Complexity Theory in the Service of
Algorithm Design

Ericd KALTOFEN

Lenssclacr

Rensselaer Polytechnic Institute

Department of Computer Science
Troy, New York, USA

Outline

¢ Wiedemann’s sparse linear system solver
o Coordinate recurrences

o More applications of the transposition principle

¢ Reverse mode of automatic differentiation
o Transposition principle by derivatives

o More applications

e Polynomial factorization
o Berlekamp’s polynomial factorization algorithm
o use of the Wiedemann method

o new baby step/giant step algorithm

A “black box” matrix

is an efficient procedure with the specifications

y € " B-yel"

B 6 Fan
[F an arbitrary field

i.e., the matrix is not stored explicitly, its structure is unknown.

Main algorithmic problem: How to efficiently solve a linear system
with a black box coefficient matrix?

Idea for Wiedemann’s algorithm

B € F"*"™ F a (possibly finite) field

PPN =+ A+ -+ A € F[]A\] minimum polynomial of B:

Vu,v € F™: Vj > 0: u" B ¢”(B)v =0

|

/ tr 7 / tr pg+1 / tr p7+m
ch-u ' Blvte, cutB o+ -+ cut B v=20

aj Aj+1 Aj+-m

|

{ag, a1, as, ...} is generated by a linear recursion

Theorem (Wiedemann 1986): For random u,v € F™,
a linear generator for {ag, a1, as,...} is one for {I,B,B?,...}.

Vi3 >0:coa; +craj41+ -+ cqgajrq =0
H (with high probability)
coB’v+c; BTy + -+ chj+dU =0
H (with high probability)
coB? + 1B - 4 gBTY =0

that is, ¢Z(\) divides cg + 1 A + -+ + ¢ A

Algorithm Homogeneous Wiedemann

Input: B € F™*™ singular
Output: w # 0 such that Bw =0

Step W1: Pick random u,v € F"; b «— Bu;

for i — 0 to 2n — 1 do a; «— u""Bb.
(Requires 2n black box calls.)

Step W2: Compute a linear recurrence generator for {a;},
co\' + C£+1)\€+1 oo feght, £>0,d<m, e #0,
by the Berlekamp/Massey algorithm.

Step W3: W «— cpv+cpp 1B+ -+ cqBY v,
(With high probability @ # 0 and B 1w = 0.)

Compute first k£ with B*@ = 0; return w «— B*~1@.

Steps W1 and W3 have the same computational complexity

Utr°[?} ‘ Bv ‘ BQ’U | | BQnU] — [CL_l apg aip ... agn_l]
- o]
C1
[v|Bv | B%v|...| B*™]-| . | =w
C2n

Fact: X -y and X' - z have the same computational complexity
|[Kaminski et al., 1988].

Other Uses:

e Vandermonde™ b (“weighted power sums”’) for sparse polynomial in-
terpolation (Canny, Kaltofen, and Lakshman ISSAC ’89) and for poly-
nomial factoring (Shoup ISSAC '91).

e Computing the minimum polynomial of an algebraic number in O(n?)
ground field operations (Shoup 1992) by modular power projection

e Polynomial factorization and normal bases by transposed modular poly-
nomial composition (K and Shoup 1995).

Transposed modular polynomial composition (TCOMP)

Let

L: Flz|/(f) ¥

CO _|_ .« o e —I— C?’L—lxn |_>CO/U/O —|_ c _I_ Cn—lu'n—la u"/ — E(:CZ)

be a [F-linear map, and let

Clh]: Flz]/(f) Flz]/(f)
vo + -+ Vp—12" " ——wv(h) mod f =", uh! mod f

Problem: Compute all “power projections”
L(h* mod f) for 0 <i < n.

Note:

(ug oor Up_1]-C- = L(C[h](v))

_/U'n,—l -

where C' - corresponds to v(h) mod f.

Application of TCOMP to minimum polynomials

Let o € F[A]/(f) where 0 is algebraic with minimum polynomial f

Problem: Compute the minimum polynomial g(a) = 0 where

1

g(x) =a™ — 1™ — - —¢o € Flx] with m <n

The coefficient vectors @; = o' mod f(6) satisfy
\V/_] Z 0: ajm—l—j — Cm—lc_im—l—kj + -+ C()C_ij

Any non-trivial linear projection L(a;) preserves the linear generator,
because ¢ is irreducible

Transposed modular polynomial multiplication (TMULT)

Let L:F|x|/(f) — F be a F-linear map, and let

Mgl: Flz]/(f)—Flz]/(f)

v(z)———wv(z) - g(z) mod f(z)
Problem: Compute £ o M[g], that is, all

L(M[g](z")) = L(x"g(z) mod f(z)) for 0 <i < n.

Note:
- g -
[o Un—r]- M- | | =] LM]g](z")) ..]
L Up—1 4 L Up—1 4
-
where M - : corresponds to v(z)g(x) mod f(x).
Un—l

Baby step/giant step TCOMP (Shoup '94)
t—[vn]
compute h? mod f,...,ht7! mod f
LO) [
for j «— 0 to [n/t] — 1 do

{for k<—0tot—1do
/* Baby steps */
LK mod f) «— £Y) (k¥ mod f)

/* Giant steps */

compute LU «— £U) o M[ht mod f] = £ o M[R'UFY mod f]

(by TMULT with h! from previous u; = £ (2%))
} /* end for j x/

Explicit TMULT algorithm

1. Ty «— FFT '(RED4(9))

2. T2 < T1 . S2

3. U+ —CRTOn_Q(FFT(TQ))

4. Ty — FFT HREDj,i (2" 1 - v))

D. T2 < T2 . Sg

0. T1 < T1 . S4

7. Replace T by the 2*T1-point residue table whose j-th column (0 <
j < 2k1)is 0if j is odd, and is column number j/2 of T} if j is
even.

8. T2 < TQ + T1

9. u <« CRTy. n—1(FFT(12))

“we offer no other proof of correctness other than the validity of this

transformation technique (and the fact that it does indeed work in prac-
tice)” (Shoup)

Analysis of baby step/giant step TCOMP

modulo f multiplications

additions, multiplications in F

versus

modulo f multiplications

additions, multiplications in F

Ostrowski, Wolin, and Borisow (1971) circuit transformation

Note that the size of the circuit for partials does not depend on n.

K and Singer 1991: Depth (= parallel time) of circuit for df/0x;
= O(depth of circuit for f).

Transformation is numerically stable.

Inverted transposition principle by
automatic differentiation

The problems A1 - b and (A%)~1 . b, given A € F**" non-singular and
b € F", have the same asymptotic circuit complexity: Let

fler,...,zn) =21 ... xn] - (A" 1) -beF[xy,..., 2]

Then

o f"
| = (A") 7.

837nf

Note: Transposition principle may not apply due to divisions.

Used for:

—1

e (Vandermonde™)™! - b for sparse polynomial interpolation (K and

Lakshman ’88).

Reduction: Matrix Inverse < Determinant (Baur, Strassen '83)

Consider a circuit for the determinant,

a1 a2 ... Q1np
a2 1 a2 2 c.. A2n
f(al,l,...,an,n) = Det(. . .)
LQp1 An2 ... 0Apnp-

Then

—> (Circuit for partials computes adjoint matrix.
Used for:

e Processor-efficient poly-log parallel computation of A~ (K and Pan 91,
'92).

e Division-free computation of adjoint of A in O(n®\/n) arithmetic op-
erations (K ’92).

The black box Berlekamp algorithm

Factor squarefree f(x) = fi(xz)f2(x)--- fr-(x), where n = deg(f), into
irreducible polynomials f;(x) € F,[x], F, a finite field with p elements.

For w(z) € F,|x], deg(w) < n:

Vi:w(z) mod fi(x) =s; € F, (Then GCD(f(z),w(x) —s;) # 1)

0

w(x)? =w(x?) = w(xr) (mod f(x)) (Note: (a+ b)P = aP + bP)

0

tr

w(Q—1)=0 where Q= |2 mod /()

“Black-box matrix” algorithm: compute T - (Q — I) as

v(x)P — v(z) mod f(x) in nlogp - (logn)?W) F,-ops

—v(x) + 32, U2<37p mod f(z)) mod f(x)
hi(x)
= —v(x) +v(h1(z)) mod f(x) in O(n'") F,-ops (given hy)

(modular polynomial composition)

The probabilistic analysis needed when using the Wiedemann algorithm
as the solver can be made explict (K & Lobo 1994).

For example, one has:

Fact: If f is squarefree, the minimum polynomial of () is

¢Q()\) = LCMi<i<,(A™" — 1), where m; = deg(f;).

Note: ¢p@(\) = ¢@~I(\ —1).

The baby steps/giant steps polynomial factorizer

Consider computing a; = 7" - Q" - v = (W Q?) - (Q*7'), where
0<i<2n,0<j<t,0<k<2n/t,
t=[n",0<y <1,

Baby steps: @™ - Q7 by repeated u(z)? mod f(x).

Giant steps: Q¥ - ¥ by repeated transposed modular polynomial
t
composition with h:(x) = 2P mod f(x).

Finally, all a; by fast rectangular matrix multiplication.

Run-time comparisons (field arithmetic operations)

p=0() logp=0(n)

Berlekamp "70 O(n?38) O(n238)
O(n* +n'*ologp)

Cantor & Zassenhaus 81 0(n2+0(1)) O(n3+0(1))
O(n*t°M log p)

von zur Gathen & Shoup 91 O(n?+e)y O(n2tol))
O(n2+oM) 4 plto) 1og p)

Kaltofen & Shoup ’'94 O(n'-82) O(n*?)
O(n(H+D/2+1=7)@=1)/2 | pi+rto(1) Jog p)

forany 0 < v <1

w = matrix multiplication exponent

Lobo’s '94 parallel implementation

Degree Prime Task # Computers Factor
n P 8 32 degrees
15001 127 Step W1 8220/ 1,1,2, 2, 4,12
Step W2 1253’ 21, 21, 33, 55
Step W3 42142/ 155, 158, 351
split /refine 3M19’ 809, 1793, 2665
total time 141714’ 2813, 2919, 3186
work 875777

Parallel CPU time (hours"minutes’) for factoring
(™ +241) (2™ + 2 4+1) (mod 127)
on 86.1 MIPS computers; work is measured in MIPS-hours?

Shoup’s baby step/giant step implementation

Can factor a 1024 degree pseudo-random polynomial modulo a 1024 bit
prime number in about 50 hours on a single 20 MIPS computer.

The algorithm requires 11 Mbytes of memory.

Note: Shoup implemented a variant based on the distinct-degree
factorization algorithm

Normal bases
Let o € F,[0]/(f) where 0 is algebraic with minimum polynomial f
« 1s normal

0

n—1

a,of ... aP is an [F,-vector space basis for F,[0]/(f)
ar atrQ,...,a"Q" ! are linearly independent

0

3@ AT -4,...,a%Q", . .. is linearly generated by A" — 1 (1)

Subquadratic algorithms

Basis selection: > ! irs &, i satisfy (1)
asis selection: airs @, U satis
~ 12max{log,n,1} P ’ Y

(checking for (1) is Step W1 in black box Berlekamp)

° ° n—1
Conversion from normal basis: compute copav + - - - 4+ ¢,,_10F mod f

(is Step W3 in black box Berlekamp)

Conversion to normal basis: Given v, find ¢; with

v =coox+ -+ ¢r_10®" " mod f

Solve the Hankel system

p't

N n—1
T :Zciﬁtr-oz " (0<j<n)
i=0

