle approaches

Re

Figure 1. Domain Boundary

infinity, the segment S7 becomes the imaginary axis, and So reduces to a jump from +ocoi
to —ooi. Note that all polynomials in F have constant degree n. Therefore, there are no
roots at inifinity, and zero cannot enter the domain by crossing S;. For real coefficients,
all complex roots appear in pairs of conjugates, i.e. they are located symmetrically around
the real axis, whereas the real roots lie on the axis itself. Thus the boundary, we have
to check for zero crossings, is further reduced to the non-negative part of the imaginary
axis. Its parametrization is given by the map:

t—w(t)=1it, telp=][0,+400)CR.
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Referring to (2.1), we see now why the test polynomials were chosen that way: ¢g; and
go contains only even powers of z, therefore on the domain boundary, both polynomials
obtain only real values. On the other hand, h; and hy yield pure imaginary values if we
substitute it for z. It can easily be seen that for any f € F and t > 0 the following
inequalities hold:

R(g1(it))
S(ha(it))

R(f(it)) R(g2(it)),  and

< <
< S(f(t) < S(hafit)).

Consequently, f(it) is contained in a rectangle, the convex hull H(t) of the four ver-
tex polymomials kj1, k12, ko1, and koo at ¢ € [0,+00). This geometric interpretation is
historically attributed to Dasgupta (1988) (see figure 2).

k12(it) kQQ(it)
ho (it)A%
H(t)
h1 (it)a?
k11(it) k21(it)
g1(i) 02(it)

Figure 2. Dasgupta’s Rectangle (1988)

This concludes the containment step. We now have to find some ¢ € [0,400) such

that 0 ¢ H(t). We could make an argument for +oo, but for the special case of real
coefficients, the following Lemma shows that we can also choose t = 0:

LEMMA 2. Let the polynomial f be monic with real coefficients. If f is Hurwitz then all
of its coefficients are positive.

PROOF. The real parts of all roots of f are negative. Expressing the coefficients in terms
of the roots, and taking into account that complex roots appear as conjugate pairs, shows
immediately that they have to be positive. O

Finally, we have to prove that zero cannot enter H(t) for t > 0. The corners of H(t)
cannot pass through the origin, because the test polynomials are Hurwitz. Therefore
zero would have to enter through one of the edges. Without loss of generality, we may
assume that the origin is on the bottom edge for some # € [0, +00). Lemma 1 states
that arg(f(it)) is a strictly increasing function of ¢, for f Hurwitz. Increasing ¢ by an
infinitesimal amount 9t > 0, would place ki1 (f 4+ 0t) below the real axis, and kg, (f + Ot)
above, which would inevitably tilt the rectangle (see figure 3). However, the construction
of the test polynomials does not permit this to happen.

This concludes the proof of Kharitonov’s theorem for the case of real coefficients. We
would like to add a few remarks:
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Figure 3. Tilting

1. The proof in Minnichelli et al. (1989) does not explicitly appeal to the zero exclusion
principle, and therefore requires some additional intermediate steps.
2. The tilting argument used in the final step can be applied to other areas of constant
shape (e.g., “diamonds”). An example is given in the next section.
3. The “box” H(t) moves along the path given by the (unperturbed) center polynomial
of the family, as t goes from 0 to +o00. Size and aspect ratio of its sides change, but
the shape stays rectangular, with edges parallel to the axes (see figure 4).
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Figure 4. Moving Box
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5. Generalizations

Looking at Kharitonov’s theorem, the question of generalizing the the result comes
immediately to mind. There are three possible directions for investigations:

1. other domains D than the left half-plane.
2. other norms than the infinity norm used to define A.
3. test sets of different shape.

Unfortunately, there is a strong interdependency among these areas of generalization.
For interval polynomials, Rantzer was able to prove that the corner polynomials f(z,b)
where b; € {a;,a;} form a test set only under a fairly restrictive condition for the domain.
The following definition is used in this setting.

DEFINITION 3. Given an open domain D C C. D is called weakly Kharitonov if for
any interval polynomial (over the real or complex numbers) of degree n, it suffices to test
the 2™ corner polynomials to establish D-stability.

Although such a test set would not lead to computationally tractable algorithms, it is
helpful in establishing lower bound criteria, like the following;:

THEOREM 3. (Rantzer 1992)
Given a domain D C C. D is weakly Kharitonov if and only if D and the “inverse” of
D, 1/D ={z|2d =1, for somed € D} are convex.

This result immediately excludes a considerable number of interesting domains, among
others the open unit disc. By moving away from interval polynomials to families defined
by other norms, some positive results can be achieved (see below). There exists also a
definition for a domain to be strongly Kharitonov, which requires only a finite selection
(which is still allowed to depend on the degree n) of the corner polynomials to be tested.
However, so far there are only a few special cases (besides the left half-plane) known to
have the strong Kharitonov property (e.g., “left sectors”, see Foo and Soh (1989)).

The most general result, the so-called edge theorem by Bartlett et al. (1988), gives an
upper bound for testing a polytope of polynomials for D-stability:

THEOREM 4. Let the family of monic polynomials be defined by A = span(a(), ... a(™),
where a) € R (or a®) € C) for 1 < i < n. Further, let D C C be a simply connected
domain. Then, R(A) C D iff the root space of all “exposed” edges of A is contained in
D.

Exposed edges are the linear combination of pairs (a(i), a(j)) of coefficient vectors:
a=(1-XNa®+xa o0<Arx<1,

such that a lies on the contour of the convex hull of A. Obviously, there are combinator-
ically many exposed edges; e.g., if A is a hypercube, their number is n27~!.

More encouraging are attempts to use other norms, and test sets of different shape.
For Schur-stability (when D is the open unit disc), Tempo (1989) was able to establish
a result which is equivalent to Kharitonov’s theorem in the sense that it also uses four
test polynomials. However, they are arranged in a tilted square (“diamond”), and the
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polynomial family is defined by constraints given in a slightly modified /; norm rather
than the infinity norm:

THEOREM 5. (Tempo 1989) Let F a family of complex polynomials be given by a “center”
polynomial f(z,a*) and some precision e € RY, such that every f(z,a) € F satisfies the
condition.:

n—1 n—1

1 L1 . . .
§‘a0_a0|+§|ﬁo_ﬁo| + Z|ak—ak| + Z|ﬁk—ﬁk| <€,

k=1 k=1
where a, = oy, +i0k and aj, = o, +if; for 0 < k <n. Further assume that ag # 0 and
Bo # 0 for all f € F. Then F is Schur stable iff the four polynomials:
f(z,a) + 2, f(,a") + 2ie,
f(z,a") — 2e, f(z,a") — 2ie

are Schur stable.

Figure 5. Function values contained in diamond

The convex hull H (t) of the images of the test polynomials is a diamond of constant size.
The factors 1/2 for the constant terms in the norm expression and, respectively, 2 in the
definition of the test polynomials are essential. If we would use the regular /1 norm, the
“cloud” of function values (evaluated on the unit circle) of the family would be circular.
In order to contain them, a larger area has to be chosen. By using twice the precision
€, the cloud is stretched into the corners of the diamond formed by the function values
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of the test polynomials, and stays within the diamond. A typical snapshot is shown in
figure 5. We will state the inequalities assuring containment for a more general case in
the next section. The condition on ag and [y guarantees that zero is not in H(t) for at
least one t; it could be replaced by a more sophisticated argument. To prove that zero
cannot enter H(t), the tilting argument can be used again, this time applied to an edge
of the diamond. The requirements for Lemma 1 are fulfilled, because the unit disc is
convex, and the corner polynomials are assumed to be Schur-stable.

So far, no results other than tests based on function plots have been published for
other [, norms. Regarding the shape of H(t), one can always increase the number of test
polynomials at the expense of computational costs to get a closer approximation to the
actual image space.

Our Extension

Based on the result by Tempo (1989) from the previous section, we present here an
extension to circles around the origin with given, but arbitrary radius » > 0, and sectors of
such circles. It demonstrates that weighted norms can help to keep the test set small while
still covering a wider range of stability domains. We refer to figure 6 for the parameters
used in the remainder of this section. Let the polynomial family F be defined by the
following condition for its complex coefficients:

§|ao—ao|+§|ﬁo—ﬁo\ + Zrk|0<k—0¢k| + ZTka—ﬁH <€,
k=1 k=1

where f(z,a*) is the center polynomial, and ¢ € RT a given precision as in theorem 5.
Now, we can state

THEOREM 6. Let D be an open disc or sector with radius r around the origin, and let
the four test polynomials be defined as in Theorem 5. Then, F is D-stable iff the test
polynomials are D-stable.

PRrROOF. We only show containment in the diamond, the second part of the proof uses
the tilting argument based on Lemma 1 again. It is applicable because both domains are
convex.

The contour of the disc with radius r can be parametrized by

t—w(t) =rel’, for tel0,2n),

whereas a line originating at the origin with slant angle © and length r is given by
t—w(t)=1te®, for tel0,r].

We derive the inequalities for the circle, the ones for the line are identical, except that
the roles of t and ©, and r and ¢ respectively, are exchanged, and taking into account
that 0 < t* < ¥ for 1 < k <n —1 in that case.
We define the following functions for the real and the imaginary part of f € F at
z = w(t) and a particular coefficient vector a:
n—1
R(t,a) = R(f(w(t),a)) = Z ¥ (o, cos kt — By sin kt) + 7" cos nt ,
k=0
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=0

~UO

o/m
S

Figure 6. Disc and Sector of Radius r

and
n—1

I(t,a) = 3(f(w(t),a)) = Z (B cos kt + ay sin kt) + " sinnt .
k=0

The edges of the diamond are 45 degree lines, i.e. we have the condition:
|R(t,a) — R(t,a")| + |I(t,a) — I(t,a")| < 2¢

for f(w(t))) to lie inside or on the boundary of the diamond. Expanding the left hand
side yields:

n—1 n—1
Z r* (e, — ) coskt — (B — Br) sin kt) |+ Z ™ ((Bx — B7) cos kt + (ou, — o) sin kt)
k=0 k=0

n—1 n—1
<23 rFlag —apl 2> 7B = Bil + oo — af| + 5o — 55
k=1 k=1
taking into account that |coskt| < 1 and [sinkt| < 1 for all k. The last line is of course
< 2¢ by the norm condition for the coefficients of the family. In fact, the condition was
constructed that way. O

In the case where D is a sector, the root locations of the test polynomials have to
be checked in three steps: first whether they are contained in the circle of radius 7,
then whether they lie to the left of the line given by ©1, finally whether they lie in the
right half-plane of the line defined by ©5. These tests can either be numerical (using an
appropriate root-finder), or symbolic. In the latter case, we have to assume that the lines
are not given by angles, but by rational coordinates of some point, other than the origin,
lying on that line. The location of the roots relative to the domain boundary can then
be determined via (generalized) Sturm sequences. There exist rational parametrizations
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of the circle; for the lines we have to work in an algebraic extension of the rationals (see
Gantmacher (1959) and Kaltofen (1990)).

6. Conclusions and Future Directions

We presented selected results surrounding the theorem by V. L. Kharitonov, and pre-
sented a proof for his classic result based on the zero exclusion principle. Our approach
tried to uncover the underlying general procedure that is common to results for vari-
ous domains and norms. The most intriguing aspect of Kharitonov’s theorem is that, like
with Sturm sequences, a problem on an infinite set can be decided by testing only finitely
many instances. It therefore seems to be especially suited for applications in symbolic
computation.

Although the theoretical results for the infinity norm do not leave much room for the
development of efficient algorithms for deciding stability of interval polynomials in other
domains, weighted norms and different shapes for the containment provide alternatives.
Another, yet unexplored approach would use computational methods, be they symbolic
or numerical, for deciding that zero cannot cross the image domain boundary as the the
test polynomials are evaluated along the input contour. This would further open up the
way for methods that test for stable root separation, because for that problem the famous
tilting argument seems not to apply.
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