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Abstract:

We show that over a field of characteristic p the solution to a non-singular system of

n linear equations in n unknows, with 2 < p < n, whose coefficient matrix is of displacement rank
« and which is given as a sum of « LU-products of Toeplitz matrices, can be computed in parallel
with randomization simultaneously in O((logn)?) time and a total work of O(max{an,p*}n x
lognloglogn). A time unit represents an arithmetic operation in the coefficient field. Our
solution is based on our recursive parallel triangulation technique for processor-efficient parallel
linear system solving over fields of characteristic p. In particular, we show that our recursive
parallel triangulation technique can be implemented in a way that preserves Toeplitz-likeness.

Keywords: Parallel algorithm, processor-efficiency, Toeplitz system, displacement rank, ab-
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1 Introduction

In a Toeplitz matrix a single constant entry runs
down along each diagonal. We seek parallel algo-
rithms that solve nxn systems of linear equations
in poly-log parallel time; that is, in (logn)°™
parallel arithmetic operations in the coefficient
field. Furthermore, the algorithms are to min-
imize the number of processors. An algorithm
is presented that in poly-log parallel time with
n- max{pz7 n} processors computes the solution
of a linear system whose coefficient matrix is
Toeplitz and whose field of coefficients has char-
acteristic p, where 2 < p < n. Our result is
achieved by drawing on a far-reaching generaliza-
tion of the notion of Toeplitz matrices to matrices

IThis material is based on work supported in part by
the National Science Foundation under Grant No. CCR-
9319776 (first author) and Grant No. CCR-~9020620 (sec-
ond author) and by the PSC CUNY Award 664334 (sec-
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of small displacement rank, so-called Toeplitz-
like matrices (Kailath et al. 1979).

The notion of Toeplitz-like and Hankel-like
matrices captures a wide class of matrices includ-
ing block Toeplitz matrices, such as the Sylvester
matrix of two polynomials, matrices that are a
sum of a Toeplitz-like plus a Hankel-like matrix,
and products and inverses of such matrices. The
key idea is to represent a matrix as a sum of «
matrix products, where « is much smaller than
the row and column dimensions and where each
product is, in the Toeplitz-like case, for instance,
that of a lower triangular times an upper trian-
gular Toeplitz matrix. We shall refer to this rep-
resentation as the LU representation of a ma-
trix, and to « as the displacement rank. For pure
Toeplitz matrices, for example, we have o < 2.
Toeplitz-like matrices are ubiquitous in symbolic
computation as resultants and subresultants have
this form (Brown and Traub 1971, Sasaki and
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Furukawa 1984, Hong 1993). Furthermore, block
matrices are used, for instance, as a paralleliza-
tion technique by reducing the dimensions while
increasing the running time of the arithmetic op-
erations on the individual entries, which now are
matrices rather than field elements. This ap-
proach leads to coarse grain parallel algorithms,
in which the individual block operations are car-
ried out on different computers. Coppersmith’s
block Wiedemann algorithm (Coppersmith 1994,
Kaltofen 1995) for solving sparse linear systems
in parallel is an example of this approach. An in-
termediately arising subproblem there is the so-
lution of a block Toeplitz matrix.

We give a parallel randomized algorithm that
computes the exact solution of a Toeplitz-like
non-singular linear system whose n x n coeffi-
cient matrix is given in LU representation and
whose coefficient field has small positive char-
acteristic p, where 2 < p < n. Our algo-
rithm can solve a Toeplitz-like system of dis-
placement rank o in O((logn)?) expected paral-
lel time with roughly n - max{an, p?} processors,
each of which performs coefficient field arith-
metic in unit time. The significance of our re-
sult lies in the fact that we can accomplish a
poly-log parallel algorithm with a number of pro-
cessors that is only quadratic in the dimension.
For very small fields, such as the Galois field
with 2 elements, the parallel time increases by
a factor of logn. Our processor estimates are
rough in the sense that we will not specify a
concrete parallel model and instead follow the
work-time presentation framework of J4J4 (1992,
§1.5). That approach incorporates the notion
of “scalability” of the parallel algorithm: with
n'® processors, for example, our algorithm takes
O(max{a~/n,p?/+/n} (logn)?3) parallel time. For
now, but not in our later theorems, we also ignore
factors like loglogn in the processor count.

The parallel solution of Toeplitz and Toeplitz-
like linear systems with few processors is exten-
sively investigated by Bini and Pan (see Bini et

al. 1991, Pan 1992b, Bini and Pan 1993 and 1995).

Indeed, Pan’s algorithms for solving a Toeplitz
system in O((logn)?) parallel time with roughly
n? processors is an important substep in the
O((logn)?) parallel time solution of general lin-
ear systems with roughly n® processors (Kalt-
ofen and Pan 1991). The Le Verrier/Csanky
approach in all the methods leads to technical
difficulties when the coefficient fields have small
positive characteristic. The difficulties are over-
come by the “recursive parallel triangulation”
technique of Kaltofen and Pan (1992). In this
paper we show that the recursive parallel trian-
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gulation can be realized in a manner that keeps
intermediately computed matrices Toeplitz-like.
For fields of characteristic p = 2 this is quite clear
from the randomizations invented by Kaltofen
and Saunders (1991). For this case we present
the entire algorithm in §3. When p > 2 ad-
ditional complications arise, which we overcome
by switching to block Toeplitz matrices. With
this change in mind, we will describe in §2 the
basic displacement operators for entries from a
non-commutative algebra. The intricate recur-
sive triangulation algorithm with block triangu-
lar matrices is then explained in §4. We note
that if the input matrix is a pure Toeplitz matrix,
the matrices computed by the recursive invoca-
tions do not remain Toeplitz and the full theory
of Toeplitz-likeness comes to bear. We remark
that the positivity of the field characteristic rules
out an iterative approach like in (Pan 1992a).

Singular Toeplitz and Toeplitz-like systems
can be solved with the same number of proces-
sors by determining the rank by binary search for
non-singular leading principal submatrices (see,
e.g., Kaltofen and Pan 1992, §3). As a con-
sequence we can compute the greatest common
divisor of two polynomials of degree m over a
field of characteristic p, where 2 < p < 2n, in
O((logn)?) expected parallel arithmetic opera-
tions with roughly n - max{n,p?} processors (cf.
Kaltofen 1994, Example in §4). However, it is
not known to us how to extend to small pos-
itive characteristic the techniques in (Kaltofen
and Pan 1992, §3) that avoid the extra logn fac-
tor in the parallel time which is induced by binary
search.

We remark that no processor-efficient par-
allel algorithm (in the sense of Karp and Ra-
machandran 1990) for Toeplitz-like linear sys-
tems is known. Recently, it has been shown
(Kaltofen 1994) that Toeplitz-like linear systems
can be solved in O(a?n(logn)?loglogn) sequen-
tial field operations. Thus a processor-efficient
poly-log time parallel algorithm can use no more
than roughly a?n processors. No direct (mean-
ing non-iterative) parallel algorithm of this sort
is known even when p = 0 and the coefficient
matrix is Toeplitz.

2 Displacement Operators
Over Non-Commutative
Algebras

We now introduce well-known tools from the the-
ory of Toeplitz-like matrices (Kailath et al. 1979).
We consider n X n matrices over a non-commuta-
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tive algebra A. This generalization is necessary
because in §4 we must deal with block matrices.
Define the lower-shift matrix

0
10 0

and define the matrix shift operators

JA=ZA and rA=AZ"Y.

The matrix | A is equal to A after being shifted
down by one row, filling the first row by zeros,
and the matrix " A is equal to A after being
shifted to the right by one column, filling the first
column by zeros. Following Kailath et al. (1979),
we define

b (A) = A— |(PA) = A— ZAZ",

The fundamental property is that given 2« col-
umn vectors yi,...,Ys and zi,..., 2z, the func-
tional equation in the matrix X,

X—(PX) =)yt (1)
j=1

has the unique solution

X =
J

(2)

Lﬂy]]] U[[Z;rﬂa

where L[y] denotes a lower-triangular Toeplitz
matrix whose first column is y and U[z""] denotes
an upper triangular Toeplitz matrix whose first

row is 2. We shall call the vectors yi,...,%a
and z1,...,24 In
28
a zgr
Y:Zyjz;‘r:[yl 2 |yl | ] 3)
j=1
Ztr

the left and right generators of the n x n ma-
trix Y. For our purpose, the matrix Y will be
a displaced matrix such as ¢4 (X). Furthermore,
we shall call the representation (2) the X LU rep-
resentation for X. That representation requires
only the storage of O(an) ring elements.

A ubiquitous problem in our algorithms will
be to derive the X LU representation for the prod-
uct of Toeplitz-like matrices given by their XLU
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representations. Because we encounter rectangu-
lar matrices in our algorithm, we first have to
extend the definitions of the displacement oper-
ators to such matrices. By subscripting Z,, we
shall indicate that the shift matrix Z is of dimen-
sions n X n; we define a rectangular displacement
operator

(X)) =X - Z, XZ*

for X € AmX™.

For m < n we may remove the last n — m rows
from L in (2) and y in (3), while for m > n we
may remove the last m — n columns from U in
(2) and =z in (3). Suppose now that we are given
a generators of ¢, (G), where G € A™™ and
0 generators for ¢, (H), where H € A™*"™. We
may compute o + 3 + 1 generators for ¢ (GH)
as follows (Pan 1992b, Proposition A.3): First,
observe that I, = Z%Z,, + enell, where I, is
the m x m identity matrix and e,, is the m*™ unit
vector. Therefore

¢+(GH)

— GH — Z,GL,HZ"

= GH — (ZiGZ5)(Zn HZY) — ZiGemes HZY

— (G — Z,GZ)H + Z,GZ (H — Z,,HZY)
—gh*

(4)

where g = Z,Ge,, € A and h = Z,,H"e,, € A".
In (4) the product ¢4 (G)H, for example, requires
the multiplication the right generators of G by
the XLU representation of H, which can be ac-
complished by O(af3) triangular Toeplitz matrix-
times-vector products over A.

In our algorithms it will also be necessary to
invert triangular Toeplitz matrices over A. Since

= ¢+(G)H + ZiIGZ 6+ (H) — gh™,

ay z1 by
as ay 0 T b
az az ap w3 | = | b3

ApGp—1-..0201 Ty, by,
is equivalent to

(a1 + - Fapt" H(xy + -+ z,t"h
=b; +---+byt" ' (mod t")

we have
ai

as ai O
az a2 aip —

Andnp—1...02071
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C1
Cy C1 0
C3 C2 C1
CnCp—1...C2C1
with

(1 4+ cnt"—l)(al Lt antn—l)
=1 (mod t").

The entries ¢; can always be found provided that
aq is invertible in A. In that case, Newton itera-
tion computes the power series inverse as

C(O) (t) = a1_17
() = V()2 — a(t)e () mod ¢,

where a(t) = ay + ast + --- and ¢V (t) = ¢; +

cot + -+ Cgitzi_l. Note that
1—cDMat) = 1 —cD(t)a(t))?
= 0 (mod tQi).

In conclusion, we can compute the entries ¢; in
O((logn)?) parallel time and O(nlognloglogn)
work in terms of operations in A, the latter by
the polynomial multiplication algorithm of Can-
tor and Kaltofen (1991).

3 Coefficient Fields of
Characteristic 2

We first present the case where the field of en-
tries has characteristic 2. This case is a direct
application of the “recursive parallel triangula-
tion” paradigm of (Kaltofen and Pan 1992) and
the theory of Toeplitz-like systems (Kailath et
al. 1979).

Algorithm 1

Input: Vectors yi,...,Yay 215---,2a € K"
such that A = 377 | Lly;JU[2] € K™*"
is non-singular, where K is a field of char-
acteristic 2. Furthermore, a vector b €
K™.

Output: The vector A™1b.

Step 1: In later steps it is necessary that the
coefficient matrix has no multiple eigenvalues. A
key technique is to precondition the matrix A (see
Kaltofen and Pan 1992, Proposition 1): Compute
a Y LU representation of length o + 4 for A=
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VAW where
1’021}3. .. Uy
1 V2...Up—-1
V= 1
vy
0 1
and
w1
W2 W1 0
W= | Ws w2 W

WpWp—1-. - WaW1

have random entries from a set S C K.

Step 2: This step utilizes the fundamental idea
of parameterized Newton iteration for the inver-
sion of the characteristic matrix of the Toeplitz-
like matrix (Pan 1992b, Proposition 3.1). Com-
pute the Y LU representation of

AN = ni: NA = (I - XA~ (mod z"). (5)
=0

Step 3: From the YXLU representation of (5)
compute s; = Trace A'. Furthermore, pick two
random vectors u,y € S™ and from the YLU
representation of (5) compute a; = u**Aly for
all 0 <3 <2n—1.

Step 4: The quantities s; and a; computed in
Steps 2 and 3 result in the 2n x n nonsingular
system for the coefficients of the characteristic
polynomial

Det(A] — A) = A" — ¢ A1 — oA 2

"’*Cn—lA*Cn

(6)
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of A:
T -
S1 2 0
52 S1
Sn—2 n—1
Sn—1 Spn—2 ... 81 n
X
Ap—-1 Ap—2 ... Qa1 Qg
anp Qp—1 ... a2 aq
Gn - as
a2n—3 an—1
| Aon—202n—-3 ... Qp Gp—1 |
~ s -
82
83
C1
Co Sn—1
C3 Sn
= (7)
Qn
Cn—1 Ap+1
Cn Ap+2
| G2n—1 |

In (7) the first n equations are the Newton iden-
tities and the second n equations express the
fact that the characteristic polynomial of A lin-
early generates the sequence ag,aq,... Since A
has no multiple eigenvalues, with high proba-
bility the second n equations are linearly inde-
pendent. The system is rearranged as follows:
first remove every row of the first n rows with
an even integer on the diagonal; second, re-
order the columns such that the odd numbered
columns precede the even numbered ones; and fi-
nally, reorder the rows numbered n+1,...,2n to
n+1l,n+3,...,n+2 n+4,... We obtain the
system

L1 ‘ LQ , 8/
¢ -~

AR (5)

T3 ‘ T4 a”

where
1
1
L — ZS21 0 e KIm/21x[n/2].
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0
L= :,flo 0 c KIn/21xIn/2)
Ap—-1Ap—3. ..
Tl — | An4+1an—1 c K"”/Q“ x[n/2] ,
Ap—2Qpn—4. ..
T, = Ay Qp—2 c K""/Q“ x|n/2] ,
Ap Ap—2...
T3 — | n+2 Qn c KL”/QJ x[n/2] ,
Ap—-1Ap—3. ..
Ty = | @n+10n-1 e Klr/2x1n/2]
and
C1 Co
C3 Cy4
C/ = cs c K[”/z], CH = 6 c KL”/QJ’
S1
s’ = ii e K"/2,
Qn Ap41
, nt2 | gln/2l g n+3 c Kln/2l.

@ = An+4 € ’ An+5
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We eliminate 77 and T3 by

I 0|07 [Ly| L]
~nL7' 1o | Ty |- [CC/,}
~TL7M o T T3 | Ty

Ly | Lo

0| Ay

0 | Ay

o
=|d-TL7's |,

where
Al :TQ—TlLl_lLQ and Ag :T4—T3L1_1L2.

Compute the Y LU representation of the Schur
complements A1 and Ay and compute the vec-
tors ' and ¢”. Note that L7' has as the in-
verse of a triangular Toeplitz matrix displace-
ment rank one. Therefore, by the product for-
mula (4) the displacement ranks of each A; is no
more than 8.

Step 5: Here we compress the non-singular n x

1n/2] system
=)= [5]

to a [n/2] x |n/2] non-singular system. Select a
random |n /2] x n unit upper triangular Toeplitz
matrix

E=[FE | Ex] =
leses...ejnjaj41--- €n

162...

0

1 ()

€n—1

< Cn_|n/2]+1

where E; € KIn/21xIn/2] and E, e Kln/21x1n/2]
with the entries e; being random elements in the
set S. By Theorem 2 of Kaltofen and Saun-
ders (1991) the matrix A = E1A; + ExAy €

KLn/21x1/2] is with high probability non-singular.

Compute a X LU representation for the matrix A
and compute the vector 6 = E10’ + E26”. By
(4) the matrix A has displacement rank no more
than 21.
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Step 6: By recursive application of the entire
algorithm, solve A c’ = 6.

Step 7: We can now back-substitute in (8) to
determine the coefficients of (6): Compute ¢’ =
Ly (s" — Laoc”).

Singularity of A can be discovered in two ways:
either, A becomes zero during the triangulation
process, or ¢, = 0. In the former case, A is sin-
gular with high probability, whereas in the later
case A is definitely singular.

Step 8: By the Cayley/Hamilton theorem we
have

gﬁzl(@A_qmﬂ_m_%lg.

Cn

Compute b = Vb and, with the help of the YLU
representation for (5) computed in Step 2, bl =
Atb for all 1 <i <n — 1. Finally, determine

A b =WA =
1 - - -
CW(b["—” — b cn_1b>. 0

Aside from the basic techniques of the theory
of Toeplitz-like matrices, we think that there are
as many as 5 distinct ideas incorporated in the
above algorithm: first, the Le Verrier/Csanky ap-
proach to linear system solving; second, Wiede-
mann’s coordinate recurrence projections; third,
Pan’s parameterized Newton iteration for Toe-
plitz-like matrices; fourth, preconditioning a la
Borodin et al. (1982) which by (Kaltofen and
Saunders 1991) can be restricted to triangular
Toeplitz multipliers; and fifth, our recursive par-
allel triangulation. The parallel running time,
the work, which is the total number of all arith-
metic operations performed by all processors, and
the success probability of Algorithm 1 is summa-
rized in the following theorem.

Theorem 1. Algorithm 1 picks O(n) random
elements from a subset S C K. It performs
O(an?lognloglog n) arithmetic operations in to-
tal work, and has a parallel time of O((logn)?).
With probability no less than 1 — 9n?/card(S) it
returns the correct answer.

Note that if the field K has fewer than n?,
say, elements we must perform the entire algo-
rithm in a finite algebraic extension of K in order
to guarantee success with a positive probability.
Therefore, the cost of a single arithmetic opera-
tion for our algorithm costs at least Q(logn) bit
operations.

Proof. Algorithm 1 fails to produce an answer
if the minimum polynomial of A is not its char-
acteristic polynomial, that with probability no
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more than 4n?/card(S) (Kaltofen and Pan 1992,
Proposition 1), or if the linear generator of a;
is not the characteristic polynomial, that with
probability no more than 2n/card(S) (Kaltofen
and Pan 1991, Lemma 2), or if the matrix E of
Step 5 constructs a singular A, that with proba-
bility no more than n(n+1)/(2card S) (cf. Kalt-
ofen and Saunders 1991, Theorem 2), or if the
recursive call of Step 6 fails. Therefore, the prob-
ability of failure, Pf(n,«) is bounded as

Pf(n, )
< Pf(|n/2],21) + (9n + 5)n/(2 card S).

Step 1 by the product formula (4) reduces
to O(a?) triangular Toeplitz matrix-times-vector
products all of which in O(logn) parallel time
cost O(a?nlognloglogn) work. The cost of Steps
2 and 3 is by known methods (see, e.g., Bini and
Pan 1995) no more than O(an?lognloglogn)
work in O((logn)?) time. Step 3 requires the
inversion of a triangular Toeplitz matrix, that in
O(nlognloglogn) work and O((logn)?) parallel
time via a power series reciprocal (see §2), and
product constructions which because of constant
displacement ranks cost only O(nlogn loglogn)
work and O(log n) parallel time. The same is true
for Step 5. Step 7 essentially leads to 2 triangu-
lar Toeplitz matrix-times-vector products and its
running time is negligible. Finally, the computa-
tion of bl in Step 8 is similar to the computation
of a; in Step 3 and the final sum for A~'b re-
quires O(n?) work and O(logn) time. Therefore,
we have the following recursive relations to the
work Wk(n,a) and parallel time T'(n, a):

Wk(n,o) < Wk(|n/2],21)
+d;an?lognloglogn,
T(n,a) < T(|n/2],21) + dy(logn)?,

where d; and d are positive constants, which
easily yields the stated complexities. X

4 Coeflicient Fields of
Characteristic > 2

Algorithm 1 can be generalized to coefficient
fields K of characteristic p with 3 < p < n. All
but Step 4 are valid for any field of sufficient car-
dinality. In this section we show how Step 4 is
modified. We shall reduce the linear system (7)
to a |n/p| x [n/p] linear system of displacement
rank O(p). We first proceed as in Step 4 and
rearrange (7) as follows. We remove those rows
among the first n rows that have an integer divis-
ible by p, that is, a zero in K on the diagonal. We
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reorder the columns such that the p*®, (2p)th
columns are placed after columns whose number
is not divisible by p. Finally, we move the rows
numbered n+p, n+ 2p, ... below the rows n+1,
n+2,...n+p—1,n+p+1,... The resulting
system has a block shape similar to (8):

g

L1 ‘ L2 , s’
P c —
T, | Ts [,,} =|a |, 9)
P c J—
T3 ‘ T4 CLH

where L; is a triangular matrix of dimensions
(n — |n/p]) x (n — [n/p]), La is of dimensions
(n—|n/p])x|n/p|, and T and T3 have n—|n/p]
rows and T'3 and T4 have |n/p] rows. The main
difference to the case p = 2 occurs in L;. On
the diagonal, Lq has the elements 1, 2,..., p—1,
1,2,... and is therefore not a Toeplitz matrix.
However, by blocking this matrix into blocks of
size (p — 1) x (p — 1), this matrix becomes a
block Toeplitz matrix. Note that the blocks in
the last row/column may have fewer than p — 1
rows/columns. There are [(n—|n/p])/(p—1)] =
n/p + O(1) blocks in this matrix. Similar block-
ing is possible in the remaining matrices: T'; also
has (p—1) x (p—1) blocks, while Ly and T have
(p—1) x 1 blocks, T'5 has 1 x (p— 1) blocks, and
T4 has 1 x 1 blocks. Again the blocks in the last
rows/columns may be of smaller dimensions. The
usage of bold face in (9) indicates that these ma-
trices are blocked in that way. It should be noted
that number of blocks in the rows and columns
of all matrices is n/p + O(1) and that they are
block Toeplitz matrices.

We shall perform elimination as in Step 4 of
Algorithm 1. The resulting compressed Schur
complement

A=E\(Ty—-TL{'Ly)

+Ey(Ty — TsLy'Ly), (10)

where E; has 1 x (p—1) blocks and E5 has 1 x 1
blocks, is a |[n/p| x |n/p] matrix with 1x1 blocks.

The shift matrices used for the block matrices
are block matrices Z with unit-diagonal matrices
on the block subdiagonal. For the (p—1) x (p—1)
blocks these unit-diagonal matrices are, of course,
(p—1) x (p — 1) identity matrices. For example,

¢, (T3) =T3 — Zjpyp) T3 Z0"



232
where v = [(n— [n/p])/(p — 1)] and
0 | ... | 107
| 0 |...] [0
zo=| 0 || |
[Tl
L 0O | ... |0 [|I']O]

is a v x v block sub-diagonal matrix, where the
last sub-diagonal entry I’ is a rectangular diag-
onal matrix of dimensions (n — |n/p| mod (p —
1)) x (p — 1) with 1’s on the diagonal.

Block generators in the sense of (3) can be de-
rived for all matrices. In case of T's, for example,
we have ¢ (T'3) = y, 21" + y,25 where y; and
Yy, have blocks of dimension 1 x (p — 1) and z;
and zo have blocks of dimension (p—1) x (p—1),
except the last block which may be smaller. Inci-
dentally, since T'3 is a block Toeplitz matrix y, is
the first column of T'3 with the first block entry in
2% the identity matrix and the other blocks be-
ing 0; the matrix 2% contains the remaining first
row of T's and the matrix y; has a single 1 in the
first entry of the first block. We emphasize that
these generators can be constructed although the
notion of rank is ill-defined for the block matrix
¢, (Ts).

We shall now briefly discuss the algorithm for
deriving the block XLU representation for Lfl.
From the Newton iteration algorithm presented
in §2 it follows that the inverse LT' can be com-
puted in O(n/p lognloglogn) block operations.
Note that for this purpose we may extend the
blocks in the last row and column to dimension
(p—1) x (p—1); afterwards, we may reduce
the resulting inverse matrix by the corresponding
rows and columns, since the involved matrices are
lower triangular. The block operations amount
to matrix arithmetic and a single triangular ma-
trix inverse. Therefore the block generators for
¢, (L7") can be computed in O((logn)?logp)
parallel time and a total work of O(p?nlogn x
loglog n) arithmetic operations in K, that with-
out using asymptotically fast matrix multiplica-
tions.

Once the block generators for all matrices in
(10) are determined, we can apply the product
construction (4). Again, the base operations are
either (p—1) x (p—1) matrix products or matrix-
times-vector products. All block matrices have a
fixed number of block generators/block LU terms
and are of dimensions (n/p+0O(1))x (n/p+0O(1)).
By application of (4) we obtain no more than
21 block generators for A. The left generators
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have 1 x (p — 1) blocks and the right generators
have (p — 1) x 1 blocks. For example, consider
ElTlLfngl

matrix left gen. block size right gen. block size

E, Ix(p-1) (-1x((p-1)
T, @(-Dx@pE-1) @E-Dx@pE-1)
L' (p-1)x(-1) (G-1)x@p-1)
L, (p-1)x(p-1) (-1)x1

The shift matrices in ¢, (E1T1L1_1L2) have,
luckily, 1 x 1 blocks. Therefore, the produced
block generators actually are plain generators of
length no more than 21(p—1). From known gen-
erators for ¢+(L1_1) these generators can be com-
puted in O(logn logp) parallel operations in K
with a total work of O(p?nlogn loglogn).

As there are only O(log, n) recursive invoca-
tions we obtain by logn = (logp) (log, n) the fol-
lowing fact:

Theorem 2. For a field K of characteristic p
with 3 < p < n of cardinality at least 10n? a
modification of Steps 4 and 7 in Algorithm 1 al-
lows the computation of A~'b in O((logn)?) ex-
pected parallel time and a total expected work
of O(max{an, p?} nlognloglogn) arithmetic op-
erations in K.
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