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New features of our DSC system for distributing a symbolic computation task over a
network of processors are described. A new scheduler sends parallel subtasks to those

compute nodes that are best suited in handling the added load of CPU usage and mem-
ory. Furthermore, a subtask can communicate back to the process that spawned it by a
co-routine style calling mechanism. Two large experiments are described in this improved
setting. In the first we have implemented an algorithm that can prove a number of more

than 1,000 decimal digits prime in about 2 months elapsed time on some 20 computers.
In the second a parallel version of a sparse linear system solver is used to compute the

solution of sparse linear systems over finite fields. We are able to find the solution of
a 100,000 by 100,000 linear system with about 10.3 million non-zero entries over the

Galois field with 2 elements using 3 computers in about 54 hours CPU time.

1. Introduction

In Dı́az et al., (1991) we introduced our DSC system for distributing large scale symbolic
computations over a network of UNIX computers. There we discuss in detail the following
features:

(i) The distribution of so-called parallel subtasks is performed in the application pro-
gram by a DSC user library call. A daemon process, which has established Internet
Protocol (IP) connections to equivalent daemon processes on the participating com-
pute nodes by use of both the Transmission Control Protocol (TCP) and the User
Datagram Protocol (UDP), handles the call and sends the subtask to one of them.
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Similarly, the control flow of the application program is synchronized by library
calls that wait for the completion of one or all subtasks.

(ii) DSC distributes not only remote procedure calls to precompiled programs, but also
programs that are first compiled on the machine serving the subtask. This enables
the distribution of dynamically generated “black-box” functions (cf. Kaltofen and
Trager, 1990) and easy use of computers of different architecture.

(iii) DSC can be invoked from C, Common Lisp and Maple programs. It can distribute
within a local area network (LAN) and across the Internet.

(iv) The interface to the application program consists of seven library functions. Pro-
cessor allocation and interprocess communication is completely hidden from the
user.

(v) The progress of a distributed computation can be monitored by an independently
run controller program. This controller also initializes the DSC environment by
establishing server daemons on the participating computers.

(vi) We document experiments with DSC on a parallel version of the Cantor/Zassen-
haus polynomial factorization algorithm and the Goldwasser-Kilian/Atkin (GKA)
integer primality test.

New experiments with the GKA primality test that run on so-called “titanic” inte-
gers, i.e., integers with more than 1000 decimal digits, and experiments with a parallel
sparse linear system solver, namely, Coppersmith’s block Wiedemann algorithm (Cop-
persmith, 1994), have lead to several key modifications to DSC. In this article we describe
these changes, as well as the results obtained by applying the improved environment to
both titanic primality testing and sparse linear system solving.

Unlike on a massively parallel computer, where each processor has the same comput-
ing power and internal memory, a network of workstations and machines is a diverse
computing environment. At the time the application program distributes a subtask, the
DSC server has to determine which machine will receive this subtask. Our original de-
sign used a round-robin schedule, which resulted in unsatisfactory subtask-to-processor
allocation. The new scheduler continuously receives the CPU load and memory usage of
all participating machines, which are probed by resident daemon processes at 10 minute
intervals. In addition, the application program supplies an estimate of the amount of
memory and a rough measure of CPU usage. The scheduler then makes a sophisticated
selection of which processor is to handle the subtask. If certain threshold values are not
met, the subtask gets queued for later distribution under hopefully better load conditions
on the network. The details of the scheduling algorithm are described in §2.1. Without
this very fine tuned distribution scheduler, neither the primality tester nor the sparse
linear system solver could have been run on inputs as large as the ones we had. Note
that DSC’s ability to account for the heterogeneity of the compute nodes is one fea-
ture that clearly distinguishes it from other parallel computer algebra systems such as
Maple/Linda (Char, 1990), PARSAC-2 (Collins et al., 1990), the distributed SAC-2 of
Seitz, (1992), or PACLIB (Hong and Schreiner, 1993).

DSC supports a very coarse grain parallelism. This was quite successful for the pri-
mality tester, where each parallel subtask is extremely compute intensive and uses a
moderate amount of memory. However, the Wiedemann sparse linear system solver can
be implemented by slicing the coefficient matrix and storing each slice on a different
processor. These slices will repeatedly be multiplied by a sequence of vectors. We have
implemented a mechanism whereby the subtasks remain loaded in memory (or swap



DSC and Sparse Linear Systems 271

space) on first return, and can be continued at the point following the previous return
with different data supplied by the calling program, much like co-routines (see §2.3).
This introduces a finer grain parallelism and allows two-way communication between the
subtask and the parent process. This co-routine mechanism tends to make use of the
distributed memory more than the parallel compute power.

DSC has also been modified internally in two important ways. First, the environment
can now be initialized on a user supplied UDP port number. Several users can thus
set up individual DSC servers without interfering with one another. We note that the
inter-process communication does not take place on the system level, where a single port
number could have been reserved for DSC. Hence no system modifications are necessary
to run DSC, which is often desired when linking to off-site computers. Nonetheless, the
port number is public and servers could be started, perhaps maliciously, to communicate
with an existing environment. We guard against such mishap by tagging each message
with a key set by the individual user. More details on these enhancements are found in
§2.2.

Our first test problem has been the GKA primality test applied to numbers with more
the 1000 decimal digits. We are successful in proving the primality of a 1111 digit num-
ber on a LAN of some 20 computers in about 2 months turnaround time. The details
and observations of this experiment are described in §2.4. Our second test problem is
a distributed version of the Coppersmith block Wiedemann algorithm. This algorithm
for solving unstructured sparse linear systems has very coarse grain size, unlike classical
methods such as conjugate gradient, which makes it very suitable for the DSC environ-
ment. We have implemented two variants, one for entries being from prime finite fields
whose elements fit into 16 bits, and one for entries from GF(2), the field with two ele-
ments. In the latter case, we not only realize Coppersmith’s processor internal parallelism
by performing the bit operations simultaneously on 32 elements stored in a single com-
puter word, but we further “doubly” block the method and distribute across the network.
The details of our experiments are described in §3; we are successful in speeding up the
solution of linear systems over GF(2) of more than 100,000 equations and variables with
over 10 million non-zero coefficient matrix entries by factors of 3 and more. Such large
runs would very likely not have completed using our old round-robin scheduling, since
only the selection of compute nodes with large memory makes our programs feasible.

2. New Features of DSC

The goal of process scheduling in DSC is to locate available resources in the network
and to distribute subtasks without creating peak loads on any node. Selection of a suitable
computer is based on three factors: rating of resources, requirements for subtask, and load

on nodes.

2.1. The Scheduler

The hardware resources are defined in three fields of the node list: the core memory
size in MByte, the CPU power in MIPS and the number of processors. In the application
program the user has to specify an estimate for the expected memory needs in MByte
and a “fuzzy” value (LOW, MEDIUM, HIGH) for CPU usage.

In order to provide the scheduler with information about the current and the expected
load at each compute node, a method of data collection had to be developed. The ideal
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Figure 1: Interplay between DSC server and DSC ps on a single compute node.

load-meter would provide exact data in real time with some corrections derived from
trend predictions. This would require the monitoring program to be tied to the operating
system on a low level. Unfortunately this would place an excessive burden on the user
(request for higher privileges) and it would make the system less portable. However, most
of the time it is not desirable to have measurements with high resolution. The readings
should reflect trends for longer time periods rather than just be snapshots. As a first
solution the UNIX ps command was chosen to measure CPU and memory usage about
8 to 10 times an hour. Due to the latency (up to one minute) involved with ps, and
for better modularity, a separate process “DSC ps” was added in the current version of
DSC.

Once a DSC server is running, it spawns off the DSC ps process for its node. DSC ps
maintains a table of statistics, which is saved to disk after each update. At the end of each
hour, the mean values of CPU and memory usage are averaged with the previous values
for the corresponding hour of the day. At the end of the day (or week) the values for
corresponding day of the week (or week of the year) are adjusted by the latest readings.
From all four levels (current reading, hour, day and week) a weighted average is computed
to include long term effects. The resulting two values (CPU, memory) are sent to the
local DSC server which in turn will communicate the update to all other servers on
the network (see Figure 1). The backup file allows the initialization of load parameters
according to anticipated patterns of usage. DSC ps will then adapt those guessed values
with respect to the new readings.

The scheduler in the DSC server uses the values received from DSC ps, the ratings from
the node database, and the estimated needs of the next task to select the target machine.
For this purpose a sorted list of compute nodes which satisfy a minimum requirement of
available memory is maintained. Based on the memory estimate of the application, all
nodes which would stay above a certain threshold (allowing for some moderate paging)
are preselected. Among them the one with the lowest CPU usage is finally chosen for
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distribution. If none of the nodes can satisfy the requirements, the job is put back into
a queue until the load on one of the computers decreases to a sufficient level.

After distributing the new task the server adjusts for the expected change in the load
parameters of the selected node. Because of the long latency period, it cannot wait for
the next readings of the actual load when it has to distribute many tasks in a short
period of time. In time it can replace the estimates by the actual values whenever new
load readings are received from the other server. This has the convenient side effect that
the distributing server does not have to rely on transient measurements resulting from
the startup phase of the new task (which can involve compilation of source code). Most
of the time it will receive the steady-state readings because the server of the selected
compute nodes will send the update of the load parameters with low priority.

2.2. Interprocess Communication and Message Validation

DSC uses the User Datagram Protocol (UDP) for most of its communication and
Transmission Control Protocol (TCP) stream sockets for file transfer. For the sake of
portability, all inter-process communication adheres to the DARPA Internet standard
TCP/IP/UDP as implemented in UNIX 4.2/4.3bsd (see Dı́az 1992). This low level ap-
proach avoids the high latency present in the UNIX rsh and ftp commands, and it
provides real time information on subtasks and compute nodes for possible control ac-
tions such as subtask rescheduling. Before a user starts an application program that
distributes parallel subtasks over the network, the DSC server daemons must be started.
These daemon programs execute in the background and monitor a single UDP datagram
address for new external stimuli from other DSC servers, the DSC controller program,
the resource and work load monitor daemon program DSC ps, and application programs.
In order for a client process to contact a DSC server, the client must have a way of identi-
fying the DSC server it wants. This can be accomplished by knowing the 32-bit Internet
address of the host on which the server resides and the 16-bit port number which identi-
fies the destination of the datagram on the host machine. Each DSC server must be using
the same UDP port number in order to communicate with the others. UDP port numbers
are not reserved and can be allocated by any process. The run time port number allo-
cation option allows the user to automatically poll the machines in the configured DSC
network to find a suitable port number for the initiation of a set of DSC servers. This is
done by the DSC control program and consequently all DSC servers can be started using
the determined available port number for their UDP communication.

If the control program could not establish a connection to a DSC server via the port
number specified in the configuration file, the control program will assume that no active
DSC server is monitoring this port. Consequently, the control program searches for an
available port number which is not used on any machines in the “farm” of compute
nodes in the DSC network. Optionally, the user may specify its own port number thereby
bypassing the runtime port number allocation mechanism.

Once a port number has been determined the control program will start up the remote
DSC servers via a rsh command supplying the executable and the port number to the
remote or local compute node. Once all DSC servers are active communication takes
place only via the IP/TCP/UDP protocols.

The primary function of the DSC server daemon program is to monitor a single UDP
datagram address for incoming messages. Each message is a request for the DSC server
to perform some action. However, in order to act only on messages received from the user
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Figure 2: Co-routine flow of control.

that started the server, all messages contain a message validation tag which is specified
by the user. If for any reason the message validation tag received by the DSC server does
not match the server’s message validation tag, the message is ignored and the invalid
action request is logged. This avoids the inadvertent message passing that could occur
when multiple DSC systems execute concurrently in the same open network computing
environment using the same datagram port number.

2.3. Co-Routines

The C and Lisp DSC application programmer can take advantage of the resources
found in the DSC network by utilizing 5 base functions callable from a user’s program.
The function dscpr sub is used for the activation of parallel subtasks and designating
their respective resource usage specifications. The calls to dscpr wait, dscpr next, and
dscpr kill are used to wait on a specific parallel subtask or on the completion of all
parallel subtasks, to wait for the next completed parallel subtask and to kill a specific
parallel subtask, respectively. Finally, the function dscdbg start can be used to track a
task and is useful when one wishes to debug tasks using interactive debuggers such as
Unix’s dbx. In order to meet the sparse linear system challenge (see §4), where there is
a need to maintain large amounts of data within parallel subtasks, the C User Library
has been extended to allow the user to implement co-routines (Kogge 1991, §9.6.3).
The function dscpr cosetup must be called at the beginning of any parallel subtask
that is to be treated as a co-routine. This initialization is necessary so that the wake
up signal received by a parallel subtask from the DSC server can be interpreted as
a command to resume execution of the subproblem. Specifically, the dscpr cosetup
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function specifies how the subtask process will handle an asynchronous software interrupt
by providing the address of an internal DSC function that wakes the process from a sleep
state when the corresponding interrupt signal is detected. When the subtask calls the
dscpr cowait function, it enters a sleep state and optionally transmits a data file back
to its parent. Once a co-routine parallel subtask or a set of co-routine parallel subtasks
has been spawned by a call to dscpr sub, the returned indices have been recorded, and
a successful wait has completed, the parent task can send a wake up call to a sleeping
parallel subtask via the dscpr coresume function. Arguments to this function are an
integer which uniquely identifies a parallel subtask (returned from the spawning call to
dscpr sub) and a string which identifies which input file if any should be sent to the
co-routine before the parallel subtask is to be resumed. This call essentially generates
the software interrupt needed for the waking of the sleeping parallel subtask. Figure 2
denotes the relationship that could exist between DSC utility function calls in a main
task and its co-routine parallel subtask child.

2.4. The GKA Primality Test

In this section, we describe new experimental results with our distributed implemen-
tation of the Goldwasser-Kilian/Atkin (GKA) primality test (Atkin and Morain, 1993),
which uses elliptic curves to prove an integer p prime; for earlier results, see Kaltofen
et al., 1989; Dı́az et al., 1991. In particular, we discuss here our success in proving “ti-
tanic” integers, i.e., integers with more than 1000 decimal digits, prime (see also Va-
lente, 1992; Morain, 1991).

Let us briefly summarize the algorithm. The test has two phases: in the first phase, a
sequence {pi} of probable primes is constructed, such that p = p0 > p1 > p2 > · · · > pn.
Each pi+1 is obtained from pi by first finding a discriminant d such that pi splits as ππ in
the ring of integers of the field Q(

√
d ). If (1−π)(1−π) is divisible by a sufficiently large

(probable) prime q, we set pi+1 to q, thus “descending” from pi to pi+1. We then repeat
the process, seeking a descent from pi+1. The first phase terminates with pn having fewer
than 10 digits. In the second phase, it is necessary to construct, for each pi from the
first phase, an appropriate elliptic curve over GF(pi) which is used to prove pi prime,
provided pi+1 is prime. This results in a chain of implications

pn prime =⇒ pn−1 prime =⇒ · · · =⇒ p0 = p prime.

In our experiment, we started with a probable prime number of 1111 decimal digits.
Our code is written in the C programming language calling the Pari library functions
(Batut et al., 1991) for arbitrary precision integer arithmetic. Each time a descent is
required in the first phase, a list of nearly 10,000 discriminants is examined. In fact,
we chose to search all d with |d| ≤ 100,000, where Q(

√
d ) has class number ≤ 50.

Unfortunately, when p is titanic, few if any of these discriminants will induce a descent.
For our prime of 1111 digits, we distributed the search for a descent from pi to pi+1 to
24 subtasks, each of which is given approximately 400 discriminants to examine. The first
subtask to find a descent reports it to the main task which then redistributes in order
to find a descent from pi+1. We required 204 descents before a prime of 10 digits was
obtained. Our first phase run with the 1111 digit number as input began on January 12,
1992, and ended on February 13, 1992. The total elapsed time for the run was measured
at about 569 hours, or approximately 3 1

2 weeks. Figure 3 depicts the progress of this



276 A. Dı́az, M. Hitz, E. Kaltofen, A. Lobo and T. Valente

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

D
I
G
I
T
S
 
R
E
M
A
I
N
I
N
G

ELAPSED TIME (HOURS)

Figure 3: Graph of progress of GKA first phase.

run during this period. Notice that after 135 elapsed hours, the 1111 digit number is
“reduced” to a number having 1044 digits. After an additional 43 hours, it appears that
we regress, because the number shown now has 1045 digits! In fact, what has happened
is that our program failed to find a descent from the 1044 digit number, and was forced
to backtrack to a larger prime and find an alternate descent. Slow but steady progress
is evident, until the last day, when the 322 digit number rapidly shrinks, and the first
phase suddenly ends. Interestingly, it appears that about half of the total elapsed time
of this run is spent merely reducing the original number to subtitanic size.

For our second phase run with 1111 digit inputs, there are a total of 204 descents to
process. Typically, each of the 20 or so workstations is given about 10 descents. For each
descent, the subtask must construct a class equation for the class field over Q(

√
d ), find

a root of the class equation, then use this root to construct an elliptic curve over the
appropriate prime field GF(p). Once this curve is found, verification proceeds by finding
a point on the curve which serves as a witness to the primality of p. Difficulties arise
when the root-finder must handle class equations of degree 30 or more. Since the second
phase is so sensitive to the degree of the class equation, it is critical that in the first
phase we do whatever is possible to insure that only discriminants of relatively low class
numbers are passed on to the second phase. Because of these factors, our phase two run
for this titanic input takes approximately three weeks elapsed time. In a situation like
this where a distributed subtask has a long running time it is much more difficult to
schedule the task on a processor with expected low load, thus insuring high performance.
In comparision to Morain’s (1991) implementation, ours is competitive. Morain needs
about 1 year of total SUN 3 CPU time for a 1065 digit number, using a different long
integer arithmetic package.
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3. Solving Large Sparse Linear Systems

We now report on the use of DSC in experiments with the Block Wiedemann Algo-
rithm. Our distributed implementation follows Coppersmith’s (1994) generalization of
the sequential algorithm (Wiedemann, 1986). For the purposes of our paper we present
a brief description below.

3.1. Background

The object is to find a non-trivial solution of a homogeneous system of linear equations
with coefficient matrix denoted by B whose entries are from an abstract field K. The
matrix is assumed to be square with dimension N , and it is supplied as a black box
which accepts as its input a vector y and produces the vector By as its output. This task
is called an application of the black box.

Our program returns one or more non-zero vectors w satisfying Bw = 0 if they exist.
The vectors may not always be different. Internally, the program creates vector blocks
x ∈ K

N×m and z ∈ K
N×n whose components are randomly selected from K. We refer tom

and n as the row and column blocking factors and have set m = n in our implementation
and refer to them as n in the discussion below.

There are three stages to the algorithm. The first stage computes the polynomial A(λ)
of degree L = b2N/nc+ 2, with coefficients a(i) = xtrBi+1ztr in the ring K

n×n.
The next stage, called the minpoly stage, finds the minimum-degree linear recurrence

Λ(λ) that generates the sequence a(0), a(1), . . . , a(L). In Wiedemann’s original algorithm,
the a(i) are scalars and the minimum polynomial of this sequence is obtainable by the
Berlekamp/Massey (Massey, 1969) algorithm. In the present context we iteratively com-
pute the matrix polynomial

Ft(λ) =

[

Λt(λ)
Ψt(λ)

]

for 1 ≤ t ≤ L. The coefficients of the polynomials Λ and Ψ are n×n matrices over K. At
each iteration t, the first n rows of a discrepancy matrix ∆t, defined as the coefficient of
λt in Ft(λ)A(λ), are set to zero by elementary row operations performed in a sequence
determined by an integer weight associated with each row of Ft(λ). Then F is updated
by the transformation Tt ∈ K

2n×2n along with D = diag[1, . . . , 1, λ, . . . , λ] according to
the equation Ft+1 = D · T t · Ft.

The final stage, called the evaluation stage, involves a Horner-like scheme to evaluate
a polynomial derived from Λ whose coefficients are N -dimensional vectors. This stage
yields as many as m individual vectors w which satisfy the equation Bw = 0. With high
probability, particularly when K has large cardinality, the solution is nontrivial.

The generation of a(0), a(1), . . . , a(L) costs L + 1 black box applications plus O(N 2)
arithmetic operations. The minpoly stage costs O(nN 2) field operations overall. The
evaluation stage costs not more than N/n + 2 black box calls plus O(N 2) arithmetic
operations, for each w produced. The reader is referred to (Coppersmith, 1994, and
Kaltofen, 1994) for the complexity analysis.

We have distributed the computation of A(λ). The νth compute node is supplied x,
B, and the νth column of z. The νth parallel subtask computes the νth column of a(i) for
0 ≤ i ≤ L. The scheduler within DSC selected target hosts from a set of approximately
30 machines which had diverse processing power and memory capacity. It used estimated
processor and storage requirements of the subtasks in making the selections.
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3.2. The Generic-Arithmetic Feature

Our programs are all written in the C programming language to run under the UNIX
operating system. Arithmetic operations are done generically through macro calls. We
have created libraries of macros for arithmetic in GF(2k) and in GF(p) where 1 ≤ k ≤ 31
and log2p ≤ 15. The solver can link to either of these libraries at compile time and is
specialized at run time when the values of k or p are supplied by the user. We have also
written an optimized version specifically for GF(2).

Arithmetic operations in GF(2k) are implemented with the bit operations exclusive-

or, and, and shift available in the C language. Field division is done by multiplying the
dividend by the inverse of the divisor. The inverse of a field element is computed with the
extended Euclidean algorithm within which bit operations are used for finding quotients
and remainders. We use an unsigned long word to represent an element.

In GF(2), multiplication and addition are respectively the bit-operations and and ex-

clusive-or. A single bit is sufficient to represent an element and so, thirty-two bit-vectors
can be packed into a single machine word. All bit-operations are applied simultaneously
across all the bits in a machine word. Due to this “double blocking” the effective blocking
factor for n subtasks is 32n in the sequence generation stage.

In the generic field GF(p) we use built-in integer arithmetic operations to implement
field arithmetic. The restrictions on k and p arise from the maximum size, in bits, of
a word in a machine-representation. The bound of 15 bits on log2p ensures that any
intermediate product can safely be accommodated in an unsigned 32-bit integer. This
forces the maximum value of p to 32749.

3.3. Experiments and Observations

We report on experiments with two systems of equations over GF(32749) and three sys-
tems over GF(2). The coefficient matrices in all cases are square. Case 1, over GF(32749),
has dimension 10,000, contains between 23 and 47 non-zero entries per row, and a total
of 350,000 such elements. It was generated by the random placement of random non-zero
field elements in its rows.

Case 2, also over GF(32749), has dimension 20,000, contains 57 to 73 non-zero entries
per row or about 1.3 million entries in total. It is also a “random” square matrix. This
matrix and the one in the previous example are available upon request from the third
author.

Case 3, over GF(2), with dimensions 52,250 × 50,001 contains 9 to 34 entries per row
and 1.1 million entries in total. It arose from integer factoring by the MPQS method and
was supplied to us by A. M. Odlyzko. We solved the transposed system of equations,
made square by appropriate padding with rows of zeros.

Case 4, over GF(2), with dimension 100,000, contains 89 to 117 non-zero entries per
row or about 10.3 million entries in total. It is a “random” square matrix.

Case 5, over GF(2), with dimensions 245,811× 252,222 containing 10 to 217 non-zero
entries per row or about 11.04 million entries in total. It is the matrix used by A. K.
Lenstra in the process of factoring the RSA-120 challenge number by the PPMPQS
method. As in Case 3 we solved the transposed, padded system.

In the GF(p) cases We used blocking factors of 2, 4, and 8. For the others, we used
blocking factors of 32, 64, and 96 respectively. In each experiment, the Sequence gen-
eration stage was distributed under DSC. Vectors and the matrix were passed as files.
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Task Blocking Factor
N 2 4 8

10,000 sequence 7h29′ 3h54′ 2h09′

minpoly 2h25′ 4h08′ 8h00′

evaluation 3h47′ 1h59′ 1h05′

total time 13h41′ 10h06′ 11h14′

work 607# 681# 751#

20,000 sequence 57h17′ 28h43′ 15h21′

minpoly 9h48′ 16h36′ 33h39′

evaluation 29h42′ 14h44′ 7h53′

total time 96h47′ 60h02′ 56h53′

work 4413# 4330# 6366#

Figure 4: Parallel CPU Time (hourshminutes′) for different blocking factors with
all arithmetic in GF(32749). Each processor is rated at 28.5 MIPS. Work is

measured in units of (MIPS-hours#).

Task Blocking Factor
N 1× 32 2× 32 3× 32

52,250 sequence 3h53′ 2h11′ 1h37′

minpoly 2h30′ 3h09′ 3h54′

evaluation 1h15′ 0h33′ 0h22′

total time 7h38′ 5h53′ 5h53′

work 219# 231# 261#

100,000 sequence 77h37′ 44h05′ 27h28′

minpoly 10h03′ 12h28′ 15h42′

evaluation 74h37′ 27h48′ 11h09′

total time 162h17′ 84h31′ 54h19′

work 4625# 3741# 3045#

252,222 sequence 169h33′ 91h50′ 70h05′

minpoly 70h29′ 52h50′ 71h25′

evaluation 65h35′ 36h50′ 26h25′

total time 305h39′ 181h30′ 167h55′

work 8649# 7735# 6738#

Figure 5: Parallel CPU Time (hourshminutes′) for different blocking factors with
all arithmetic in GF(32749). Each processor is rated at 28.5 MIPS. Work is

measured in units of (MIPS-hours#).

Since a shared file system was in use, no physical transfer of files was necessary and only
file names were exchanged. We report the parallel time with respect to a Sun-4 machine
rated at 28.5 MIPS. Figures 4 and 5 below give the parallel CPU time taken for each
task. The time reported for evaluation is the time to find the first non-zero solution. We
also give the work performed in each experiment, which is the sum of the number of
instructions performed by all processors.

In both tables the time to compute the sequence decreases with increased n. In Case 1
and Case 2 it drops approximately in half each time the blocking factor doubles. The
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overall trend is still visible in the other cases but not as clearly because of the overhead
associated with unpacking the doubly blocked bit-vectors.

The quadratic time complexity of the computation of the minimum polynomial is also
observed. Increasing n for a given system, brings an improvement in the total time upto
a point because of the shorter sequence generation and evaluation stages. The overhead
of multiplying n × n matrices during the update phase can overwhelm the savings in
the other stages. This stage can become a bottleneck when n is large and the black box
application is fast. Conversely when the the black box application is expensive, it makes
sense to use a large n. This was observed in another set of experiments involving the
Block Wiedemann solver in polynomial factorization (Kaltofen & Lobo, 1994). There
sequence-generation is the bottleneck.

Horner-like evaluation in the third stage costsO(N/n) and we report the time necessary
for finding the first non-zero solution. This stage takes approximately half as much time
as the sequence-generation stage. There is no guarantee the solution w will be nontrivial
or that any two nonzero solutions will be different.

Coppersmith implemented his algorithm in FORTRAN on an IBM 3090 mainframe
computer and reports a time of 1h05′ for a system of dimension 65, 518 containing approx-
imately 1.3 million non-zero entries. A block, lookahead Lanczos algorithm (Coppersmith,
1991) took a time of 1h05′. Another system of size 82, 469 containing 3.9 million entries
was solved by him using the Lanczos algorithm, with some pre-processing, in 4h52′ on an
RS 6000 workstation and in 2h30′ on the IBM 3090. With some reservations, we estimate
that his implementation of the Blocked Wiedemann algorithm would also take 4h52′ on
the workstation. We also solved Case 3 using the original (n = 1) Wiedemann algorithm
in about 114 hours of CPU time.

It is important to remember that DSC ran the jobs in background-mode where they
consumed machine cycles that would otherwise be wasted. Our scheduler met the min-
imum goal of sending one subtask at a time to a target machine. Machines with high
power and memory capacity were declared to be temporarily unusable if they were under
high load conditions at the time of distribution. Hosts with unused surplus capacity were
identified and sometimes given more than one task to process. The distributed tasks
were monitored and hosts that became inactive were identified. In an exceptional situa-
tion that we observed, the scheduler correctly determined that two machines had ceased
to operate and it successfully restarted their tasks on other active machines in its list.

4. Conclusions

Using intelligently scheduled parallel subtasks in DSC we have been able to prove ti-
tanic integers prime. We have also been able to solve sparse linear systems with over
10.3 million entries over finite fields. Both tasks have been accomplished on a network
of common computers. We have solved a linear system with over 245,000 equations, over
250,000 unknowns, and over 11 million non-zero entries over GF(2). The challenge we
propose is to solve such systems over GF(p) for word-sized primes p, and ultimately
over the rational numbers. In order to meet our challenge, we will explore several im-
provements to our current approach, by which we hope to overcome certain algorithmic
bottlenecks in the block Wiedemann algorithm. As Figure 4 shows, higher parallelization
of step (1) slows step (2). One way to speed step (2) with high blocking factor is to
use a blocked Toeplitz linear system solver (Gohberg et al., 1986) instead of the gen-
eralized Berlekamp/Massey algorithm. The latter method can be further improved to
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carry out step (2) in O(n2N(logN)2 loglogN) arithmetic operations using FFT-based
polynomial arithmetic and doubling (see Bitmead and Anderson, (1980); Morf, (1980),
and Kaltofen, (1994)).

Another way to speed step (2) is to set up a pipeline between the subtasks that
generate the components of a(i) and the program that computes the linear recurrence.
Each subtask would compute a segment of M ≤ 2N/n sequence elements at a time, and
pass it on to the Berlekamp-Massey program which could begin working on these terms
of A. Meanwhile the subtasks would compute the next M terms of the sequence. We plan
to use co-routines to implement this pipeline.

If the computation of the product of the coefficient matrix of the system by a vector
is more costly, as is the case in our new application to polynomial factoring (Kaltofen
and Lobo, 1994), additional measures can be taken for speed-up. For instance, the use
of distinct row and column blocking factors with m À n decreases the length L of the
required matrix sequence while increasing the arithmetic overhead. Second, the num-
ber of matrix-times-vector products in the evaluation step can by reduced by storing
intermediate results of the sequence step (see Kaltofen, 1994, Appendix B).

We recently redesigned our code for solving black box linear systems in the C++

programming language. In doing so, we have linked into a big integer package by A. K.
Lenstra. It is also possible to link to other such packages. Thus, we now have the ability
to solve sparse linear systems modulo a prime number p without any size limitation, in
bits, on p.

Note added in proof: We have begun to investigate the use of the process queue length
on each computer as a parameter in the scheduler.
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