
Distributed Matrix-Free Solution of Large Sparse Linear Systems

over Finite Fields∗

E. KALTOFEN1 and A. LOBO2

1Department of Mathematics, North Carolina State University

Raleigh, North Carolina 27695-8205, USA; email: kaltofen@math.ncsu.edu

2Department of Computer and Information Sciences, The University of Delaware

Newark, Delaware 19711-1501, USA; email: alobo@cis.udel.edu

Abstract

We describe a coarse-grain parallel software system for the
homogeneous solution of linear systems. Our solutions are
symbolic, i.e., exact rather than numerical approximations.
Our implementation can be run on a network cluster of
SPARC-20 computers and on an SP-2 multiprocessor. De-
tailed timings are presented for experiments with systems
that arise in RSA challenge integer factoring efforts. For ex-
ample, we can solve a 252, 222×252, 222 system with about
11.04 million non-zero entries over the Galois field with 2 ele-
ments using 4 processors of an SP-2 multiprocessor, in about
26.5 hours CPU time.

1 Introduction

The problem of solving large, unstructured, sparse linear
systems using exact arithmetic arises in symbolic linear al-
gebra and computational number theory. For example the
sieve-based factoring of large integers can lead to systems
containing over 569,000 equations and variables and over
26.5 million nonzero entries, that need to be solved over the
Galois field of two elements. Problems of such a large size
can be tackled by structured Gaussian elimination which
heuristically inhibits fill-in and results in smaller, denser sys-
tems, than the original. It is not clear whether the denser
system can be guaranteed to fit in the primary memory of
a computer system.
An alternative approach is to employ iterative matrix-

free methods that use the black box model for the coefficient
matrix and require a linear number of matrix times vector
products plus a quadratic amount of extra arithmetic in the
coefficient field, both quantities measured in the dimension
of the matrix. Examples of methods in this category are the
counterparts, in the context of symbolic computation, of
the conjugate gradient algorithm (LaMacchia and Odlyzko,
1991), Lanczos algorithm (Coppersmith, 1991) and Wiede-
mann’s (1986) coordinate recurrence algorithm which finds
linear relations in Krylov subspaces.

∗This material is based on work supported in part by the Na-
tional Science Foundation under Grant No. CCR-9319776. Authors’
previous address: Department of Computer Science, Rensselaer Poly-
technic Institute, Troy, New York 12180-3590.

Appears in High Performance Computing ’96, Proc. 1996 Simula-
tion Multiconference, A. M. Tentner (ed.), Simulations Councils Inc.,
pp. 244–247 (1996).

The iterative methods do not depend upon the structural
properties of the matrix, in contrast to structured Gaussian
elimination, and the property of sparsity is maintained. The
methods are clearly open to parallelization when considering
the steps inside the outer loop,i.e., within the matrix times
vector product.
A far more difficult task is to parallelize the outer loop.

Wiedemann’s original algorithm for solving a system

Bw = 0

for a system of N linear equations over the finite field K

requires no more than 3N multiplications of the coefficient
matrix B by vectors, plus O(N2 logN) arithmetic opera-
tions in the field. The method is Las Vegas randomized i.e.
it never gives an incorrect answer upon termination, but it
might sometimes fail to provide any answer. One substep is
the computation of the sequence of field elements

a(i) = utrBiv ∈ K for 0 ≤ i ≤ 2N − 1,

where u and v are vectors with random entries from K. The
key property is that this sequence is generated by a lin-
ear recurrence that, with high probability, corresponds to
the minimum polynomial of B and which can be computed
by the Berlekamp/Massey (1969) algorithm. Evaluation of
the minimum polynomial yields the solution, if one exists.
Wiedemann’s original algorithm is entirely sequential.
Coppersmith (1994) simultaneously used m vectors x for

u and n vectors y for v. The sequence becomes

a
(i) = x

trBi
y ∈ K

m×n.

He then generalized the Berlekamp/Massey algorithm to
find the linear recurrence with vector coefficients, that gen-
erates this sequence of small rectangular matrices. Clearly
the a(i) can be computed independently and in parallel.
Kaltofen (1995) showed that the number of terms a(i) to

be computed reduces to N/m + N/n + 2n/m + 1. He also
gave an analysis of the running time complexity. Copper-
smith’s block Wiedemann algorithm, when implemented in
a parallel setting, exhibits a speedup proportionate to n and
performs much faster than its sequential counterpart.
In the this paper we will give an overview of the block

Wiedemann method followed by a description of our soft-
ware package, WLSS2, which runs on a network cluster of
SPARC workstations or under the SPMD model on the IBM
SP-2 multiprocessor using MPI as a scheduler.

244

2 Algorithm Description

We will give just the salient features of the algorithm here
and refer the interested reader to Coppersmith (1994) and
Kaltofen (1995) for full details.
The object is to find more than one non-trivial solution

to a homogeneous linear system with coefficient matrix B
and dimension N , over the finite field of 2 elements. We
set m = n and define this quantity as the blocking factor.
There are three steps to the algorithm.

Step BW1: Sequence Generation. Pick random vectors
x = [x1|x2| · · · |xm], and z = [z1|z2| · · · |zn], xj , zi ∈ K

N for
all 0 < i ≤ m, 0 < j ≤ n. Compute y = Bz and

a
(i) = (xtrBi

y)tr, for all 0 ≤ i ≤
N

m
+

N

n
+
2n

m
+ 1. (1)

The task requires not more than

(
1 +

n

m

)
N +

2n2

m
+ 2n (2)

multiplications of a vector in K
N by B, which is represented

by a black box. Actually, the κν rows of a(i) can be com-
puted using κν columns of the vector y as a coarse-grain
parallel operation, shown in figure (1). The νth processor
gets a copy of the black box for B, and the entire vector x.
Another way is to perform the computation B · (Bi−1yν) in
parallel, as Coppersmith does, for each i. The grain is much
finer than before but synchronization might be needed.

Step BW2: Finding a Linear Generator. Find a linear
generator Ψ of length D + 1 for the sequence of matrices
a(i).

Ψ(λ) = λD + cD−1λ
D−1 + . . .+ c1λ+ . . .+ c0.

where ci ∈ K
n for i = 0, . . . , D − 1. All this can be accom-

plished sequentially with O(nN2) operations in the coeffi-
cient field.

Step BW3: Horner-like Evaluation. This block step in-
volves a Horner-like evaluation of a polynomial Ψν for 1 ≤
ν ≤ n, derived from Ψ whose coefficients are n-dimensional
vectors.

Ψν(λ,y) = λDycD,ν + · · ·+ λδ+1
ycδ+1,ν + λδycδ,ν

with ck,ν = 0 for all 0 ≤ k < δ ≤ D. Each coefficient cj,ν

is the νth column of the coefficient of λj in Ψ(λ) computed
in the previous block step. This step can be performed in

a parallel/distributed setting. Setting Ψ̂ν(λ) = λ−δΨν(λ)
compute

ŵν = Ψ̂ν(B, z) (3)

This task requires no more than D − δ matrix times vector
products plus some additional O(N2) work to compute the
products of the form zcν,i.
With high probability ŵν 6= 0. The product Bdŵ is com-

puted for the smallest integer 1 ≤ d ≤ δ + 1 that yields the
zero vector. Finally wν = Bd−1ŵν is returned. With paral-
lelization, the block step of evaluation can yield as many as
n individual candidate solution vectors wν which may not
all be different or nonzero.

3 Distributed Implementation

We implemented the algorithm in the C programming lan-
guage. Our black box is a structure containing statically
initialized data and two functions, init to do the initializa-
tion, and apply, which computes the matrix times vector
product. No direct access to the static data is permitted to
any other function, in keeping with the spirit of a matrix-
free algorithm. The functions are passed by pointers to other
procedures.
The software system is decomposed into three sections

that are counterparts to the stepsBW1, BW2, and BW3.
Sequence generation was further split into a function that se-
lects the vectors x and y, and a module to actually compute
the a(i) that can be run in a distributed setting. The load is
statically balanced by giving the νth processor a copy of the
blackbox, the vector x and κν columns of z. Each processor

then computes a
(i)
ν = (xtrBi+1z)tr and puts it out to a file as

an append operation, and then closes that file to minimize
the effect of any fault. Barrier synchronization is employed
before the sequential step of finding a linear generator.

u

A

T

vν

Figure 1: Distributed Sequence Generation.

The evaluation step, too, is executed in a distributed
setting. Each processor receives a copy of the black box,
the entire vector z and κν columns of each coefficient of the
linear generator. As in the sequence generation step, the
load is statically balanced by the choice of the grain size, κν
and barrier synchronization is employed.
The software architecture is depicted in figure (2). The

tasks are of very long duration both in terms of CPU usage
and elapsed time and checkpointing strategies are built in
to give fault tolerance and error recovery.
Our intention is to have a coarse-grain parallel computa-

tion over a network of workstations or on an MIMDmachine.
Though the parallel tasks are of long duration, communica-
tion is far more expensive than computation. Accordingly,
the subtasks do not communicate with one another after
they are started. They write their data directly to output
files on a shared filesystem. For a network of SPARC-20
workstations we wrote a UNIX script that took a list of
available nodes and used a ready-queue mechanism to match
subtasks to available nodes and used a simple busy wait for
synchronization. No attempt was made to pick the best
compute engine since only a few large workstations were
available. The queue was essential when there were fewer
available processors than subtasks. The script provided an
environment and it was not linked into the solver. The solver
in this case, was broken into four stand-alone modules.
We linked to the MPI library (mpich) to schedule the

tasks of the solver on the IBM SP-2 parallel computer.
While maintaining the same partitioning, balancing and
communication strategies, there was only one program writ-
ten in a straightforward fashion, instead of discrete modules.
Barrier synchronization is used for the parallel subtasks.

245

minpoly computation

matrix black box

selection

parallelized sequence generator

parallelized
evaluation

Figure 2: Software Architecture of the black box Block
Wiedemann Algorithm .

3.1 Alternative Partitioning Schemes

Our partitioning scheme was chosen to avoid elaborate syn-
chronization and to minimize the cost of data communica-
tion across a network. We also considered distributing the
black box across processors. Two schemes are possible. In
the first, the νth processor is given the entire vectors z and
x and κν rows of the matrix, thus leading to ν smaller black
boxes. The action for sequence generation is shown in fig-
ure (3). The net result is that the ν × n blocks generated
by the subtasks have to be assembled into the N × n vec-
tor y(i) = Bi+1zν . This involves the broadcast of moderate
amounts of data. One synchronization step is required. The
scheme has merit in the context of an MIMD machine with
a fast communication network.

u

A
2

A
3

A
1

v

Figure 3: Distributed Black Box Partitioned Transversely.

In the other case, the matrix is partitioned by column,
with the νth processor receiving x, κν rows of the vector z
and a block of κν columns of the matrix. In this case, the
intermediate outputs are N × n vectors which have to be
broadcast, added, and then rebroadcast to give y(i). For
large N , this could be prohibitively expensive. Two syn-
chronization steps are needed.

4 Experiments

We conducted our tests on a network of SPARC-20 work-
stations with nominal ratings of 107 MIPS, and on an SP-2
parallel computer whose native MIPS ratings are not known
to us at the present time. The software was compiled with

the highest possible optimization flags on both platforms.
The test cases came from RSA challenge integer factoring
experiments. The first was supplied by A. Odlyzko, and the
other two representing the RSA-120 and RSA-129 efforts,
were obtained from A. Lenstra. The systems were made
square by padding with zero rows. Their specific details are
as follows:

1. A 50, 001 × 52, 250 matrix over GF(2) containing 9 to
34 entries per row and 1.1 million entries totally.

2. A 245,811× 252,22 matrix over GF(2) containing 10 to
217 non-zero entries per row and 11.04 million entries
totally.

3. A 524,339 × 569,466 matrix over GF(2) containing 26.6
million entries totally.

The blocking factor n was chosen as an integer multiple
of 32 bits, the word size of the machines. The granularity
κν was usually 32 except where noted. Vectors, the matrix
and the intermediate results were maintained and passed
as files. A shared filesystem was in use and hence only file-
names needed to be exchanged by tasks. We give the parallel
time to find n solutions on the network of workstations in
table (1). The timings for solving the first two test cases on
the SP-2 multiprocessor are given in table (2). The number
of processors used is given by n/κν .
Table (1) shows the parallel cpu-time for finding n so-

lutions to linear systems over GF(2), with κν greater than
32 on a network of SPARC-20 workstations. The number of
processors needed is given by 128/κν and is 2 when κν = 64
and 4 otherwise. It can be seen that the time for evalu-
ation is approximately one half of the time for generating
the sequence. Each of these steps involves matrix times vec-
tor products plus some additional work, but the dominating
cost of these steps appears to be the matrix times vector
multiplication. It makes sense, therefore, to optimize this
task as much as possible. The times for finding the linear
generator grow quadratically with dimension of the matrix
and overall, the total time appears to grow according to a
function that is in O(N2+ε) where 0 < ε ≤ 1.
Our tables give the total work, which is the product of

the total time taken by all parallel and sequential tasks,
multiplied by the native MIPS of the machines. This is a
measure of the total number of instructions that the pro-
cessors could have executed while active. Another point to
observe is that for the smallest matrix, the time for finding
128 solutions is approximately the same when the granular-
ities are 32 and 64.
Table (2) shows the time for solving two of the systems

on an SP-2 multiprocessor. Scheduling was done by means
of MPI. Comments similar to the ones for table (1) can
be made here as well. We presently have no figure for the
native MIPS of the individual processors. Interestingly any
one node of the SP-2 is much faster than a SPARC-20. We
took care to see that the output data was always written to
local disk space so the difference in timings could be the
result of different processor power, different compilers or
different disk write speeds and bandwidth. We did not have
sufficient disk space to store the contents of the matrix and
the intermediate files, for the RSA-129 matrix.
The programs are scalable. We could for example use

a larger blocking factor n and more processors to reduce
the time for a parallel subtask, which is inversely related
to n. However the cost for finding the linear generator is

246

N Grain Sequence Minpoly Evaluation Total Work

52,250 32 0h19′ 1h00′ 0h10′ 1h28′ 308#

64 0h24′ 1h04′ 0h09′ 1h36′ 347#

252,222 64 28h46′ 23h54′ 11h52′ 64h32′ 13820#

569,466 64 167h39′ 106h45′ 57h40′ 332h04′ 35630#

Table 1: Parallel CPU Time (hourshminutes′) for finding 128 solutions with opti-
mized WLSS2 package on a network of SPARC-20 workstations. Each processor is
rated at at 107.3 MIPS. The number of workstations needed is 128/grain. Work is
measured in units of (MIPS-hours#).

N Grain Sequence Minpoly Evaluation Total

52,250 32 0h10′ 0h42′ 0h04′ 0h57′

252,222 32 7h15′ 15h24′ 3h51′ 26h30′

Table 2: Parallel CPU Time (hourshminutes′) for finding 128 solutions
with optimized WLSS2 package on 4 nodes of an SP-2 multiprocessor.

directly proportionate to the blocking factor so there is a
point when the reduction in the parallel areas is balanced
by the increase in the sequential area. Beyond that point,
the total time increases.

5 Conclusions

We have demonstrated the black box concept and have suc-
cessfully parallelized a program in the outer loop. Our solu-
tions are symbolic i.e. exact, rather than numerical approx-
imations. Parallel subtasks are statically balanced and the
computation is scalable. The problems of processor synchro-
nization and the exchange of large quantities of intermediate
data over a network, are circumvented by the decomposition
of the program into three sets of subtasks that communicate
by means of files alone.
We are able to solve a system of 569,466 equations in

332 hours on a workstation cluster, and a system of 252,222
equations in about 26.5 hours on an SP-2.
We are investigating theoretical issues of the block

Wiedemann algorithm, and the parallelization of the linear
generator step. We believe that the block algorithm a vi-
able alternative to structured Gaussian elimination because
it is matrix-free and causes no loss of sparsity during the
computations. Were sparsity to be lost, for example, in the
case of our largest matrix, nearly 40Gb of storage would be
needed to to accommodate the dense matrix even if just one
bit was used per entry.
We also find the algorithm to be competitive to the block

Lanczos algorithm which is susceptible to problems of of
orthogonality of the vectors in its intermediate steps, that
problem becoming more visible as the dimension grows.
In conclusion, we have shown how a non trivial problem

can be solved on a network of inexpensive workstations as

well as on an MIMD machine. We anticipate that the tech-
niques described here will keep pace with the larger systems
generated in the state of the art of integer factoring and
will hence, indirectly, have an impact upon the security of
public-key cryptosystems. Our next challenge is to solve a
system of approximately 1,500,000 equations and variables
generated in a factoring experiment. We plan to use a dis-
tributed black box strategy for this purpose

Acknowledgement: The authors thank Charles Norton
for valuable discussions and assistance with the use of the
SP-2. Thanks also to David Hollinger and Nathan Schimke
for technical support.

References

[1] Coppersmith, D. (1991). Solving linear systems over
GF(2). Tech. Report RC 16997 IBM Thomas J. Watson
Research Ctr., Yorktown Heights, New York.

[2] Coppersmith, D. (1994). Solving homogeneous linear
equations over GF(2) via block Wiedemann algorithm.
Math. Comput.62/205, 333–350.

[3] Kaltofen, E. (1995). Analysis of Coppersmith’s block
Wiedemann algorithm for the parallel solution of sparse
linear systems. Math. Comput. to appear.

[4] LaMacchia, B. A. and Odlyzko, A. M. Solving large
sparse linear systems over finite fields Advances in Cryp-
tology: CRYPTO ’90, Springer. Lect Notes Comput.
Sci., 537,109–133

[5] Wiedemann, D. (1986). Solving sparse linear equations
over finite fields. IEEE Trans. Inf. Theory 32, 54–62.

247

