Complexity Theory in the Service of Algorithm Design

ERICH KALTOFEN

Rensselaer

Rensselaer Polytechnic Institute Department of Computer Science Troy, New York, USA

Outline

• Wiedemann's sparse linear system solver

- Coordinate recurrences
- More applications of the transposition principle

• Reverse mode of automatic differentiation

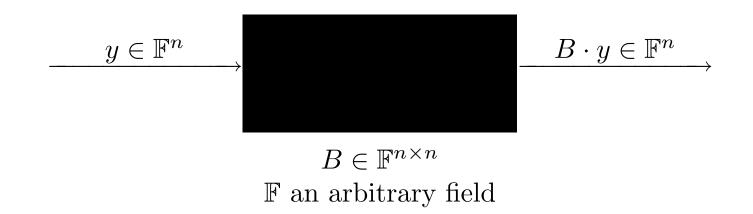
- $\circ~$ Transposition principle by derivatives
- More applications

• Polynomial factorization

- $\circ\,$ Berlekamp's polynomial factorization algorithm
- $\circ\,$ use of the Wiedemann method
- $\circ\,$ new baby step/giant step algorithm

A "black box" matrix

is an efficient **procedure** with the specifications



i.e., the matrix is not stored explicitly, its structure is unknown.

Main algorithmic problem: How to efficiently solve a linear system with a black box coefficient matrix? Idea for Wiedemann's algorithm

 $B \in \mathbb{F}^{n \times n}$, \mathbb{F} a (possibly finite) field $\phi^B(\lambda) = c'_0 + c'_1 \lambda + \dots + c'_m \lambda^m \in \mathbb{F}[\lambda]$ minimum polynomial of B: $\forall u, v \in \mathbb{F}^n: \forall j \ge 0: u^{\mathrm{tr}} B^j \phi^B(B) v = 0$ $c'_{0} \cdot \underbrace{u^{\mathrm{tr}} B^{j} v}_{a_{j}} + c'_{1} \cdot \underbrace{u^{\mathrm{tr}} B^{j+1} v}_{a_{j+1}} + \dots + c'_{m} \cdot \underbrace{u^{\mathrm{tr}} B^{j+m} v}_{a_{j+m}} = 0$ $\{a_0, a_1, a_2, \ldots\}$ is generated by a linear recursion

Theorem (Wiedemann 1986): For random $u, v \in \mathbb{F}^n$, a linear generator for $\{a_0, a_1, a_2, \ldots\}$ is one for $\{I, B, B^2, \ldots\}$.

that is, $\phi^B(\lambda)$ divides $c_0 + c_1\lambda + \cdots + c_m\lambda^m$

Algorithm Homogeneous Wiedemann

Input: $B \in \mathbb{F}^{n \times n}$ singular Output: $w \neq \mathbf{0}$ such that $Bw = \mathbf{0}$

Step W1: Pick random $u, v \in \mathbb{F}^n$; $b \leftarrow Bv$; **for** $i \leftarrow 0$ **to** 2n - 1 **do** $a_i \leftarrow u^{\text{tr}} B^i b$. (Requires 2n black box calls.)

Step W2: Compute a linear recurrence generator for $\{a_i\}$, $c_{\ell}\lambda^{\ell} + c_{\ell+1}\lambda^{\ell+1} + \cdots + c_d\lambda^d$, $\ell \ge 0, d \le n, c_{\ell} \ne 0$, by the Berlekamp/Massey algorithm.

Step W3:
$$\widehat{w} \leftarrow c_{\ell}v + c_{\ell+1}Bv + \dots + c_{d}B^{d-\ell}v;$$

(With high probability $\widehat{w} \neq 0$ and $B^{\ell+1}\widehat{w} = 0.$)
Compute first k with $B^{k}\widehat{w} = 0$; return $w \leftarrow B^{k-1}\widehat{w}$.

Steps W1 and W3 have the same computational complexity

$$u^{\mathrm{tr}} \cdot [v \mid Bv \mid B^2v \mid \dots \mid B^{2n}v] = [a_{-1} \quad a_0 \quad a_1 \quad \dots \quad a_{2n-1}]$$

$$\begin{bmatrix} v \mid Bv \mid B^2v \mid \dots \mid B^{2n}v \end{bmatrix} \cdot \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{2n} \end{bmatrix} = w$$

Fact: $X \cdot y$ and $X^{\text{tr}} \cdot z$ have the same computational complexity [Kaminski *et al.*, 1988].

Other Uses:

• Vandermonde^{tr}·b ("weighted power sums") for sparse polynomial interpolation (Canny, Kaltofen, and Lakshman ISSAC '89) and for polynomial factoring (Shoup ISSAC '91).

• Computing the minimum polynomial of an algebraic number in $O(n^2)$ ground field operations (Shoup 1992) by modular power projection

• Polynomial factorization and normal bases by *transposed modular polynomial composition* (K and Shoup 1995).

Transposed modular polynomial composition (TCOMP)

Let

$$\mathcal{L}: \mathbb{F}[x]/(f) \xrightarrow{} \mathbb{F}_{c_0 + \dots + c_{n-1}x^{n-1} \longmapsto c_0 u_0 + \dots + c_{n-1}u_{n-1}, \quad u_i = \mathcal{L}(x^i)$$

be a $\mathbb F\text{-linear}$ map, and let

$$\mathcal{C}\llbracket h \rrbracket \colon \mathbb{F}[x]/(f) \xrightarrow{} \mathbb{F}[x]/(f)$$
$$v_0 + \dots + v_{n-1}x^{n-1} \longmapsto v(h) \bmod f = \sum_l v_l h^l \bmod f$$

Problem: Compute all "power projections"

$$\mathcal{L}(h^i \mod f) \quad \text{for } 0 \le i < n.$$

Note:

$$\begin{bmatrix} u_0 & \dots & u_{n-1} \end{bmatrix} \cdot C \cdot \begin{bmatrix} v_0 \\ \vdots \\ v_{n-1} \end{bmatrix} = \mathcal{L}(\mathcal{C}\llbracket h \rrbracket(v))$$

where
$$C \cdot \begin{bmatrix} v_0 \\ \vdots \\ v_{n-1} \end{bmatrix}$$
 corresponds to $v(h) \mod f$.

Application of TCOMP to minimum polynomials

Let $\alpha \in \mathbb{F}[\theta]/(f)$ where θ is algebraic with minimum polynomial f

Problem: Compute the minimum polynomial $g(\alpha) = 0$ where

$$g(x) = x^m - c_{m-1}x^{m-1} - \dots - c_0 \in \mathbb{F}[x] \qquad \text{with } m \le n$$

The coefficient vectors $\vec{a}_i = \alpha^i \mod f(\theta)$ satisfy

$$\forall j \ge 0: \ \vec{a}_{m+j} = c_{m-1}\vec{a}_{m-1+j} + \dots + c_0\vec{a}_j$$

Any non-trivial linear projection $\mathcal{L}(\vec{a}_i)$ preserves the linear generator, because g is irreducible

Transposed modular polynomial multiplication (TMULT)

Let $\mathcal{L}: \mathbb{F}[x]/(f) \longrightarrow \mathbb{F}$ be a \mathbb{F} -linear map, and let

$$\mathcal{M}[\![g]\!] \colon \mathbb{F}[x]/(f) \longrightarrow \mathbb{F}[x]/(f)$$
$$v(x) \longmapsto v(x) \cdot g(x) \mod f(x)$$

Problem: Compute $\mathcal{L} \circ \mathcal{M}[\![g]\!]$, that is, all

$$\mathcal{L}(\mathcal{M}[\![g]\!](x^i)) = \mathcal{L}(x^i g(x) \mod f(x)) \quad \text{for } 0 \le i < n.$$

Note:

$$\begin{bmatrix} u_0 & \dots & u_{n-1} \end{bmatrix} \cdot M \cdot \begin{bmatrix} v_0 \\ \vdots \\ v_{n-1} \end{bmatrix} = \begin{bmatrix} \dots \mathcal{L}(\mathcal{M}\llbracket g \rrbracket(x^i)) \dots \end{bmatrix} \cdot \begin{bmatrix} v_0 \\ \vdots \\ v_{n-1} \end{bmatrix}$$

where
$$M \cdot \begin{bmatrix} v_0 \\ \vdots \\ v_{n-1} \end{bmatrix}$$
 corresponds to $v(x)g(x) \mod f(x)$.

Baby step/giant step TCOMP (Shoup '94)

 $t \gets \lceil \sqrt{n} \, \rceil$

compute $h^2 \mod f, \ldots, h^{t-1} \mod f$

 $\mathcal{L}^{(0)} \leftarrow \mathcal{L}$

for $j \leftarrow 0$ to $\lceil n/t \rceil - 1$ do

{for $k \leftarrow 0$ to t - 1 do /* Baby steps */ $\mathcal{L}(h^{jt+k} \mod f) \leftarrow \mathcal{L}^{(j)}(h^k \mod f)$

/* Giant steps */

compute $\mathcal{L}^{(j+1)} \leftarrow \mathcal{L}^{(j)} \circ \mathcal{M}\llbracket h^t \mod f \rrbracket = \mathcal{L} \circ \mathcal{M}\llbracket h^{t(j+1)} \mod f \rrbracket$ (by TMULT with h^t from previous $u_i = \mathcal{L}^{(j)}(x^i)$) } /* end for j */

Explicit TMULT algorithm

1.
$$T_1 \leftarrow \operatorname{FFT}^{-1}(\operatorname{RED}_k(g))$$

2. $T_2 \leftarrow T_1 \cdot S_2$
3. $v \leftarrow -\operatorname{CRT}_{0\dots n-2}(\operatorname{FFT}(T_2))$
4. $T_2 \leftarrow \operatorname{FFT}^{-1}(\operatorname{RED}_{k+1}(x^{n-1} \cdot v))$
5. $T_2 \leftarrow T_2 \cdot S_3$
6. $T_1 \leftarrow T_1 \cdot S_4$
7. Replace T_1 by the 2^{k+1} -point residue table whose *j*-th column ($0 \leq j < 2^{k+1}$) is 0 if *j* is odd, and is column number $j/2$ of T_1 if *j* is even.
8. $T_2 \leftarrow T_2 + T_1$

9. $u \leftarrow \operatorname{CRT}_{0...n-1}(\operatorname{FFT}(T_2))$

"we offer no other proof of correctness other than the validity of this transformation technique (and the fact that it does indeed work in practice)" (Shoup)

Analysis of baby step/giant step TCOMP

$$\approx 2\sqrt{n}$$
 modulo f multiplications
 $\approx n^2$ additions, multiplications in \mathbb{F}

versus

 $egin{array}{ll} n-2 & \mbox{modulo} \ f \ \mbox{multiplications} \ pprox n^2 & \mbox{additions, multiplications in \mathbb{F}} \end{array}$

Ostrowski, Wolin, and Borisow (1971) circuit transformation

Note that the size of the circuit for partials does not depend on n.

K and Singer 1991: Depth (= parallel time) of circuit for $\partial f / \partial x_i$ = O(depth of circuit for f).

Transformation is numerically stable.

Inverted transposition principle by automatic differentiation

The problems $A^{-1} \cdot b$ and $(A^{\text{tr}})^{-1} \cdot b$, given $A \in \mathbb{F}^{n \times n}$ non-singular and $b \in \mathbb{F}^n$, have the same asymptotic circuit complexity: Let

$$f(x_1,\ldots,x_n) = (\begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix} \cdot (A^{\operatorname{tr}})^{-1}) \cdot b \in \mathbb{F}[x_1,\ldots,x_n].$$

Then

$$\begin{bmatrix} \partial_{x_1} f \\ \vdots \\ \partial_{x_n} f \end{bmatrix} = (A^{\mathrm{tr}})^{-1} b.$$

Note: Transposition principle may not apply due to divisions.

Used for:

• (Vandermonde^{tr})⁻¹ · b for sparse polynomial interpolation (K and Lakshman '88).

Reduction: Matrix Inverse \preccurlyeq Determinant (Baur, Strassen '83)

Consider a circuit for the determinant,

$$f(a_{1,1},\ldots,a_{n,n}) = \operatorname{Det}\left(\begin{bmatrix} a_{1,1} & a_{1,2} & \ldots & a_{1,n} \\ a_{2,1} & a_{2,2} & \ldots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \ldots & a_{n,n} \end{bmatrix}\right).$$

Then

$$(-1)^{i+j}\frac{\partial f}{\partial a_{j,i}} = \operatorname{Det}(A)(A^{-1})_{i,j}.$$

 \implies Circuit for partials computes adjoint matrix.

Used for:

- Processor-efficient poly-log parallel computation of A^{-1} (K and Pan '91, '92).
- Division-free computation of adjoint of A in $\widetilde{O}(n^3\sqrt{n})$ arithmetic operations (K '92).

The black box Berlekamp algorithm

Factor squarefree $f(x) = f_1(x)f_2(x)\cdots f_r(x)$, where $n = \deg(f)$, into irreducible polynomials $f_i(x) \in \mathbb{F}_p[x]$, \mathbb{F}_p a finite field with p elements.

"Black-box matrix" algorithm: compute $\overrightarrow{v}^{tr} \cdot (Q - I)$ as

 $v(x)^p - v(x) \mod f(x)$ in $n \log p \cdot (\log n)^{O(1)} \mathbb{F}_p$ -ops

$$\begin{aligned} -v(x) + \sum_{i=0}^{n-1} v_i (\underbrace{x^p \mod f(x)}_{h_1(x)})^i \mod f(x) \\ &= -v(x) + v(h_1(x)) \mod f(x) \qquad \text{in } O(n^{1.7}) \mathbb{F}_p\text{-ops (given } h_1) \\ & (\text{modular polynomial composition}) \end{aligned}$$

The probabilistic analysis needed when using the Wiedemann algorithm as the solver can be made explict (K & Lobo 1994).

For example, one has:

Fact: If f is squarefree, the minimum polynomial of Q is

$$\phi^Q(\lambda) = \operatorname{LCM}_{1 \le i \le r}(\lambda^{m_i} - 1), \text{ where } m_i = \operatorname{deg}(f_i).$$

Note: $\phi^Q(\lambda) = \phi^{Q-I}(\lambda - 1).$

The baby steps/giant steps polynomial factorizer

Consider computing
$$a_i = \overrightarrow{u}^{\mathrm{tr}} \cdot Q^i \cdot \overrightarrow{v} = (\overrightarrow{u}^{\mathrm{tr}}Q^j) \cdot (Q^{tk}\overrightarrow{v})$$
, where
 $0 \le i \le 2n, 0 \le j < t, 0 \le k \le 2n/t$,
 $t = \lceil n^{\gamma} \rceil, 0 \le \gamma \le 1$.

Baby steps: $\overrightarrow{u}^{\mathrm{tr}} \cdot Q^j$ by repeated $u(x)^p \mod f(x)$.

Giant steps: $Q^{tk} \cdot \overrightarrow{v}$ by repeated transposed modular polynomial composition with $h_t(x) = x^{p^t} \mod f(x)$.

Finally, all a_i by fast rectangular matrix multiplication.

Run-time comparisons (field arithmetic operations)

$$p = O(1) \quad \log p = \Theta(n)$$
Berlekamp '70
 $O(n^{\omega} + n^{1+o(1)} \log p)$
Cantor & Zassenhaus '81
 $O(n^{2+o(1)} \log p)$
von zur Gathen & Shoup '91
 $O(n^{2+o(1)} + n^{1+o(1)} \log p)$
Kaltofen & Shoup '94
 $O(n^{(\omega+1)/2+(1-\gamma)(\omega-1)/2} + n^{1+\gamma+o(1)} \log p)$
for any $0 \le \gamma \le 1$
 $D(n^{2+o(1)}) \quad O(n^{2+o(1)})$

 $\omega = matrix multiplication exponent$

Lobo's '94 parallel implementation

$\begin{tabular}{c} Degree \\ n \end{tabular}$	$\frac{\text{Prime}}{p}$	Task	$\# \operatorname{Com}_{8}$	puters 32	Factor degrees
15001	127	Step W1 Step W2 Step W3 split/refine total time work	$82^{h}20'$ $12^{h}53'$ $42^{h}42'$ $3^{h}19'$ $141^{h}14'$ $87577^{\#}$		$\begin{array}{c}1,1,2,2,4,12\\21,21,33,55\\155,158,351\\809,1793,2665\\2813,2919,3186\end{array}$

Parallel CPU time (hours^hminutes') for factoring $(x^{7501} + x + 1) \cdot (x^{7500} + x + 1) \pmod{127}$ on 86.1 MIPS computers; work is measured in MIPS-hours[#] Shoup's baby step/giant step implementation

Can factor a 1024 degree pseudo-random polynomial modulo a 1024 bit prime number in about 50 hours on a **single** 20 MIPS computer.

The algorithm requires 11 Mbytes of memory.

Note: Shoup implemented a variant based on the distinct-degree factorization algorithm

Normal bases

Let $\alpha \in \mathbb{F}_p[\theta]/(f)$ where θ is algebraic with minimum polynomial f α is **normal**

Subquadratic algorithms

Basis selection:
$$\geq \frac{1}{12 \max\{\log_p n, 1\}}$$
 pairs $\vec{\alpha}, \vec{u}$ satisfy (1)
(checking for (1) is Step W1 in black box Berlekamp)

Conversion from normal basis: compute $c_0 \alpha + \dots + c_{n-1} \alpha^{p^{n-1}} \mod f$ (is Step W3 in black box Berlekamp)

Conversion to normal basis: Given γ , find c_i with

$$\gamma = c_0 \alpha + \dots + c_{n-1} \alpha^{p^{n-1}} \mod f$$

Solve the Hankel system

$$\vec{u}^{\text{tr}} \cdot \overrightarrow{\gamma^{p^{j}}} = \sum_{i=0}^{n-1} c_{i} \ \vec{u}^{\text{tr}} \cdot \overrightarrow{\alpha^{p^{i+j}}} \quad (0 \le j < n)$$