
Complexity Theory in the Service of

Algorithm Design

Erich Kaltofen

Rensselaer

Rensselaer Polytechnic Institute
Department of Computer Science

Troy, New York, USA

Outline

• Wiedemann’s sparse linear system solver

◦ Coordinate recurrences

◦ More applications of the transposition principle

• Reverse mode of automatic differentiation

◦ Transposition principle by derivatives

◦ More applications

• Polynomial factorization

◦ Berlekamp’s polynomial factorization algorithm

◦ use of the Wiedemann method

◦ new baby step/giant step algorithm

A “black box” matrix

is an efficient procedure with the specifications

y ∈ F
n

−−−−−−−−−−−−→

B ∈ F
n×n

F an arbitrary field

B · y ∈ F
n

−−−−−−−−−−−−→

i.e., the matrix is not stored explicitly, its structure is unknown.

Main algorithmic problem: How to efficiently solve a linear system
with a black box coefficient matrix?

Idea for Wiedemann’s algorithm

B ∈ F
n×n, F a (possibly finite) field

φB(λ) = c′0 + c′1λ + · · ·+ c′mλm ∈ F[λ] minimum polynomial of B:

∀u, v ∈ F
n: ∀ j ≥ 0: utrBjφB(B)v = 0

~w�

c′0 · utrBjv︸ ︷︷ ︸
aj

+c′1 · utrBj+1v︸ ︷︷ ︸
aj+1

+ · · ·+ c′m · utrBj+mv︸ ︷︷ ︸
aj+m

= 0

~w�
{a0, a1, a2, . . .} is generated by a linear recursion

Theorem (Wiedemann 1986): For random u, v ∈ F
n,

a linear generator for {a0, a1, a2, . . .} is one for {I, B, B2, . . .}.

∀ j ≥ 0: c0aj + c1aj+1 + · · ·+ cdaj+d = 0

ww� (with high probability)

c0B
jv + c1B

j+1v + · · ·+ cdB
j+dv = 0

ww� (with high probability)

c0B
j + c1B

j+1 + · · ·+ cdB
j+d = 0

that is, φB(λ) divides c0 + c1λ + · · ·+ cmλm

Algorithm Homogeneous Wiedemann

Input: B ∈ F
n×n singular

Output: w 6= 0 such that Bw = 0

Step W1: Pick random u, v ∈ F
n; b← Bv;

for i← 0 to 2n− 1 do ai ← utrBib.
(Requires 2n black box calls.)

Step W2: Compute a linear recurrence generator for {ai},
c`λ

` + c`+1λ
`+1 + · · ·+ cdλ

d, ` ≥ 0, d ≤ n, c` 6= 0,
by the Berlekamp/Massey algorithm.

Step W3: ŵ ← c`v + c`+1Bv + · · ·+ cdB
d−`v;

(With high probability ŵ 6= 0 and B`+1ŵ = 0.)

Compute first k with Bkŵ = 0; return w ← Bk−1ŵ.

Steps W1 and W3 have the same computational complexity

utr· [v Bv B2v . . . B2nv] = [a−1 a0 a1 . . . a2n−1]

[v Bv B2v . . . B2nv] ·




c0

c1
...

c2n


 = w

Fact: X · y and Xtr · z have the same computational complexity
[Kaminski et al., 1988].

Other Uses:

• Vandermondetr·b (“weighted power sums”) for sparse polynomial in-
terpolation (Canny, Kaltofen, and Lakshman ISSAC ’89) and for poly-
nomial factoring (Shoup ISSAC ’91).

• Computing the minimum polynomial of an algebraic number in O(n2)
ground field operations (Shoup 1992) by modular power projection

• Polynomial factorization and normal bases by transposed modular poly-

nomial composition (K and Shoup 1995).

Transposed modular polynomial composition (TCOMP)

Let

L: F[x]/(f)−−−−−−−−−−−→F

c0 + · · ·+ cn−1x
n−1 7−−→c0u0 + · · ·+ cn−1un−1, ui = L(xi)

be a F-linear map, and let

C[[h]]: F[x]/(f)−−−−−−−−−−−→F[x]/(f)
v0 + · · ·+ vn−1x

n−1 7−−→v(h) mod f =
∑

l vlh
l mod f

Problem: Compute all “power projections”

L(hi mod f) for 0 ≤ i < n.

Note:

[u0 . . . un−1] · C ·




v0
...

vn−1


 = L(C[[h]](v))

where C ·




v0
...

vn−1


 corresponds to v(h) mod f .

Application of TCOMP to minimum polynomials

Let α ∈ F[θ]/(f) where θ is algebraic with minimum polynomial f

Problem: Compute the minimum polynomial g(α) = 0 where

g(x) = xm − cm−1x
m−1 − · · · − c0 ∈ F[x] with m ≤ n

The coefficient vectors ~ai = αi mod f(θ) satisfy

∀ j ≥ 0: ~am+j = cm−1~am−1+j + · · ·+ c0~aj

Any non-trivial linear projection L(~ai) preserves the linear generator,
because g is irreducible

Transposed modular polynomial multiplication (TMULT)

Let L: F[x]/(f) −→ F be a F-linear map, and let

M[[g]]: F[x]/(f)−−→F[x]/(f)
v(x) 7−−−−→v(x) · g(x) mod f(x)

Problem: Compute L ◦M[[g]], that is, all

L(M[[g]](xi)) = L(xig(x) mod f(x)) for 0 ≤ i < n.

Note:

[u0 . . . un−1] ·M ·




v0
...

vn−1


 = [. . .L(M[[g]](xi)) . . .] ·




v0
...

vn−1




where M ·




v0
...

vn−1


 corresponds to v(x)g(x) mod f(x).

Baby step/giant step TCOMP (Shoup ’94)

t← d√n e

compute h2 mod f, . . . , ht−1 mod f

L(0) ← L

for j ← 0 to dn/te − 1 do

{for k ← 0 to t− 1 do

/* Baby steps */

L(hjt+k mod f)← L(j)(hk mod f)

/* Giant steps */

compute L(j+1) ← L(j) ◦M[[ht mod f]] = L ◦M[[ht(j+1) mod f]]

(by TMULT with ht from previous ui = L(j)(xi))
} /* end for j */

Explicit TMULT algorithm

1. T1 ← FFT−1(REDk(g))
2. T2 ← T1 · S2

3. v ← −CRT0...n−2(FFT(T2))
4. T2 ← FFT−1(REDk+1(x

n−1 · v))
5. T2 ← T2 · S3

6. T1 ← T1 · S4

7. Replace T1 by the 2k+1-point residue table whose j-th column (0 ≤
j < 2k+1) is 0 if j is odd, and is column number j/2 of T1 if j is
even.

8. T2 ← T2 + T1

9. u← CRT0...n−1(FFT(T2))

“we offer no other proof of correctness other than the validity of this
transformation technique (and the fact that it does indeed work in prac-
tice)” (Shoup)

Analysis of baby step/giant step TCOMP

≈ 2
√

n modulo f multiplications

≈ n2 additions, multiplications in F

versus

n− 2 modulo f multiplications

≈ n2 additions, multiplications in F

Ostrowski, Wolin, and Borisow (1971) circuit transformation

Note that the size of the circuit for partials does not depend on n.

K and Singer 1991: Depth (= parallel time) of circuit for ∂f/∂xi

= O(depth of circuit for f).

Transformation is numerically stable.

Inverted transposition principle by
automatic differentiation

The problems A−1 · b and (Atr)−1 · b, given A ∈ F
n×n non-singular and

b ∈ F
n, have the same asymptotic circuit complexity: Let

f(x1, . . . , xn) = ([x1 . . . xn] · (Atr)−1) · b ∈ F[x1, . . . , xn].

Then 


∂x1
f

...
∂xn

f


 = (Atr)−1b.

Note: Transposition principle may not apply due to divisions.

Used for:

• (Vandermondetr)−1 · b for sparse polynomial interpolation (K and
Lakshman ’88).

Reduction: Matrix Inverse 4 Determinant (Baur, Strassen ’83)

Consider a circuit for the determinant,

f(a1,1, . . . , an,n) = Det(




a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

...
an,1 an,2 . . . an,n


).

Then

(−1)i+j ∂f

∂aj,i
= Det(A)(A−1)i,j .

=⇒ Circuit for partials computes adjoint matrix.

Used for:

• Processor-efficient poly-log parallel computation of A−1 (K and Pan ’91,
’92).

• Division-free computation of adjoint of A in Õ(n3
√

n) arithmetic op-
erations (K ’92).

The black box Berlekamp algorithm

Factor squarefree f(x) = f1(x)f2(x) · · · fr(x), where n = deg(f), into
irreducible polynomials fi(x) ∈ Fp[x], Fp a finite field with p elements.

For w(x) ∈ Fp[x], deg(w) < n:

∀i: w(x) mod fi(x) = si ∈ Fp (Then GCD(f(x), w(x)− si) 6= 1)

m

w(x)p = w(xp) ≡ w(x) (mod f(x)) (Note: (a + b)p = ap + bp)

m

−→w tr(Q− I) = 0 where Q =




...
−−−−−−−−−→
xip mod f(x)

tr

...




i = 0, . . . , n− 1

“Black-box matrix” algorithm: compute −→v tr · (Q− I) as

v(x)p − v(x) mod f(x) in n log p · (log n)O(1)
Fp-ops

−v(x) +
∑n−1

i=0 vi(x
p mod f(x)︸ ︷︷ ︸

h1(x)

)i mod f(x)

= −v(x) + v(h1(x)) mod f(x) in O(n1.7) Fp-ops (given h1)

(modular polynomial composition)

The probabilistic analysis needed when using the Wiedemann algorithm
as the solver can be made explict (K & Lobo 1994).

For example, one has:

Fact: If f is squarefree, the minimum polynomial of Q is

φQ(λ) = LCM1≤i≤r(λ
mi − 1), where mi = deg(fi).

Note: φQ(λ) = φQ−I(λ− 1).

The baby steps/giant steps polynomial factorizer

Consider computing ai = −→u tr ·Qi · −→v = (−→u trQj) · (Qtk−→v), where

0 ≤ i ≤ 2n, 0 ≤ j < t, 0 ≤ k ≤ 2n/t,

t = dnγe, 0 ≤ γ ≤ 1.

Baby steps: −→u tr ·Qj by repeated u(x)p mod f(x).

Giant steps: Qtk · −→v by repeated transposed modular polynomial
composition with ht(x) = xpt

mod f(x).

Finally, all ai by fast rectangular matrix multiplication.

Run-time comparisons (field arithmetic operations)

p = O(1) log p = Θ(n)

Berlekamp ’70 O(n2.38) O(n2.38)
O(nω + n1+o(1) log p)

Cantor & Zassenhaus ’81 O(n2+o(1)) O(n3+o(1))
O(n2+o(1) log p)

von zur Gathen & Shoup ’91 O(n2+o(1)) O(n2+o(1))
O(n2+o(1) + n1+o(1) log p)

Kaltofen & Shoup ’94 O(n1.82) O(n2.5)
O(n(ω+1)/2+(1−γ)(ω−1)/2 + n1+γ+o(1) log p)

for any 0 ≤ γ ≤ 1

ω = matrix multiplication exponent

Lobo’s ’94 parallel implementation

Degree Prime Task # Computers Factor
n p 8 32 degrees

15001 127 Step W1 82h20′ 1, 1, 2, 2, 4, 12
Step W2 12h53′ 21, 21, 33, 55
Step W3 42h42′ 155, 158, 351

split/refine 3h19′ 809, 1793, 2665
total time 141h14′ 2813, 2919, 3186

work 87577#

Parallel CPU time (hourshminutes′) for factoring

(x7501 + x + 1) · (x7500 + x + 1) (mod 127)

on 86.1 MIPS computers; work is measured in MIPS-hours#

Shoup’s baby step/giant step implementation

Can factor a 1024 degree pseudo-random polynomial modulo a 1024 bit
prime number in about 50 hours on a single 20 MIPS computer.

The algorithm requires 11 Mbytes of memory.

Note: Shoup implemented a variant based on the distinct-degree
factorization algorithm

Normal bases

Let α ∈ Fp[θ]/(f) where θ is algebraic with minimum polynomial f

α is normal

m

α, αp, . . . , αpn−1

is an Fp-vector space basis for Fp[θ]/(f)

m

~αtr, ~αtrQ, . . . , ~αtrQn−1 are linearly independent

m

∃ ~u: ~αtr · ~u, . . . , ~αtrQi~u, . . . is linearly generated by λn − 1 (1)

Subquadratic algorithms

Basis selection: ≥ 1

12 max{logp n, 1} pairs ~α, ~u satisfy (1)

(checking for (1) is Step W1 in black box Berlekamp)

Conversion from normal basis: compute c0α + · · ·+ cn−1α
pn−1

mod f

(is Step W3 in black box Berlekamp)

Conversion to normal basis: Given γ, find ci with

γ = c0α + · · ·+ cn−1α
pn−1

mod f

Solve the Hankel system

~utr ·
−→
γpj

=
n−1∑

i=0

ci ~utr ·
−−−→
αpi+j

(0 ≤ j < n)

