
Integer Division in Residue Number Systems

Markus A. Hitz and Erich Kaltofen

Abstract— This contribution to the ongoing discussion of
division algorithms for residue number systems (RNS) is
based on Newton iteration for computing the reciprocal. An
extended RNS with twice the number of moduli provides the
range required for multiplication and scaling. Separation
of the algorithm description from its RNS implementation
achieves a high level of modularity, and makes the complex-
ity analysis more transparent. The number of iterations
needed is logarithmic in the size of the quotient for a fixed
start value. With preconditioning it becomes the logarithm
of the input bit size. An implementation of the conversion
to mixed radix representation is outlined in the appendix.

Keywords—Integer division, reciprocal, Newton iteration,
extended residue number system, mixed radix conversion,
base extension.

I. Introduction

Already Szabo and Tanaka [9] devised two algorithms for
general division in residue number systems (RNS). But
only after 1980 the number of papers dedicated to RNS
division started to increase. Chren [3] summarizes some
of the previous efforts, and discusses an improved version
of Banerji’s et al. algorithm [2]. Most RNS division algo-
rithms use some form of binary expansion for the quotient
or the reciprocal. They are usually closely tied to their re-
spective hardware implementation, making the complexity
analysis difficult. An exception in this category is the work
of Davida and Litow [4]. They give the complete analysis
for an almost uniform logdepth division circuit. Another
more recent result by Lu and Chiang [8] is based on com-
parison and binary search.
In our approach, we use an extended RNS which provides

roughly the square of a normal RNS range for intermedi-
ate results. We try to avoid the term “redundant”, because
the additional residues are significant for several computa-
tional steps. We compute the (integer) reciprocal of the
divisor with respect to the original range of the RNS, and,
after multiplication by the dividend, use scaling to get the
quotient (and remainder). The algorithm for the reciprocal
is in the spirit of Aho, Hopcroft and Ullman [1]. Also Gam-
berger [5] uses an extended RNS. His division algorithm
tries to find common divisors of the nominator and denom-
inator, removing them iteratively by scaling. Davida and
Litow have to increase the number of moduli in their algo-
rithm to 2n2 + 1 for intermediate values, which probably
makes their result impractical.

This material is based on work supported in part by the National
Science Foundation under Grant No. CCR-90-06077 and under Grant No.
CDA-88-05910.

The authors are with the Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, NY 12189-3590.

Appears in IEEE Trans. Computers, vol. 44(8), pp. 983–989, 1995.

We only discuss implementation for unsigned RNS num-
bers. Adaption to symmetric RNS is not difficult, but de-
stroys some of the clarity in the descriptions.

II. Definitions

Let m′
1, . . . ,m

′
2n ∈ Z , pairwise relatively prime, such that

1 < m′
1 < m′

2 < · · · < m′
2n−1 < m′

2n ,

where n ∈ Z, n ≥ 1. We group these 2n moduli into two
vectors of size n:

m1 := m′
1, m2 := m′

3, . . . , mn := m′
2n−1 ,

and

mn+1 := m′
2, mn+2 := m′

4, . . . , m2n := m′
2n .

We call the RNS defined by those moduli an extended
RNS, the RNS defined by the first n moduli base RNS,
and the RNS defined by the moduli with indices n + 1 to
2n extension RNS. The respective range for the base and
the extension RNS is:

M =

n∏

i=1

mi , M =

2n∏

i=n+1

mi ,

where the range for the entire extended RNS is MM .

An integer X, 0 ≤ X < MM with residues x1 =
X mod m1, . . . , x2n = X mod m2n will be represented in
the extended RNS by:

[x1, . . . , xn; xn+1, . . . , x2n] .

The representation in the associated mixed radix system
(MRS) will be denoted by:

〈v1, . . . , vn; vn+1, . . . , v2n〉 ,

where

X =

2n∑

i=1

viPi−1 ;

P0 = 1 , Pi = m1m2 · · ·mi , for 1 ≤ i < 2n ,

and 0 ≤ vi < mi , for 1 ≤ i ≤ 2n .

We note the following properties:

1

1. M and M are relatively prime and M < M , thus the
mutliplicative inverse M−1 mod M exists. Further-
more the base part (left of the ‘;’) of an extended RNS
number represents the remainder modulo M .

2. For sufficiently large n and moduli of similar magni-
tude, the difference between M and M will be small.
Otherwise the selection of the mi from the m

′
i can be

adapted in order to balance the relative size without
changing the first property.

3. Multiplication of two base RNS numbers (in the range
M) performed in the extended RNS will never overflow
because M2 < MM . The result can then be reduced
to the base range using scaling by M .

III. The Division Algorithm

In this section we give a high level description of our di-
vision algorithm; in the next section we shall explain how
to use basic RNS operations to implement it. “DIVREM”
takes two integers X , 0 ≤ X < M and Y , 1 ≤ Y < M , as
input and returns the quotient bX/Y c, and the remainder
X mod Y .

Algorithm DIVREM

Input: (X,Y)
Output: (bX/Y c, X mod Y)

begin

Q← bX ∗ RECIP (Y) /Mc

R← X −Q ∗ Y

if R < Y then return (Q,R)
else return (Q+ 1, R− Y)

end.

One might notice that other then being smaller than M ,
we do not imply any restrictions on X and Y . DIVREM
makes a call to RECIP (given below), which returns the
reciprocal bM/Y c of Y with respect to M . The following
Lemma explains the necessity for the correction step at the
end of the algorithm.

Lemma 1: Algorithm DIVREM is correct.

Proof: Let Z := bM/Y c, i.e., M = Y Z + S, or Z =

(M−S)/Y , where 0 ≤ S < Y . Then XZ
M
= X

Y
− X

M
S
Y
. We

note that X < M and S < Y , therefore X
M

S
Y

< 1. Thus

either
⌊

XZ
M

⌋
=
⌊

X
Y

⌋
or
⌊

XZ
M

⌋
=
⌊

X
Y

⌋
− 1 . q.e.d.

In “RECIP” we use Newton iteration to compute the re-
ciprocal bM/Y c . This algorithm is similar to the one in
Aho, Hopcroft and Ullman [1]. However, their divide and
conquer approach, where the number of valid bits doubles
in each recursive step, is not suitable for RNS, because
here we cannot access the high-order bit of the intermedi-
ate value. Still, the advantage of quadratic convergence is
preserved in our algorithm. Applying the Newton iteration

scheme

Zi+1 = Zi −
f(Zi)

f ′(Zi)
,

to f(Zi) =
M

Zi

− Y with f ′(Zi) = −
M

Z2
i

, yields the

recursion : Zi+1 = Zi +
MZi − Y Z2

i

M
=

Zi(2M − Y Zi)

M
.

In RNS we have only integer division, so the final version
becomes:

Zi+1 =

⌊
Zi(2M − Y Zi)

M

⌋

= 2Zi −

⌈
Y Z2

i

M

⌉

.

The algorithm for the reciprocal takes an integer Y , with
1 ≤ Y < M , as input and returns bM/Y c:

Algorithm RECIP

Input: Y
Output: bM/Y c

begin

Z1 ← 0
Z2 ← 2

while Z1 6= Z2 do

Z1 ← Z2

Z2 ← bZ1 ∗ (2M − Y ∗ Z1) /Mc

if M − Y ∗ Z2 < Y then return Z2

else return Z2 + 1
end.

The necessity for the correction step at the end of the al-
gorithm can be illustrated by the following example: for
M = 10 and Y = 3 , bM/Y c = 3 , but Z2 = Z1 = 2 .
Lemmas 3 to 5 show the correctness of RECIP and indi-
cate the number of iterations needed. The proofs in the
remainder of this section may be skipped without loss of
understanding.

Lemma 2: Subsequent approximations satisfy the follow-
ing inequalities:

Y

M

(
M

Y
− Zi

)2

≤
M

Y
− Zi+1 <

Y

M

(
M

Y
− Zi

)2

+ 1 (1)

1−
Zi+1 + 2

i − 1

M/Y
<

(

1−
Zi + 2

i−1 − 1

M/Y

)2

(2)

Proof: (1) follows from the basic inequalities for the ceil-
ing operator (X ≤ dXe < X + 1) :

M

Y
− Zi+1 =

M

Y
− 2Zi +

⌈
Y Z2

i

M

⌉

<
M

Y
− 2Zi +

Y Z2
i

M
+ 1

=
Y

M

(
M

Y
− Zi

)2

+ 1

The same argument is applied to prove the left side of (1).
Also the inductive proof for inequality (2) makes use of the

2

same properties of the ceiling operator:

1−
Zi+1 + 2

i − 1

M/Y
= 1−

2Zi −
⌈

Y Z2
i

M

⌉

+ 2i − 1

M/Y

< 1−
2Zi + 2

i − 1

M/Y
+

Z2
i

(M/Y)2
+

1

M/Y

= 1−
2(Zi + 2

i−1 − 1)

M/Y
+

Z2
i

(M/Y)2

≤ 1−
2(Zi + 2

i−1 − 1)

M/Y
+
(Zi + 2

i−1 − 1)2

(M/Y)2

=

(

1−
Zi + 2

i−1 − 1

M/Y

)2

q.e.d.

Lemma 3: RECIP halts for any Y with 1 ≤ Y < M and
is correct.

Proof: For Z1 = 2 and Y >
⌊

3M
4

⌋
the iteration stops

with Z2 = Z3 = 0; for
⌊

M
2

⌋
< Y ≤

⌊
3M
4

⌋
, it stops at

Z2 = Z3 = 1 . For the rest of the proof we suppose that

1 ≤ Y ≤
⌊

M
2

⌋
≤ M

2 . We can show by induction on i that
M
Y
− Zi ≥ 0 :

for i = 1 ,
M

Y
− Z1 ≥

M

M/2
− 2 = 0 ,

whereas
M

Y
− Zi+1 ≥

Y

M

(
M

Y
− Zi

)2

≥ 0 for i > 1 ,

by the induction hypothesis and the left side of (1) in

Lemma 2. Therefore Y Zi ≤M , and

Zi+1 =

⌊

2Zi −
Y Z2

i

M

⌋

=

⌊

Zi

(

2−
Y Zi

M

)⌋

≥ Zi .

Hence the sequence is monotonically increasing, and the

halting condition Zi+1 = Zi = dY Z2
i /Me will eventually

be reached. Let ρ = M/Y , then we have the following

quadratic inequality for Zi at termination:

Zi =

⌈
Z2

i

ρ

⌉

<
Z2

i

ρ
+ 1 , or Z2

i − ρZi + ρ > 0 ,

which yields

(

Zi −
ρ

2

)2

>
1

4

(
ρ2 − 4ρ

)
.

For ρ ≥ 4:

ρ2 − 4ρ ≥ ρ2 − 8ρ+ 16 = (ρ− 4)2 .

Therefore, the two solutions for Zi are:

Zi >
ρ

2
+
1

2
(ρ−4) = ρ−2 , and Zi <

ρ

2
−
1

2
(ρ−4) = 2 .

Being below the start value Z1 = 2, the second solution

is impossible. The first inequality states that upon reach-

ing the halting condition, Zi is equal either to bM/Y c or

bM/Y c − 1. It can easily be verified that RECIP halts for

all ρ < 4 after at most 2 iterations (for 1 < ρ < 4/3 it stops

with Z2 = Z3 = 0, for 4/3 ≤ ρ < 2 with Z2 = Z3 = 1, and

for 2 ≤ ρ < 4 with Z1 = Z2 = 2). q.e.d.

Since RECIP only depends on the fraction M/Y , Lem-
ma 3 implies that for constant M/Y the algorithm finishes
in a constant number of iterations. For the time complexity
when M/Y is unbounded, we first determine the number
of iterations it takes to get within one quarter of the exact
quotient M/Y (Lemma 4). In a second stage (Lemma 5)
we will decrease the difference to below 2, which is sufficient
for the correction step at the end of RECIP.

Lemma 4: Zi will be within one quarter of M/Y after
O(log(M/Y)) iterations.

Proof: For ease of argumentation, we choose Z1 ≥ 30
and assume M and Y such that 30 < M/Y . The number
of steps needed to reach a Zi ≥ 30 starting with Z1 = 2 is
always smaller than 10. For all cases M/Y ≤ 30 the itera-
tion will stop earlier. Expanding (2) of Lemma 2 iteratively
down to Z1 yields:

1−
Zi + 2

i−1 − 1

M/Y
<

(

1−
Z1

M/Y

)2i−1

(3)

Now let i such that

2i−1 ≤
6

Z1

M

Y
+ 1 < 2i , i.e., i > log2

(
6

Z1

M

Y
+ 1

)

.

Then

(

1−
Z1

M/Y

)2i−1

=

(

1−
Z1

M/Y

) 6
Z1

M
Y
+ 1

︸ ︷︷ ︸

< e−6

2i−1

6
Z1

M
Y
+ 1

︸ ︷︷ ︸

< e−3

.

Note that
1

2
< 2i−1

6
Z1

M
Y
+ 1
≤ 1 , and

(

1−
1

x

)x

<
1

e

for all x > 0 , where e is Euler’s base of the natural loga-
rithms. Finally, we multiply (3) by M/Y :

1

e3

M

Y
>

M

Y

(

1−
Z1

M/Y

)2i−1

>
M

Y
−
(
Zi + 2

i−1 − 1
)
,

>
M

Y
−

(

Zi +
6

Z1

M

Y

)

,

3

thus Zi >
M

Y

(

1−
1

e3
−
6

Z1

︸ ︷︷ ︸

≥ 0.7502 . . .

)

>
3

4

M

Y

or
M

Y
− Zi <

1

4

M

Y
.

q.e.d.

Let K such that 2K ≤M/Y < 2K+1 . Using the right side
of (1) from Lemma 2 once more, we now can enforce the
starting conditions of Lemma 5:

M

Y
− Zi+1 <

Y

M

(
M

Y
− Zi

)2

+ 1 <
M

Y

(
1

4

)2

+ 1

=
1

16

M

Y
+ 1 < 2K−3 + 2 .

Lemma 5: If 0 < M/Y − Zi+1 < 2K−3 + 2 , it takes
O(loglog(M/Y)) (additional) steps to get within a differ-
ence of 2 to the exact quotient M/Y .

Proof: we prove by induction on j that M/Y − Zi+j <

2K−3∗2j−1

+ 2 , where the given condition for Zi+1 repre-
sents the base of the induction. By the induction hypoth-
esis and the right side of (1) from Lemma 2, we get:

M

Y
− Zi+j+1 <

Y

M

(
M

Y
− Zi+j

)2

+ 1

< 2−K
(

2K−3∗2j−1

+ 2
)2

+ 1

= 2K−3∗2j

+ 4 ∗ 2−3∗2j−1

+ 4 ∗ 2−K + 1

< 2K−3∗2j

+ 2

Hence eventually M/Y −Zi+j < 3 , and M/Y −Zi+j+1 <
2 , by applying (1) one more time and observing that

Y/M < 1/30 < 1/9 . From the condition 2K−3∗2j

+2 < 3 ,
we can deduce the number of iterations needed at most:

2K−3∗2j

< 1 , 2j > K/3 , or j > log2(K/3) ,

where

K ≤ log2(M/Y) < K + 1 , hence K = blog2(M/Y)c,

and
j > log2 (blog2(M/Y)c/3) .

q.e.d.

IV. RNS Implementation

Here, we show how to implement DIVREM and RECIP
using RNS operations. However, it is not the scope of this
paper to discuss hardware realizations. Various models of
computation were used so far to derive the complexity of
basic RNS operations. More recently, a thorough analysis
for NC1 circuits was carried out by Davida and Litow [4].
Unfortunately conversions were left out. We will show in

the Appendix that conversion from RNS to mixed radix
representation can be implemented in depth O(log n) us-
ing O(n2) RNS processor elements; by “RNS processor el-
ement” we mean a circuit for arithmetic or boolean opera-
tions, such as addition, multiplication or test for equality,
modulo any of the mi.
For the following, we assume that all numbers are al-

ready in extended RNS format. Otherwise, we have to do
“base extension” from base RNS to extended RNS.

Base extension

The conversion from base RNS to the extension RNS (or
vice versa) amounts to a conversion to the associated MRS
representation 〈v1, . . . , vn〉 , for

X =

n∑

i=1

viPi−1 given by [x1, . . . , xn] ,

with subsequent evaluation of the sum

(
n∑

i=1

viPi−1

)

mod mj

=

(
n∑

i=1

(vi mod mj) (Pi−1 mod mj)

)

mod mj ,

for every modulus mj with n + 1 ≤ j ≤ 2n . The con-
stants Pi−1 mod mj can be kept in a lookup table, while
the products viPi−1 are computed in parallel on n × n
RNS processor elements. Finally the summation mod mj

is done in binary trees with O(log n) depth.

Test for “=” and “6=”

In RECIP, the halting condition for the Newton iteration
is “Z2 = Z1”. Two integersX and Y in RNS representation
are equal if and only if they agree in each component: xi =
yi. The overall result can be obtained from the individual
tests by performing AND operations on a single bit in a
binary tree with depth O(log n). If necessary, the result
can be propagated back to the processor elements using the
tree in the inverse direction. In the test for “not equal”,
AND is replaced by OR.

Division by M (Scaling)

In both DIVREM and RECIP the major operation is
integer division by M . Let U be the intermediate re-
sult in extended RNS, before division by M (U = X ∗
RECIP (Y) or U = Zi ∗ (2M − Y ∗ Zi)), with residues
[u1, . . . , un;un+1, . . . , u2n]. The left part of this vector rep-
resents the remainder R = U modM . By performing base
extension it can be converted into extension RNS represen-
tation. After subtracting U modM from U , we multiply by
M−1 modM to get the quotientQ in the extension RNS.Q
has to be extended to base RNS by another base extension.
The residues of M−1 modM (denoted by mn+1, . . . ,m2n)
can be precomputed. Thus, the sequence of operations is

4

as follows:

[u1, . . . , un ; un+1, . . . , u2n]

U modM → base extension
; u′n+1, . . . , u′2n]

ª
; tn+1, . . . , t2n]

M−1 modM ; mn+1, . . . , m2n]
⊗

Q ; qn+1, . . . , q2n]
← base extension

[q1, . . . , qn ; qn+1, . . . , q2n]

Although U is greater than M , the range of the extension
RNS is sufficient because the resultQ will always be smaller
than M .
An alternate method works directly in MRS, avoiding

the subtraction and multiplication in the extension RNS.
However, because the mixed radix conversion uses O(n2)
processor elements, the hardware requirement increases al-
most by a factor of 4, when 2n residues have to be con-
verted instead of n. Let U have the extended mixed radix
representation:

〈v1, . . . , vn; vn+1, . . . , v2n〉 , U =
2n∑

i=1

viPi−1 .

By definition, the products Pi with n ≤ i < 2n are multi-
ples ofM : Pi =MSi , where Sn = 1 , and Si = mn+1 · · ·mi

for n < i < 2n . We now split the sum into

U =

n∑

i=1

viPi−1 +M

2n∑

i=n+1

viSi−1 = R+MQ,

where R = U modM and Q = bU/Mc. Q is the desired
result for the quotient, and has to be converted back to
extended RNS by evaluating the sum for each modulus
mj , (1 ≤ j ≤ 2n), in the same way as described for base
extension.

Comparison

For the correction step at the end of both algorithms,
one comparison is necessary. Davida and Litow [4] describe
an NC1 circuit for comparison of two RNS integers with
size O(b2) and depth O(log b), where b is the input size
in bits (dlog2 Me). Here, we want to show that some of
the functional units for division by M can also be used for
comparison (and overflow detection).
First we note that the numbers we want to compare are

strictly smaller than M . If we subtract two such (non-
negative) integers X and Y the result Z will “underflow”
wheneverX > Y , which is equivalent to Z = Y −X > M in
extended RNS representation. After performing a base ex-
tension from base RNS to extension RNS, we test the result
for equality with the residues zn+1, . . . , z2n. If all compo-
nents agree, we return “X ≤ Y ”, otherwise “X > Y ”.
While using the second method for division by M , we

convert Z to (extended) mixed radix representation, and
test wether every component vi = 0 for n < i ≤ 2n.

From Lemma 4, Lemma 5, and the discussion of this section
we conclude that:

Theorem 1: The division algorithm can be implemented
in depth O(log n log(M/Y)) with O(n2) RNS processor el-
ements.

Speed up

Replacing Z1 = 2 in RECIP by a start value which is
“closer” to the result, the number of iterations can be re-
duced to O(loglog(M/Y)). In order to achieve this, we
choose the nearest power of two by comparing Y in parallel
against bM/2Kc forK = 1, . . . , N , where 2N ≤M < 2N+1.
K is obtained by adding up the results of these comparisons
(0 or 1) in a binary tree of height log2 N = log2blog2 Mc .
The constants bM/2Kc can be precomputed.

Lemma 6: With start value Z1 = 2
K , where bM/2K+1c <

Y ≤ bM/2Kc , RECIP terminates after O(loglog(M/Y))
iterations.

Proof: If bM/2c < Y then bM/Y c = 1, and we are done.

For 1 ≤ Y ≤ bM/2c , we first note that (for the chosen K):

⌊
M

2K+1

⌋

≤
M

2K+1
<

⌊
M

2K+1

⌋

+ 1 ≤ Y ≤

⌊
M

2K

⌋

≤
M

2K
,

thus Z1 = 2
K ≤

M

Y
< 2K+1 .

Hence
M

Y
− Z1 <

1

2

M

Y
,

and by Lemma 2:
M

Y
− Z2 <

1

4

M

Y
+ 1 .

Finally
M

Y
− Z3 <

1

16

M

Y
+
1

2
+

Y

M
+ 1 < 2K−3 + 2

(using Y/M ≤ 1/2). According to Lemma 5, we obtain

the result in O(loglog(M/Y)) steps from here.

q.e.d.

With this modification, we can state the overall complexity
as:

Theorem 2: The better start value reduces the depth of
the division algorithm to O(log n loglog(M/Y)+loglogM) ,
increasing the number of processor elements to O(n logM).

Proof: Lemma 6 and the scaling operation contribute
log n loglog(M/Y) to the depth. The comparison step at
the beginning can be implemented in MRS with n × N
processor elements and depth O(log n + logN). The con-
version from RNS to MRS uses O(n2) processors and has
depth O(log n). Because N = blog2 Mc > n, logM will
dominate n. q.e.d.

5

V. Concluding Remarks

— Our RNS division algorithm is simple, and robust for
a wide range of start values.

— Although not being the optimum regarding circuit
depth, it offers a balance between space and time com-
plexity.

— The high level description and analysis of the algo-
rithm gives the advantage of modular implementation.
Any improvements in basic RNS operations can easily
be incorporated.

— Future investigations should concentrate on reducing
the depth of the scaling operation (division by M).

References

[1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design
and Analysis of Computer Algorithms; Addison and Wesley,
Reading, M.A., 1974.

[2] Banerji, D. K., Cheung, T. Y., and Ganesan, V., “A high-speed
division method in residue arithmetic,” Proc. 5th. Symp. on
Computer Arithmetic, pp. 158–164, 1981.

[3] Chren, W. A., Jr., “A new residue number system division al-
gorithm,” Computers Math. Appl., vol. 19, pp. 13–29, 1990.

[4] Davida, G. I. and Litow, B., “Fast parallel arithmetic via mod-
ular representation,” SIAM J. Comput., vol.20, pp. 756–765,
1991.

[5] Gamberger, D., “New approach to integer division in residue
number systems,” Proc. 10th. Symp. on Computer Arithmetic,
pp. 84–91, 1991.

[6] Huang, C. H., “A fully parallel mixed-radix conversion algo-
rithm for residue number applications,” IEEE Trans. Comput.,
vol. 32, pp. 398–402, 1983.

[7] Leighton, F. T., Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees & Hypercubes; Morgan Kaufmann
Publ., San Mateo, California, 1991.

[8] Lu, Mi and Chiang, Jen-Shiun, “A novel division algorithm for
the residue number system,” IEEE Trans. Comput., vol. 41, pp.
1026-1032, 1992.

[9] Szabo, N. S. and Tanaka, R. I., Residue Arithmetic and its
Applications to Computer Technology, McGraw-Hill, New York,
N.Y., 1967.

Appendix: Mixed Radix Conversion

One of the frequently cited results for conversion from RNS
to mixed radix representation is Huang [6]. Unfortunately,
with the kind of carry-pipelining outlined there, it is not
possible to reach the claimed depth of O(log n) in terms
of RNS processor elements. In this section we show that,
with an additional carry lookahead correction step in the
mixed radix system (MRS), this complexity can actually
be achieved. Also, we show how to incorporate multipliers
instead of lookup tables (which will be rather huge for large
moduli). We restrict ourselves here to conversion from ei-
ther base or extension RNS to the corresponding MRS. We
will discuss the necessary adjustments for extended RNS
at the end of the section.
Given X in the base RNS (or extension RNS respec-

tively) by its residues [x1, . . . , xn], we want to find its
representation in the associated MRS: 〈v1, . . . , vn〉. By
virtue of the Chinese remainder theorem, we have:

X =

(
n∑

i=1

(
xiM

−1
i mod mi

)
Mi

)

modM =

n∑

i=1

viPi−1

where Mi = M/mi and P0 = 1 , Pi = m1 · · ·mi , for
1 ≤ i ≤ n. The constants M−1

i mod mi can be precom-
puted and stored directly in the RNS processor elements,
whereas the computation of wi :=

(
xiM

−1
i

)
mod mi re-

quires one RNS multiplication1.
Finally we have to evaluate the whole sum in MRS. First

we look at the MRS representation of the constants Mi. It
can be easily verified that all MRS coefficients with in-
dex j < i are zero because Mi is a product of moduli.
We denote the nonzero coefficients for i ≤ j ≤ n by µi,j .
Therefore the MRS representations become:

M1 =̂ 〈µ1,1, µ1,2, . . . , µ1,n−1, µ1,n〉
M2 =̂ 〈 0, µ2,2, . . . , µ2,n−1, µ2,n〉
M3 =̂ 〈 0, 0, . . . , µ3,n−1, µ3,n〉
...

...
...

. . .
...

...
Mn =̂ 〈 0, 0, . . . , 0, µn,n〉

Now we use n(n+1)/2 modular multipliers to compute the
products wiµi,j in parallel. In Figure 1, modulo mi mul-
tipliers are represented by “∗i”. Each processor element
generates a remainder wiµi,j mod mi as well as a carry
bwiµi,j/mic. Both values are passed in registers (R) to the
next stage. These intermediate values have to be added
up, first in each column modulo mi, and then all results
across in one carry-lookahead MRS addition. The modulo
mi adders are arranged in binary trees of height dlog2 ie.
Each processor element in an adder tree computes the sum
modulo mi of its input lines and updates the accumulated
carry. Finally, we get the sum Si and the accumulated
carry Ci. The last column of Figure 1 is only needed if
we are to compute the overall carry (e.g., for conversion
from extended RNS to MRS); normal integer addition is
used in this case. We assume that the moduli are in order:
m1 < m2 < · · · < mn. In the ith column, we have to add
up 2i−1 numbers modulo mi. Each of the 2i−2 additions
can result in a carry of at most 1. It can easily be verified
that mi+1 is always greater than 2i − 2 (in the “worst”
case, we have: m1 = 2 and m2 = 3 > 2 × 1 − 2 = 0).
Therefore, the accumulated carry from each adder tree is
always smaller than the modulus of the next column, so
we need only one carry-lookahead MRS addition to get the
result:

| C2 C3 . . . Cn−1 | Cn

+ S2 | S3 S4 . . . Sn | Sn+1

v2 | v3 v4 . . . vn | carry

Sn+1 is the sum of carries from the nth column. v1 was
already computed in the multiplication step, and v2 is ac-
tually equal to S2. Carry-lookahead addition in MRS uses
the same method as in the binary system. We follow the
notation of Leighton [7]. Addition in MRS spans over
i = 3, . . . , n (indicated by the ‘|’ delimiters). For the last

1By using the second form of the Chinese remainder theorem: X =
(
∑n

i=1 xiM̂i

)

mod M , with constants M̂i = (M−1
i mod mi) Mi , this

multiplication could be saved. However, the overall carry would become
considerably larger in this case.

6

1

2

n

Adder
Tree

Adder
Tree

Adder
Tree

R R

R

R R

R

R

R

RCarry

µ µ µ
1,1 1,2

1

µ

*n

*n

*n

2,2

*2*1

*2 2

1

1,n

2,n

n,n

µ

µCarry

Carry

Carry

Carry

v
1

R

R

R

Carry

Carry-lookahead correction step

v
2

v
n

Overall
Carry

w

w

w

w

ww

Carry

Carry

Figure 1: the multiplication step

column it is normal integer addition corrected by the carry
from the MRS addition. For i = 3, . . . , n we compute the
sum Ci−1 + Si first, and compare it against mi − 1:

if Ci−1 + Si

<
=
>

mi − 1 then

a carry is

stopped (s)
propagated (p)
generated (g)

.

Parallel prefix applied to the s, p and g values gives us
the correction for each component, as well as the carry
forwarded to the last column. Ci−1+Si and the correction
value (0 or 1) are added together modulo mi. The parallel
prefix operation has depth O(log n).
Conversion from extended RNS to its associated MRS

needs special attention. Because the smallest modulus
mn+1 of the extension RNS is in general smaller than
the largest modulus mn of the base RNS, the require-

ment mi > 2i − 1 (in particular mn+1 > 2n + 1 , . . . ,
m2n > 4n − 1) is more restrictive. If some of the mod-
uli are too small to satisfy all inequalities, the summa-
tion of the products and the carries modulo mi, with
n + 1 ≤ i ≤ 2n, can be done separately, requiring addi-
tional carry-lookahead correction step(s) at the end.

Markus A. Hitz received his Diploma in
Mathematics from the University of Zurich
(Switzerland) in 1980, and the M.S. degree in
Computer Science from Rensselaer Polytech-
nic Institute in 1988. He was teaching Math-
ematics and Physics on the highschool level
for several years, and worked as project engi-
neer for a telecommunication company. He is
currently pursuing the Ph.D. degree at Rens-
selaer. His special fields of interest include
residue number systems and algebraic comput-

ing. He is a member of Pi Mu Epsilon.

7

Erich Kaltofen received both his M.S. degree
in Computer Science in 1979 and his Ph.D. de-
gree in Computer Science in 1982 from Rens-
selaer Polytechnic Institute. He was an As-
sistant Professor of Computer Science at the
University of Toronto and an Assistant and
Associate Professor at Rensselaer Polytechnic
Institute, where he is now a Professor. His
current interests are in computational algebra
and number theory, design and analysis of se-
quential and parallel algorithms, and symbolic

manipulation systems and languages.
Professor Kaltofen currently is the Chair of ACM’s Special Interest
Group on Symbolic & Algebraic Manipulation and serves as associate
editor on several journals on symbolic computation. From 1985–87
he held an IBM Faculty Development Award. From 1990–91 he was
an ACM National Lecturer.

8

