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Abstract

Out of all the n×n Toeplitz matrices over a finite field of q
elements, a fraction of exactly (1−1/q) is non-singular. Also
a fraction of exactly (1/q)(1 − 1/q)2(1 − (q − 1)/q2)r−1 has
generic rank 0 < r < n. These statements are proven with
the extended Euclidean algorithm and the theory of subre-
sultants. A matrix has generic rank r when all its leading
principal minors up to dimension r are non-zero, and r is
maximal. Our results have implications to the probability
of success of the block Wiedemann linear system solver al-
gorithm, which is an open question at the present time.

1 Introduction

Let Fq be a finite field of q elements. An n × n matrix
Tn = (ti−j), i, j = 1, . . . , n over Fq has Toeplitz structure
when all the elements along the diagonal are equal, and those
along each line parallel to the diagonal, are also equal. So

Tn =




t0 t−1 . . . t2−n t1−n

t1 t0 . . . t3−n t2−n

...
...

. . .
...

...
tn−2 tn−3 . . . t0 t−1

tn−1 tn−2 . . . t1 t0




(1)

is uniquely specified by the 2n − 1 elements of its first row
and column.

An alternate representation for Tn is the polynomial

Tn(x) = a2n−2 + a2n−3x + · · · + a1x
2n−3 + a0x

2n−2 (2)

over Fq[x], the polynomial ring over Fq in the indeterminate
x, with coefficients (ai−j+n−1) = (ti−j) where i, j = 1, . . . , n.
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1.1 Statement of Results

In this paper we exploit the connection between the con-
dition under which a Toeplitz matrix Tn ∈ K

n×n is non-
singular, and the extended Euclidean algorithm over the as-
sociated polynomial Tn(x) and x2n−1. We have two results
to report.

First, out of all the n×n matrices Tn over Fq, a fraction of
exactly (1− 1/q) is non-singular. This means that there are
(q − 1)q2n−2 non-singular Toeplitz matrices Tn. It follows
that Tn is non-singular with probability 1 − 1/q when the
entries in its first row and column are chosen uniformly at
random from the set of elements of Fq.

Second, again for n × n Toeplitz matrices over Fq, there
are (q− 1)(q2 − q +1)r−1 matrices that have generic rank r.

We say that a matrix A has generic rank profile when
all its leading k × k principal submatrices of dimension
k = 1, 2, . . . , rank(A) have full rank. The generic rank of
a matrix is the dimension of its largest leading principal
submatrix that has generic rank profile.

For 0 < r < n the probability that Tn has generic rank
r is

pr,n =
1

q
(1 −

1

q
)2(1 −

q − 1

q2
)
r−1

.

The probability that Tn has generic rank n is

pn,n = (1 −
1

q
)(1 −

q − 1

q2
)
n−1

.

The significance of these results is that a randomly selected
n× n Toeplitz matrix has full generic rank with probability
almost (1 − 1/q) · e(1−n)/q, a quantity that approaches zero
as n tends to infinity.

1.2 Relevance to Symbolic Computation

Much research has focussed on solving Toeplitz and
Toeplitz-like systems of equations. The coefficient matrices
of linear systems encountered in numerical analysis, coding
theory, and symbolic mathematical computing, frequently
have this structure.

Toeplitz matrices also see usage as pre-conditioners in
the process of solving linear systems having unstructured
coefficient matrices. They are especially attractive as pre-
conditioners because they can be stored in linear space and
the product of a Toeplitz matrix and a column vector can
be computed in superlinear time by convolution using fast
Fourier transform techniques.
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Pre-conditioning gives the generic rank profile property
to a coefficient matrix. When Gaussian elimination is per-
formed on a matrix in generic rank profile, there is no need
for row or column permutations for the purpose of avoiding
a zero pivot element.

Our interest in Toeplitz matrices was motivated by their
role as pre-conditioners. In the only available analysis
of the block Wiedemann algorithm (Coppersmith 1994),
Kaltofen (1995) employed Toeplitz pre-conditioner matrices
P,Q with entries chosen uniformly at random from the field
K. He proved that provided K was large enough, B = PBQ
acquired generic rank profile with a certain high probability,
and then the linear system Bx = 0 with coefficient matrix
B could be successfully solved, also with high probability.

Kaltofen’s analysis uses the fact that the degree of the
minimum polynomial of a matrix in generic rank profile ex-
ceeds by one, the matrix’s actual rank. His approach is
based upon earlier work by Kaltofen and Saunders, (1991),
on Wiedemann’s coordinate recurrence algorithm (Wiede-
mann, 1985). There unimodular, triangular Toeplitz matri-
ces are used as pre-conditioners.

The event that B has generic profile, occurs with high
probability if the field from which the entries of P and Q
are taken has cardinality O(n2). If K is not large enough
then arithmetic must be performed in an extension of K,
of degree O(log n). Hence Kaltofen’s analysis is meaningful
only for fields of sufficiently large cardinality.

Recent experiments on very high dimensional matrices
over F2 (Lobo, 1995) give strong evidence that the block
Wiedemann algorithm is indeed successful even in fields of
small cardinality. Hence, our long-term goal is to refine the
earlier analysis and justify the success probability without
placing any restrictions on the cardinality of the field and to
avoid computationally expensive arithmetic in field exten-
sions.

With an approach somewhat along the lines of (Borodin
et al.,1982), we sought to determine the probability that B =

W
(v)
n ·X(Ir⊕0n−r)Y ·W

(t)
n has generic rank profile, where X

and Y are non-singular matrices from the factorization of B,

r is the rank of B, and W
(v)
n and W

(t)
n are random Toeplitz

matrices. The matrices W
(v)
n X and Y W

(t)
n are themselves

Toeplitz-like (Gohberg et al., 1986). We examined the the
rank and generic rank probabilities of the matrices W and
obtained both our stated results.

After proving the theorem on the number of non-singular
Toeplitz matrices of a given dimension, over a finite field,
we were informed by David G. Cantor1 that that fact was
known to Daykin (1960). Our approach is entirely different
from Daykin’s, and relies upon the Euclidean algorithm and
the theory of subresultants. The second result, relating to
the number of Toeplitz matrices having a given generic rank,
is our own work.

Our results have implications to the general problem of
solving linear systems. There are really two issues namely,
the analysis of the block Wiedemann algorithm in fields of
small cardinality, and the solution of block Toeplitz matrices
over small fields. It is an open problem, at the present time,
to give the proof of success of the block Wiedemann algo-
rithm for small fields. The problem of solving Toeplitz-like
systems in small fields is also open. It should be noted that
the block Wiedemann algorithm converts an unstructured,
possibly sparse, linear system to a block Toeplitz linear sys-

1Private communication, March 1995

tem.
Our results also apply to the use of random Toeplitz pre-

conditioners in the LU factorization of matrices and might
assist in the choice of blocksize in block-Schur triangulariza-
tion algorithms.

1.3 Motivation – the 2 × 2 case

Let us consider 2 × 2 matrices of the form

T2 =

[
a b
c a

]
.

Let N2 denote the number of such matrices that are non-
singular. If Fq has odd characteristic and a = 0, then either
b = 0 thereby permitting q choices for c, or c = 0 and there
are q−1 more choices for b. This gives 2q−1 singular matri-
ces with a = 0. If a 6= 0 then b and c must be simultaneously,
either quadratic residues or quadratic nonresidues. When b
and c are both quadratic residues, there are (q−1)/2 choices
for each, and 2 roots to the equation

a2 = y

in Fq, where y = bc. Similarly, when b and c are each not a
quadratic residue, there are (q−1)2/2 singular matrices like
of the form of T2. There are q3 matrices in total. Therefore,

N2 = q3 − (2q − 1) − (q − 1)2/2 − (q − 1)2/2

= (q − 1)q2

Alternatively, if q is even, every α ∈ Fq is a quadratic

residue, because (α
q
2 )2 = α in Fq, and there is only one root

to the equation a2 = bc. So if a 6= 0, there are (q − 1)2

triples. As before, if a = 0 there are 2q− 1 choices for b and
c. Thus there are

N2 = q3 − (2q − 1) − (q − 1)2

= (q − 1)q2

non-singular 2 × 2 matrices. Our proof for n > 2 is much
more involved.

1.4 Outline of Approach

We will first use the extended Euclidean algorithm on the
polynomial pair (x2n−1, Tn(x)), to prove with the help of the
theory of subresultants (Brown and Traub, 1971), that Tn is
non-singular if and only if there is a remainder polynomial
in the Euclidean reduction sequence for (x2n−1, Tn(x)) with
degree exactly n−1. This particular result was first proven,
using Padé Approximants, in Brent et al., (1980).

Next we will count pairs (u, v) of polynomials in Fq[x]
where deg(u) = n−1 and deg(v) ≤ deg(u) and u/v is a valid
Padé approximant (Gragg, 1972) for some Tn(x). There
is a many-to-one correspondence between the set of non-
singular Tn and the set of valid Padé pairs (u, v). We will
demonstrate that for a particular (u, v) with gcd(u, v) = xβ

and β > 0 there are (q − 1)qβ−1 non-singular Tn, and that
there is a unique Tn when β = 0.

With this Counting Lemma and a result from Gathen
and Ma (1990), we will determine the number of non-
singular n × n Toeplitz matrices over Fq.

To count the number of Toeplitz matrices of a
given generic rank, we will employ a lemma due to
Sylvester (Gantmacher, 1990).
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2 The Extended Euclidean Algorithm

In this section we will present certain details of the extended
Euclidean algorithm and of Padé approximation that are rel-
evant to the proof of our main theorem. It should be noted
that these theoretical properties are valid in any abstract
field K.

Let f−1(x), f0(x) ∈ K[x], f−1 6= 0, f0 6= 0. For all i with
1 ≤ i ≤ k, the Euclidean polynomial remainder sequence, is
defined by

fi = fi−2 − qifi−1, deg(fi−1) > deg(fi), fk+1 = 0.

Where fi, qi ∈ K[x] are the ith remainder and quotient re-
spectively. Note that fk = gcd(f−1, f0) 6= 0.

The Extended Euclidean Scheme maintains multipliers
si(x), hi(x) ∈ K[x] where

sif−1 + hif0 = fi

si−2 − qisi−1 = si

hi−2 − qihi−1 = hi

where s−1 = h0 = 1, s0 = h−1 = 0. It follows by induction
on i that for all 1 ≤ i ≤ k + 1,

sihi−1 − si−1hi = (−1)i+1

gcd(si, hi) = 1,
deg(f0) − deg(fi−1) = deg(si)

deg(f−1) − deg(fi−1) = deg(hi).

Note that if deg(f−1) < deg(f0) then q1 = 0, and hence
h1 = 0 is designated to be of degree deg(f−1)−deg(f0) < 0.

Lemma 1 Let g(x) = gcd(sj , fj), 0 ≤ j ≤ n − 1 in the
Extended Euclidean Scheme

sjf−1 + hjx
2n−1 = fj

with deg(f−1) ≤ 2n − 2. Then either g(x) = 1 or g(x) = xβ

where 1 ≤ β < 2n − 1.

Proof. Suppose g(x) = gcd(fj , sj). Rearranging the the
scheme, since g(x) divides the left hand side of sjf−1 −fj =
hjx

2n−1, g(x) divides hjx
2n−1. However gcd(sj , hj) = 1 so

g(x) divides x2n−1. Therefore g(x) = 1 or g(x) = xβ and
1 ≤ β < 2n − 1.

Lemma 2 Let S(x), T (x), F (x) ∈ K[x] be such that for
some j with 0 ≤ j ≤ k,

Sf−1 + Tf0 = F,
deg(S) < deg(f0) − deg(fj),
deg(F ) < deg(fj−1).

Then there exists a polynomial w(x) ∈ K[x] such that

F = w fj , S = w sj , and T = w hj .

P roof. By induction on the degree of F (x). If deg(F ) <
deg(fk), then F = 0 since F must be divisible by fk =
gcd(f−1, f0). Thus

S
f−1

fk
= −T

f0

fk

which implies that f0/fk divides S. However, deg(f0) −
deg(fk) ≥ deg(f0) − deg(fj) > deg(S), which means that

S = 0, and therefore also T = 0. In this case the statement
holds with w = 0. Now, let deg(F ) = deg(fl) + e with

j ≤ l ≤ k and 0 ≤ e < deg(fl−1) − deg(fl). If Q(x) is the
polynomial quotient of F (x) and fl(x), we have

(S − Qsl︸ ︷︷ ︸
= Ŝ

)f−1 + (T − Qhl︸ ︷︷ ︸
= T̂

)f0 = F − Qfl︸ ︷︷ ︸
= F̂

.

The polynomials Ŝ, T̂ , and F̂ , now satisfy the conditions of
the lemma with l in place of j. In particular,

deg(Ŝ) = max{deg(S), deg(f0) − deg(fl−1) + e}
< deg(f0) − deg(fl),

and deg(F̂ ) < deg(fl) < deg(fl−1). Because deg(F̂ ) <
deg(F ), the induction hypothesis can be applied to the triple

Ŝ, T̂ , F̂ , leading to the existence of a polynomial ŵ such that

Ŝ = ŵ sl, T̂ = ŵ hl, and F̂ = ŵ fl.

Since deg(F̂ ) < deg(fl), the last of the above equalities im-
plies that ŵ = 0. It remains to prove that l = j; suppose
that l > j, that is, deg(fj) ≥ deg(fl−1). Then deg(S) <
deg(f0) − deg(fj) ≤ deg(f0) − deg(fl−1) ≤ deg(Qsl), which
contradicts S − Qsl = ŵsl = 0.

Note that Lemma 2 remains true for j = k + 1 with
w = 0. Again deg(fk+1) can be set to any integer ≤ 0.

We now treat a special case of Lemma 2. Let

F(x) = a0 + a1x + a2x
2 + · · · ∈ K[[x]]

be a power series over K, and define

Fn(x) = F(x) mod xn+1 = a0 + a1x + · · · + anxn ∈ K[x]

be the part truncated at order n + 1, n ≥ 0. For each pair
of non-negative integers d and e, consider the problem of
solving the congruence equation

G ≡ HFd+e mod xd+e+1, (3)

where G, H ∈ K[x], deg(G) ≤ d, deg(H) ≤ e, and H 6= 0.

Lemma 3 For any pair d ≥ 0 and e ≥ 0, and any
Fd+e(x) ∈ K[x], there exists a solution G, H to equation (3).
Furthermore, if G2, H2 is another solution to equation (3),
then G/H = G2/H2.

Proof. Let f−1(x) = Fd+e(x) and f0(x) = xd+e+1; note that
deg(f0) = d + e + 1. If f−1 = 0, we must have G = 0, which
with H = 1 solves (3). In that case G/H = 0. Assume
now that f−1 6= 0 and consider the polynomial remainder
fj of f−1 and f0, 1 ≤ j ≤ k + 1, whose degree satisfies
deg(fj) ≤ d < deg(fj−1). Since fk+1 = 0, such a remainder
can always be found. We have

sjf−1 ≡ fj mod f0, deg(sj) = deg(f0) − deg(fj−1) ≤ e.

Also, sj 6= 0, because deg(sj) > 0 for j > 1 and s1 = 1.
Therefore G = fj and H = sj solve (3). For any pair G2, H2

solving (3), there exists a polynomial H2 such that

H2f−1 + H2f0 = G2,
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where deg(G2) ≤ d < deg(fj−1), and where deg(H2) ≤ e <
deg(f0) − deg(fj). By Lemma 2, there exists a w(x) ∈ K[x]
such that G2 = wfj and H2 = wsj , proving G2/H2 = fj/sj ,
which is thus uniquely determined.

Therefore, for every F(x) ∈ K[[x]] there exists an infinite
matrix of rational functions pd,e(x) ∈ K(x), d, e ≥ 0, that
correspond to G/H in (3). This matrix is referred to as the
Padé table of F(x). Computing pd,e as fj/sj essentially fills
in the entries

pd+e,0, pd+e−1,1, . . . , pd,e, . . . , p0,d+e,

in that order. This is the Kronecker algorithm for complet-
ing the Padé table. Further details can be found in (Gragg,
1972).

3 Subresultants

Let G, H ∈ K[x], deg(G) = m, deg(H) = l. The jth sub-
resultant of G and H is a polynomial of formal degree j,
defined as the determinant Sj(G, H) given by

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gm · · · g0 xl−j−1G
. . .

. . .

gm g0

...
. . .

...
gm · · · gj+1 G

hl · · · hj+1 · · · h0 xm−j−1H
. . .

. . .
. . .

hl hj+1 h0

...
. . .

. . .
hl · · · hj+1 H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From this, it can be shown that

Sj = UjG + VjH

with Uj , Vj ∈ K[x] and deg(Uj) ≤ l − j − 1, deg(Vj) ≤
m − j − 1. Corresponding to the Euclidean remainder se-
quence (f1, f2, . . . , fk) where f−1 = G(x) and f0 = H(x)
and gcd(G, H) = fk, is a chain (Si1 , . . . , Sik) of subresul-
tants, where the remainder fl and the subresultant Sil are
identical upto multiplication by a constant from Fq. This
can be seen from the following theorem.

Theorem 1 Let D denote an integral domain, let f1, f2 ∈
D[x] and let

αifi−2 = qifi−1 + βifi

with deg(fi) = ηi < ηi−1; δi−2 = ηi−2 − ηi−1; ci−1 =
ldcf(fi−1); αi, βi ∈ QF(D); qi ∈ QF(D)[x]. Let k be such
that fk+1 = 0 and let Sj(f1, f2) denote the jth subresultant
of f1 and f2. Then for i = 3, . . . , k

Sηi−1−1(f1, f2) = γifi with 0 6= γi ∈ QF(D)

Sηi(f1, f2) = θifi with

θi = (−1)τic
δi−1−1

i−1

i∏

l=3

c
δl−2+δl−1

l−1

(
βl

αl

)ηl−1−ηi

and

τi =
i∑

l=3

(ηl−2 − ηi)(ηl−1 − ηi)

Sj(f1, f2) = 0 for both ηi−1 − 1 > j > ηi and

ηk > j ≥ 0

Proof. See (Brown and Traub, 1971)

The reason for introducing subresultants is that when

Sn−1

(
T (x), x2n−1

)
is written out as a polynomial in x, the

coefficients are certain minors of Sn−1 and in particular, the
leading coefficient is det(Tn). We now present an alternative
proof for the theorem of Brent et al. (1980).

Theorem 2 Let Tn be an n × n Toeplitz matrix over K

and let Tn(x) be its associated polynomial. With f−1(x) =
Tn(x), f0(x) = x2n−1, let 0 ≤ µ ≤ k be that index where
deg(fµ−1) > n − 1 ≥ deg(fµ) in the Extended Euclidean
Scheme

sjf−1 + tjf0 = fj , gcd(f−1, f0) = fk.

Tn is nonsingular if and only if deg(fµ) = n − 1.

P roof. Let (f1, f2, . . . , fk, 0) be the remainders obtained
by applying the Extended Euclidean algorithm with f−1 =
Tn(x) and f0 = x2n−1. Let ηi = deg(fi), i = 0, . . . , k and
consider Sn−1(f0, f−1) as a polynomial in x. Then

Sn−1(f0, f−1) =

2n−2∑

i=0

Det(Mi,n−1)x
i

=

n−1∑

i=0

Det(Mi,n−1)x
i

where Mi,j is the matrix obtained after replacing the last
column of the matrix shown in the definition of Sj , with
the vector [gi+j−l+1, . . . , gi, hi+j−m+1, . . . , hi]

tr. The sec-
ond equation due to the fact that for i > j, Mi,j has two
repeated columns and det(Mi,j) = 0

The leading coefficient of Sn−1(f0, f−1) is the determi-
nant of Mn−1,n−1 which is the matrix




1 0 · · · 0 0
. . .

. . .
...

1 0
. . .

...
0 · · · 1 0 · · · 0
a0 · · · an−1 a2n−2

. . .

a0

...
. . .

...
. . .

a0 · · · an−1




where T tr
n is the n × n submatrix in the bottom right cor-

ner. Expansion of the determinant along the top rows
shows that det(Mn−1,n−1) = det(Tn). If Det(Tn) = 0 then
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deg(Sn−1) < n − 1. By theorem 1, there is no i, where
2 ≤ i ≤ k for which deg(fi) = n − 1. In other words,
deg(fµ−1) > n − 1 >deg(fµ). Hence deg(fµ) < n − 1. Con-
versely if deg(fµ) < n − 1 then deg(fµ−1) − deg(fµ) ≥ 2.
From theorem 1 it follows that ldcf(Sn−1) = 0 = Det(Tn).

4 The Counting Lemma

Theorem 2 establishes a link from non-singular Toeplitz
matrices to remainders in a Euclidean reduction scheme.
In particular, Tn is non-singular if deg(fµ) = n − 1. We
now seek a link in the opposite direction. Is it possible to
construct a non-singular Toeplitz matrix for a given triple
(fµ, sµ, hµ) from some valid Euclidean scheme? In fact, we
shall be interested in the number of different polynomials
Tn(x) whose (n − 1, n − 1) Padé approximant is F (x)/S(x)
for a given pair (F, S). We will then restrict ourselves to
only those Tn(x) that are non-singular.

Lemma 4 (Counting Lemma) Let f̂(x), ŝ(x) ∈ Fq[x] be

such that deg(f̂) ≤ n−1, deg(ŝ) ≤ deg(f̂) and ŝ(0) 6= 0. Let

β = n− 1−deg(f̂), also let F = xβ f̂ and S = xβ ŝ. If β = 0
then there is exactly one polynomial Tn(x) that satisfies

STn ≡ F mod x2n−1

subject to gcd(S, H) = 1. If β ≥ 1, then there are (q−1)qβ−1

polynomials Tn that satisfy this congruence. Furthermore,
these polynomials are identical in all but their β highest-
order coefficients.

Proof. Suppose f̂ and ŝ are two relatively prime polynomi-

als in Fq[x] with deg(f̂) ≤ n−1, deg(ŝ) ≤ deg(f̂) and ŝ (0) 6=

0. Let F = xβ f̂ and S = xβ ŝ where β = n− 1− deg(f̂) and
consider solving

Sf−1 + Hx2n−1 = F (4)

subject to gcd(S, H) = 1, for H and f−1 in Fq[x] . By
lemma 2, F = wfκ, S = wsκ, and H = wtκ, for some 0 ≤
κ < k in the extended Euclidean scheme for f−1 and x2n−1,
where gcd(f−1, f0) = fk. Since S and H are relatively prime,
w(x) = 1. From this, f−1 is the solution to the congruence

Sf−1 ≡ F mod x2n−1 (5)

and not a solution to equation (5) modulo x2n−1−β for β ≥
1.

By theorem 2, deg(fκ) = n − 1 if and only if Tn(x) is
non-singular in the scheme where f−1(x) = Tn(x). Hence

the pair (f̂ , ŝ), corresponds to some non-singular Tn.

Now let S =
∑n−1

i=0 σix
i, H =

∑n−2
i=0 τix

i, F =∑n−1
i=0 γix

i, and let Tn(x) =
∑2n−2

i=0 aix
2n−2−i. Compari-

son of the coefficients of xi for 0 ≤ i ≤ 3n − 3 yields the

following system of 3n − 2 equations in 3n − 2 unknowns:




σ0 0 · · · 0 0
...

. . . 0
. . .

...
σn−1 · · · σ0 0 0 0

0 σn−1 · · · σ0 0 0
. . .

. . .
...

... 0 σn−1 · · · σ0

0 σn−1

...
0 · · · 0 σn−1




~a =




γ0

...
γn−1

0
...
0

−τ0

...
−τn−2




(6)
where ~a = [a2n−2, a2n−1, . . . , a1, a0]

tr. If β = 0, the block
consisting of the first 2n−1 equations has a lower triangular
coefficient matrix of full rank since the diagonal element σ0

is non-zero. Thus there is a unique solution vector ~a . The
unknowns τ0, . . . , τn−1 can be found by forward substitution.

If β = 1, then σ0 = γ0 = 0 but τ0 6= 0, otherwise
gcd(S, H) 6= 1 and one of the conditions (see lemma 1) of
the extended Euclidean scheme is violated. The system of
equation (6) reduces to




σ1 0 · · · 0 0
...

. . . 0
...

σn−1 · · · σ1 0 0 0
0 σn−1 · · · σ1 0 0

. . .
. . .

...
... 0 σn−1 · · · σ1




~a =




γ1

...
γn−1

0
...
0

−τ0




These 2n−2 equations involving unknowns a1, . . . , a2n−2

(obtained by comparing the coefficients of x, x2, . . . , x2n−2

in equation (4) form a full-rank, lower triangular system
which can be solved to yield [a2n−2, . . . , a1]

tr uniquely. The
coefficient a0 is found in the (2n)th equation which is of the
form

σ1a0 = −τ0 + c

where c ∈ Fq is determined by a1, . . . , a2n−2. There are
q − 1 possible choices for τ0 and hence q − 1 polynomials
Tn(x) which match in all coefficients but a0.

Generalizing for β ≥ 1. We have σ0 = · · · = σβ−1 = 0
and γ0 = · · · = γβ−1 = 0, and τ0 6= 0. The first 2n − 1 − β
equations of the system




σβ 0 · · · 0 0
...

. . .
. . .

...
σn−1 · · · σβ 0 0

0 σn−1 · · · σβ 0 0
. . .

. . .
...

... 0 σn−1 · · · σβ




~a =




γ1

...
0

−τ0

...
−τβ−1




involving unknowns aβ , . . . , a2n−2 is of full rank since it
is lower triangular with diagonal element, σβ 6= 0. Hence
a2n−2, . . . , aβ are unique. The next β equations are of the
form

σβ+i−1aβ−i−1 = −τi + ci

where i = 0, . . . , β − 1 and ci ∈ Fq. It is clear that aβ−1

depends upon the value of τ0, for which there are q − 1
possible choices. For each of τ1, . . . , τβ−1 there are q choices.
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Hence there are (q − 1)qβ−1 different solution vectors ~a.

Our strategy for counting non-singular Toeplitz matrices
is to find the number of pairs (F, S) which are Padé Approx-
imants to a non-singular Tn. By theorem 2, deg(F ) = n−1,
and we must have deg(S) ≤ deg(F ). If gcd(F, S) 6= 1 we
can apply lemma 4. Finally we will take a weighted sum of
the counts. This discussion is summarized in the corollary
below.

Corollary 1 Let Nn = card(
{

Tn | Tn is non-singular
}

).

Let Pi be the set of all polynomial pairs (xiĝ, xiĥ) such that

deg(ĝ) = n − i − 1, deg(ĥ) ≤ deg(ĝ), ĥ(0) 6= 0, and with

ĝ, ĥ ∈ K[x]. Then

Nn = card(P0) +

n−1∑

β=1

(q − 1)qβcard(Pβ).

5 Count of Non-Singular Toeplitz Matrices

Once again, let Fq be a finite field with q elements where q is
a power of a prime, and let Fq[x] denote the polynomial ring
over Fq in the indeterminate x. For r, s, b ∈ N, 0 ≤ m, b ≤ r

let Pr =
{

g ∈ Fq[x] | deg(g) = r
}

and P̃r =
{

g | g ∈ Pr and

g(0) 6= 0
}

. Let Cr,m = card(Γr,m), Dr,m = card(∆r,m) and

Mr,b = card(Ωr,b) where

Γr,m =
{

(u, v) ∈ Pr × P̃m | gcd(u, v) = 1
}

∆r,m =
{

(u, v) ∈ P̃r × P̃m | gcd(u, v) = 1
}

Ωr,b =
{

(u, v) ∈ Pr−b × P̃k | gcd(u, v) = 1 and

0 ≤ k ≤ r − b
}

When d = 0, both u and v are constant polynomials and
either u = 1 or v = 1. Consequently D0,0 = q − 1. For
1 ≤ m ≤ r we have

Dr,0 = (q − 1)2qr−1 and

D(r, r) = (q − 1)2(q2r − q2r−1 − 2)/(q + 1) and

D(r, m) = qr−1(q − 1)3(q2m − 1)/(qm+1 + qm), (7)

where we have made use of the following result:

Theorem 3 Let 1 ≤ m ≤ r and (u, v) be uniformly dis-

tributed in P̃r × P̃m. Then we have Pr[gcd(u, v) = 1]

=
(1 − 1/(p + 1))(1 − p−2m) if r > m
(1 − 1/(p + 1))(1 − 2p1−2m)/(p − 1)) if r = m.

Proof. See Ma and Gathen (1990).

We will now determine the total number of non-singular
Tn over Fq. For each β with 0 ≤ β ≤ n − 1 we will count
the Mn−1,β pairs of relatively prime (xβ û, xβ v̂) for which
deg(û) = n − 1 − β, deg(v̂) ≤ deg(û), and v̂(0) 6= 0. Then
we will apply lemma 4 and take the sum over all d with
β = n − 1 − d.

We will need to count the total number of pairs Cr,m of
relatively prime (xiū, v̄) ∈ Fq[x] for which deg(ū) + i = r,
deg(v̄) = m, and v̄(0) 6= 0. We will then sum over all
0 ≤ i ≤ r. Note that the formulas from theorem 3 which
give us the values of Dr,s are applicable only when ū(0) 6= 0
and v̄(0) 6= 0. Thus

Cr,m =

r∑

i=0

Di,m

=

( r∑

i=m+1

Di,m

)
+ Dm,m +

(m−1∑

j=1

Dj,m

)
+ D0,m

=

( r∑

i=m+1

Di,m

)
+ Dm,m +

(m−1∑

j=1

Dm,j

)
+ Dm,0

= qr−m(q − 1)(q2m − 1). (8)

where for the purpose of counting, D0,m = Dm,0. It follows
that

Mr,β =

r−β∑

d=0

Cr−β,d

= (q − 1)qr−β +

r−β∑

d=1

Cr−β,d

= (1 + q2r−2β+1)(q − 1)/(q + 1) (9)

We are now able to prove our main result.

Theorem 4 Let Fq be a finite field with q elements where
q is a power of a prime. The number of non-singular n × n
Toeplitz matrices over Fq is (q − 1)q2n−2.

P roof. Let Nn = card(
{

Tn | Tn is non-singular
}

). Apply-

ing corollary 1 to lemma 4 we count the Mn−1,β pairs of
relatively prime (xβ û, xβ v̂) for which deg(û) = n − 1 − β,
deg(v̂) ≤ deg(û), and v̂(0) 6= 0. This is the geometric sum of
a finite number of terms, each of which is a finite geometric
sum. Thus

Nn = Mn−1,0 +

n−1∑

β=1

(q − 1)qβ−1Mn−1,β

=

(n−2∑

β=1

(q − 1)qβ−1Mn−1,β

)
+

(n−1∑

d=1

Cn−1,d

)
+

(q − 1)qn−1 + (q − 1)2qn−2

= (q − 1)

(
(2q − 1)qn−2 +

n−2∑

β=1

qβ−1Mn−1,β+

(q2n−1 − qn − qn−1 + 1)/(q + 1)

)

= (q − 1)q2n−2

This concludes the proof of the theorem.

Corollary 2 For n > 1 let Tn be an n × n Toeplitz matrix
over Fq. Further, let the elements in the topmost row and
leftmost column of Tn be selected uniformly randomly from
the elements of Fq. Then Tn is non-singular with probability
(1 − 1/q).

Proof. This follows readily from the fact that there is a
total of q2n−1 matrices Tn out of which (q − 1)q2n−2 are
non-singular.
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An n × n matrix exhibits Hankel structure if elements
along the antidiagonal are equal, and those along each line
parallel to the antidiagonal, are equal. Thus a Hankel matrix
is a Toeplitz matrix whose columns have been re-arranged.
The properties of Toeplitz matrices are applicable to Hankel
matrices after some notational changes. In particular we
have the following:

Corollary 3 There are (q − 1)q2n−2 non-singular n × n
Hankel matrices Hn over Fq. Furthermore let the elements in
the topmost row and rightmost column be selected uniformly
randomly from the elements of Fq. Then Hn is non-singular
with probability (1 − 1/q).

6 Count of Toeplitz Matrices with Generic Rank
Profile

Now let Tn = (ti−j), i, j = 1, . . . , n have Toeplitz structure
as in equation (1). For notational convenience we denote by
Dk the determinant of the k×k leading principal submatrix
of Tn.

We say that a matrix A ∈ K
n×n has generic rank profile

if rank(A) = r ≤ n and if rank(Ak) = k, where Ak is that
leading principal submatrix of A consisting of the first k
rows and columns of A for k = 1, . . . , r. The matrix A has
generic rank r if Ar has generic rank profile. The following
fact is a consequence of the well-known identity of Sylvester
(Gantmacher,1990).

Lemma 5 Let A ∈ K
n×n and let Lt, Rt, Lb, Rb denote re-

spectively the (n − 1) × (n − 1) submatrices at the left top,
right top, left bottom and right bottom, corners of A. Let
Mc be the central (n − 2) × (n − 2) submatrix obtained by
deleting the first and last rows and first and last columns of
A. Then

Det(A)Det(Mc) = Det(Lt)Det(Rb) − Det(Rt)Det(Lb).

P roof. Let Det(Ak) =

∣∣∣∣
1 2 . . . k
1 2 . . . k

∣∣∣∣ denote the

k × k leading principal minor of A. Let bs,t =∣∣∣∣
1 2 . . . k s
1 2 . . . k t

∣∣∣∣, s, t = k + 1, . . . , n, be the minor ob-

tained by bordering Ak by components of the sth row and
tth column of A. Denote the matrix formed by the bi,j

by B = (bi,j)
n
i,j=k+1. Then Sylvester’s identity (also at-

tributable to C. L. Dodgson) states that

Det(B) = (Det(Ak))n−k−1 · Det(A).

Our desired result follows by substituting n−1 for the value
of k.

Lemma 6 Let Tr ∈ Fq
r×r be a Toeplitz matrix with generic

rank r. Let Nr denote the number of such Tr. Then,

Nr = (q − 1)

(
q2 − q + 1

)r−1

.

P roof. For r ≤ 2 the result is clear. Assume r ≥ 3. Let

T
(x,y)
r denote

T (x,y)
r =




t0 t−1 . . . t2−r y
t1 t0 . . . t3−r t2−r

...
...

. . .
...

...
tr−2 tr−3 . . . t0 t−1

x tr−2 . . . t1 t0




where the leading(r − 1) × (r − 1) principal submatrix has
generic rank r − 1. Applying lemma 5 we have

Det(T (x,y)
r )Det(Tr−2) = Det(Tr−1)Det(Tr−1)−

Det(Rt)Det(Lb)

where

Rt =




t−1 t−2 . . . t2−r y
t0 t−1 . . . t3−r t2−r

...
...

. . .
...

...
tr−4 tr−5 . . . t−1 t−2

tr−3 tr−4 . . . t0 t−1




and

Lb =




t1 t0 . . . t4−r t3−r

t2 t1 . . . t5−r t4−r

...
...

. . .
...

...
tr−2 tr−3 . . . t1 t0
x tr−2 . . . t2 t1




Thus we may write

DrDr−2 = D2
r−1 − ((−1)r−1Dr−2y +α)((−1)r−1Dr−2x+β)

where α, β ∈ Fq. Since Tr−1 has generic rank profile, Dr−1 6=
0 and Dr−2 6= 0. Suppose now that Dr = 0. Then

D2
r−1 = D2

r−2(y + (−1)r−1D−1
r−2α)(x + (−1)r−1D−1

r−2β),

whence

x =
(Dr−1/Dr−2)

2

y + (−1)r−1α/Dr−2
+ (−1)r β

Dr−2
.

Consider now the first fraction in equation (10). The de-
nominator term becomes 0 for exactly one value of y, and
the numerator term is always non-zero. Hence there are
q − 1 pairs (x, y) which give a singular extension to Tr−1.
Consequently,

Nr =

(
q2 − (q − 1)

)
Nr−1

=

(
q2 − (q − 1)

)2

Nr−2

...

=

(
q2 − (q − 1)

)r−1

N1

= (q − 1)

(
q2 − q + 1

)r−1

.

This concludes the proof of the lemma.

Theorem 5 Let Tn ∈ Fq
n×n have Toeplitz structure. For

0 < r < n the probability that Tn has generic rank r is

pr,n =
1

q
(1 −

1

q
)2

(
1 −

q − 1

q2

)r−1

.

The probability that Tn has generic rank n is

pn,n = (1 −
1

q
)

(
1 −

q − 1

q2

)n−1

.
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Proof.

Let Gr,n =
{

Tn | Tr+1 has generic rank 0 < r < n
}

. Then

pr,n = q1−2n · card(Gr,n)

= Nr(q − 1)q2(n−r+1)q1−2n

=
(q − 1)2

q3

(
1 −

q − 1

q2

)r−1

=
1

q
(1 −

1

q
)2

(
1 −

q − 1

q2

)r−1

.

pn,n = q1−2n · Nn

= (q − 1)q2n−2

(
1 −

q − 1

q2

)n−1

q1−2n

= (1 −
1

q
)

(
1 −

q − 1

q2

)n−1

.

This concludes the proof of the theorem

7 Conclusions

We have shown that there are (q−1)q2n−2 non-singular n×n
Toeplitz matrices over a finite field Fq containing q elements.
The probability that an n × n random Toeplitz matrix is
non-singular is 1 − 1/q and this value is independent of the
dimension. For the field F2 containing 2 elements, it is 1/2
exactly. In (Borodin et al., 1982) it is shown for an arbitrary
n × n matrix An over Fq that2

Pr[A is non-singular] = v(1/q, n) =
∏

1≤i≤n

(1 − q−i).

In particular in F2, limn→∞ v(1/2, n) ≈ 0.2889. Thus there
is a higher probability of being singular if the n × n ma-
trix over Fq is unstructured, than if the matrix has Toeplitz
structure.

For matrices with no special structure, it can be shown
that pr,n = (1/q)(1− 1/q)r, and that pn,n = (1− 1/q)n. We
conjectured that for 0 < r < n the number of n×n matrices
over Fq with actual rank r is Nr = (q2 − 1)q2r−2. This last
fact was proven by Daykin.

As mentioned earlier these results were obtained in our
on-going investigation of the probability of success of the
block Wiedemann algorithm for solving linear systems over
finite fields of small cardinality. Along the lines of (Borodin
et al., 1982) we sought the probability that the matrices Y =
TnA and W = BT ′

n over Fq have generic rank profile. Here
A and B are non-singular Toeplitz-like matrices (Gohberg
et al., 1986) and Tn and T ′

n are square, uniformly random
Toeplitz matrices. We wish to put the coefficient matrix into
generic rank profile, with the use of Toeplitz preconditioners
whose entries are chosen uniformly at random from the field
Fq.

In (Kaltofen and Saunders, 1991) the preconditioning is
done for Wiedemann’s (1986) original coordinate recurrence

2This result is the restriction to square matrices of a result due
to Landesberg (1893) that for m × n matrices over Fq, the number of
matrices of rank r is

g(m, n, r) = q
r(r−1)/2

r∏

i=1

(qm−i+1
− 1)(qn−i+1

− 1)

(qi
− 1)

.

algorithm with a pair of random, triangular, unimodular
Toeplitz matrices whose entries come from an extension field
of Fq of degree O(log n) over Fq. We are seeking to avoid
computing in an extension field.

Theorem (5) indicates that the probability that a ran-
domly selected n×n Toeplitz matrix has full generic rank is
almost (1−1/q) ·e(1−n)/q. That probability approaches zero
as n tends to infinity and leads us to think that the desired
rank profile might be unattainable with just a single pair of
Toeplitz preconditioners with entries from Fq.

Cascaded Toeplitz preconditioners in the fashion A =

T
(s)
n · · ·T

(1)
n ·A·T̃

(1)
n · · · T̃

(s)
n where s > 1 might be more effec-

tive. The pairs (T
(j)
n , T̃

(j)
n ) would perhaps raise the generic

rank of A by stages until A has the desired generic rank
profile. Particular attention must be paid to the rank of the
preconditioners, for the actual rank of A might be lowered
if a random preconditioner is singular. Our results are a
resource for further research in this direction.
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