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Abstract: We show that over a field of characteristic p the solution to a non-singular system of
n linear equations in n unknows, with 2 ≤ p < n, whose coefficient matrix is of displacement rank
α and which is given as a sum of α LU-products of Toeplitz matrices, can be computed in parallel
with randomization simultaneously in O((log n)3) time and a total work of O(max{αn, p2}n×
log n loglog n). A time unit represents an arithmetic operation in the coefficient field. Our
solution is based on our recursive parallel triangulation technique for processor-efficient parallel
linear system solving over fields of characteristic p. In particular, we show that our recursive
parallel triangulation technique can be implemented in a way that preserves Toeplitz-likeness.
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1 Introduction

In a Toeplitz matrix a single constant entry runs
down along each diagonal. We seek parallel algo-
rithms that solve n×n systems of linear equations
in poly-log parallel time; that is, in (log n)O(1)

parallel arithmetic operations in the coefficient
field. Furthermore, the algorithms are to min-
imize the number of processors. An algorithm
is presented that in poly-log parallel time with
n · max{p2, n} processors computes the solution
of a linear system whose coefficient matrix is
Toeplitz and whose field of coefficients has char-
acteristic p, where 2 ≤ p < n. Our result is
achieved by drawing on a far-reaching generaliza-
tion of the notion of Toeplitz matrices to matrices

1This material is based on work supported in part by
the National Science Foundation under Grant No. CCR-
9319776 (first author) and Grant No. CCR-9020620 (sec-
ond author) and by the PSC CUNY Award 664334 (sec-
ond author).

of small displacement rank, so-called Toeplitz-
like matrices (Kailath et al. 1979).

The notion of Toeplitz-like and Hankel-like
matrices captures a wide class of matrices includ-
ing block Toeplitz matrices, such as the Sylvester
matrix of two polynomials, matrices that are a
sum of a Toeplitz-like plus a Hankel-like matrix,
and products and inverses of such matrices. The
key idea is to represent a matrix as a sum of α
matrix products, where α is much smaller than
the row and column dimensions and where each
product is, in the Toeplitz-like case, for instance,
that of a lower triangular times an upper trian-
gular Toeplitz matrix. We shall refer to this rep-
resentation as the ΣLU representation of a ma-
trix, and to α as the displacement rank. For pure
Toeplitz matrices, for example, we have α ≤ 2.
Toeplitz-like matrices are ubiquitous in symbolic
computation as resultants and subresultants have
this form (Brown and Traub 1971, Sasaki and
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Furukawa 1984, Hong 1993). Furthermore, block
matrices are used, for instance, as a paralleliza-
tion technique by reducing the dimensions while
increasing the running time of the arithmetic op-
erations on the individual entries, which now are
matrices rather than field elements. This ap-
proach leads to coarse grain parallel algorithms,
in which the individual block operations are car-
ried out on different computers. Coppersmith’s
block Wiedemann algorithm (Coppersmith 1994,
Kaltofen 1995) for solving sparse linear systems
in parallel is an example of this approach. An in-
termediately arising subproblem there is the so-
lution of a block Toeplitz matrix.

We give a parallel randomized algorithm that
computes the exact solution of a Toeplitz-like
non-singular linear system whose n × n coeffi-
cient matrix is given in ΣLU representation and
whose coefficient field has small positive char-
acteristic p, where 2 ≤ p < n. Our algo-
rithm can solve a Toeplitz-like system of dis-
placement rank α in O((log n)3) expected paral-
lel time with roughly n ·max{αn, p2} processors,
each of which performs coefficient field arith-
metic in unit time. The significance of our re-
sult lies in the fact that we can accomplish a
poly-log parallel algorithm with a number of pro-
cessors that is only quadratic in the dimension.
For very small fields, such as the Galois field
with 2 elements, the parallel time increases by
a factor of log n. Our processor estimates are
rough in the sense that we will not specify a
concrete parallel model and instead follow the
work-time presentation framework of JáJá (1992,
§1.5). That approach incorporates the notion
of “scalability” of the parallel algorithm: with
n1.5 processors, for example, our algorithm takes
O(max{α√n, p2/

√
n} (log n)3) parallel time. For

now, but not in our later theorems, we also ignore
factors like loglog n in the processor count.

The parallel solution of Toeplitz and Toeplitz-
like linear systems with few processors is exten-
sively investigated by Bini and Pan (see Bini et
al. 1991, Pan 1992b, Bini and Pan 1993 and 1995).
Indeed, Pan’s algorithms for solving a Toeplitz
system in O((log n)2) parallel time with roughly
n2 processors is an important substep in the
O((log n)2) parallel time solution of general lin-
ear systems with roughly n3 processors (Kalt-
ofen and Pan 1991). The Le Verrier/Csanky
approach in all the methods leads to technical
difficulties when the coefficient fields have small
positive characteristic. The difficulties are over-
come by the “recursive parallel triangulation”
technique of Kaltofen and Pan (1992). In this
paper we show that the recursive parallel trian-

gulation can be realized in a manner that keeps
intermediately computed matrices Toeplitz-like.
For fields of characteristic p = 2 this is quite clear
from the randomizations invented by Kaltofen
and Saunders (1991). For this case we present
the entire algorithm in §3. When p > 2 ad-
ditional complications arise, which we overcome
by switching to block Toeplitz matrices. With
this change in mind, we will describe in §2 the
basic displacement operators for entries from a
non-commutative algebra. The intricate recur-
sive triangulation algorithm with block triangu-
lar matrices is then explained in §4. We note
that if the input matrix is a pure Toeplitz matrix,
the matrices computed by the recursive invoca-
tions do not remain Toeplitz and the full theory
of Toeplitz-likeness comes to bear. We remark
that the positivity of the field characteristic rules
out an iterative approach like in (Pan 1992a).

Singular Toeplitz and Toeplitz-like systems
can be solved with the same number of proces-
sors by determining the rank by binary search for
non-singular leading principal submatrices (see,
e.g., Kaltofen and Pan 1992, §3). As a con-
sequence we can compute the greatest common
divisor of two polynomials of degree n over a
field of characteristic p, where 2 ≤ p < 2n, in
O((log n)4) expected parallel arithmetic opera-
tions with roughly n · max{n, p2} processors (cf.
Kaltofen 1994, Example in §4). However, it is
not known to us how to extend to small pos-
itive characteristic the techniques in (Kaltofen
and Pan 1992, §3) that avoid the extra log n fac-
tor in the parallel time which is induced by binary
search.

We remark that no processor-efficient par-
allel algorithm (in the sense of Karp and Ra-
machandran 1990) for Toeplitz-like linear sys-
tems is known. Recently, it has been shown
(Kaltofen 1994) that Toeplitz-like linear systems
can be solved in O(α2n(log n)2 loglog n) sequen-
tial field operations. Thus a processor-efficient
poly-log time parallel algorithm can use no more
than roughly α2n processors. No direct (mean-
ing non-iterative) parallel algorithm of this sort
is known even when p = 0 and the coefficient
matrix is Toeplitz.

2 Displacement Operators

Over Non-Commutative

Algebras

We now introduce well-known tools from the the-
ory of Toeplitz-like matrices (Kailath et al. 1979).
We consider n×n matrices over a non-commuta-



PASCO’94: First International Symposium on Parallel Symbolic Computation 227

tive algebra A. This generalization is necessary
because in §4 we must deal with block matrices.
Define the lower-shift matrix

Z =




0
10 0

1
. . .

. . .
0

10




and define the matrix shift operators

↓A = ZA and �A = AZtr.

The matrix ↓A is equal to A after being shifted
down by one row, filling the first row by zeros,
and the matrix � A is equal to A after being
shifted to the right by one column, filling the first
column by zeros. Following Kailath et al. (1979),
we define

φ+(A) = A− ↓(�A) = A − ZAZtr.

The fundamental property is that given 2α col-
umn vectors y1, . . . , yα and z1, . . . , zα the func-
tional equation in the matrix X,

X− ↓(�X) =

α∑

j=1

yjz
tr
j (1)

has the unique solution

X =

α∑

j=1

L[[yj ]] U [[ztr
j ]], (2)

where L[[y]] denotes a lower-triangular Toeplitz
matrix whose first column is y and U [[ztr]] denotes
an upper triangular Toeplitz matrix whose first
row is ztr. We shall call the vectors y1, . . . , yα

and z1, . . . , zα in

Y =
α∑

j=1

yjz
tr
j = [ y1 y2 . . . yα ] ·




ztr
1

ztr
2

...

ztr
α




(3)

the left and right generators of the n × n ma-
trix Y . For our purpose, the matrix Y will be
a displaced matrix such as φ+(X). Furthermore,
we shall call the representation (2) the ΣLU rep-

resentation for X. That representation requires
only the storage of O(αn) ring elements.

A ubiquitous problem in our algorithms will
be to derive the ΣLU representation for the prod-
uct of Toeplitz-like matrices given by their ΣLU

representations. Because we encounter rectangu-
lar matrices in our algorithm, we first have to
extend the definitions of the displacement oper-
ators to such matrices. By subscripting Zn we
shall indicate that the shift matrix Z is of dimen-
sions n×n; we define a rectangular displacement
operator

φ+(X) = X − ZmXZtr
n for X ∈ A

m×n.

For m ≤ n we may remove the last n − m rows
from L in (2) and y in (3), while for m ≥ n we
may remove the last m − n columns from U in
(2) and z in (3). Suppose now that we are given
α generators of φ+(G), where G ∈ A

l×m, and
β generators for φ+(H), where H ∈ A

m×n. We
may compute α + β + 1 generators for φ+(GH)
as follows (Pan 1992b, Proposition A.3): First,
observe that Im = Ztr

mZm + emetr
m, where Im is

the m×m identity matrix and em is the mth unit
vector. Therefore

φ+(GH)

= GH − ZlGImHZtr
n

= GH − (ZlGZtr
m)(ZmHZtr

n ) − ZlGemetr
mHZtr

n

= (G − ZlGZtr
m)H + ZlGZtr

m(H − ZmHZtr
n )

−ghtr

= φ+(G)H + ZlGZtr
mφ+(H) − ghtr, (4)

where g = ZlGem ∈ A
l and h = ZnHtrem ∈ A

n.
In (4) the product φ+(G)H, for example, requires
the multiplication the right generators of G by
the ΣLU representation of H, which can be ac-
complished by O(αβ) triangular Toeplitz matrix-
times-vector products over A.

In our algorithms it will also be necessary to
invert triangular Toeplitz matrices over A. Since




a1

a2 a1 0
a3 a2 a1

...
. . .

. . .

anan−1. . .a2a1



·




x1

x2

x3

...
xn




=




b1

b2

b3

...
bn




is equivalent to

(a1 + · · · + antn−1)(x1 + · · · + xntn−1)

≡ b1 + · · · + bntn−1 (mod tn)

we have




a1

a2 a1 0
a3 a2 a1

...
. . .

. . .

anan−1. . .a2a1




−1

=
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


c1

c2 c1 0
c3 c2 c1

...
. . .

. . .

cncn−1. . . c2 c1




with

(c1 + · · · + cntn−1)(a1 + · · · + antn−1)

≡ 1 (mod tn).

The entries ci can always be found provided that
a1 is invertible in A. In that case, Newton itera-
tion computes the power series inverse as

c(0)(t) = a−1
1 ,

c(i)(t) = c(i−1)(t)(2 − a(t)c(i−1)(t)) mod t2
i

,

where a(t) = a1 + a2t + · · · and c(i)(t) = c1 +

c2t + · · · + c2it2
i−1. Note that

1 − c(i)(t)a(t) ≡ (1 − c(i−1)(t)a(t))2

≡ 0 (mod t2
i

).

In conclusion, we can compute the entries ci in
O((log n)2) parallel time and O(n log n loglog n)
work in terms of operations in A, the latter by
the polynomial multiplication algorithm of Can-
tor and Kaltofen (1991).

3 Coefficient Fields of

Characteristic 2

We first present the case where the field of en-
tries has characteristic 2. This case is a direct
application of the “recursive parallel triangula-
tion” paradigm of (Kaltofen and Pan 1992) and
the theory of Toeplitz-like systems (Kailath et
al. 1979).

Algorithm 1

Input: Vectors y1, . . . , yα, z1, . . . , zα ∈ K
n

such that A =
∑α

j=1 L[[yj ]]U [[ztr
j ]] ∈ K

n×n

is non-singular, where K is a field of char-
acteristic 2. Furthermore, a vector b ∈
K

n.

Output: The vector A−1b.

Step 1: In later steps it is necessary that the
coefficient matrix has no multiple eigenvalues. A
key technique is to precondition the matrix A (see
Kaltofen and Pan 1992, Proposition 1): Compute

a ΣLU representation of length α + 4 for Ã =

V AW where

V =




1v2v3. . . vn

1 v2. . .vn−1

1
. . .

...
. . . v20

1




and

W =




w1

w2 w1 0
w3 w2 w1

...
. . .

. . .

wnwn−1. . .w2w1




have random entries from a set S ⊂ K.

Step 2: This step utilizes the fundamental idea
of parameterized Newton iteration for the inver-
sion of the characteristic matrix of the Toeplitz-
like matrix (Pan 1992b, Proposition 3.1). Com-
pute the ΣLU representation of

Ã(λ) =

n−1∑

i=0

λiÃi ≡ (I − λÃ)−1 (mod xn). (5)

Step 3: From the ΣLU representation of (5)

compute si = Trace Ãi. Furthermore, pick two
random vectors u, y ∈ Sn and from the ΣLU
representation of (5) compute ai = utrÃiy for
all 0 ≤ i ≤ 2n − 1.

Step 4: The quantities si and ai computed in
Steps 2 and 3 result in the 2n × n nonsingular
system for the coefficients of the characteristic
polynomial

Det(λI − Ã) = λn − c1λ
n−1 − c2λ

n−2−
· · · − cn−1λ − cn (6)
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of Ã:



1
s1 2 0

s2 s1
. . .

...
sn−2 . . . n − 1
sn−1 sn−2 . . . s1 n

an−1 an−2 . . . a1 a0

an an−1 . . . a2 a1

... an
. . .

... a2

...
...

a2n−3 an−1

a2n−2a2n−3 . . . an an−1




×




c1

c2

c3

...
cn−1

cn




=




s1

s2

s3

...
sn−1

sn

an

an+1

an+2

...

a2n−1




(7)

In (7) the first n equations are the Newton iden-
tities and the second n equations express the
fact that the characteristic polynomial of Ã lin-
early generates the sequence a0, a1, . . . Since Ã
has no multiple eigenvalues, with high proba-
bility the second n equations are linearly inde-
pendent. The system is rearranged as follows:
first remove every row of the first n rows with
an even integer on the diagonal; second, re-
order the columns such that the odd numbered
columns precede the even numbered ones; and fi-
nally, reorder the rows numbered n+1, . . . , 2n to
n + 1, n + 3, . . . , n + 2, n + 4, . . . We obtain the
system




L1 L2

T1 T2

T3 T4


 ·

[
c′

c′′

]
=




s′

a′

a′′


 (8)

where

L1 =




1
s2 1 0
s4s21
...

. . .


 ∈ K

⌈n/2⌉×⌈n/2⌉,

L2 =




0
s1 0 0
s3s10
...

. . .


 ∈ K

⌈n/2⌉×⌊n/2⌋,

T1 =




an−1an−3. . .
an+1an−1

...
. . .

. . .


 ∈ K

⌈n/2⌉×⌈n/2⌉,

T2 =




an−2an−4. . .
an an−2

...
. . .

. . .


 ∈ K

⌈n/2⌉×⌊n/2⌋,

T3 =




an an−2. . .
an+2 an

...
. . .

. . .


 ∈ K

⌊n/2⌋×⌈n/2⌉,

T4 =




an−1an−3. . .
an+1an−1

...
. . .

. . .


 ∈ K

⌊n/2⌋×⌊n/2⌋,

and

c′ =




c1

c3

c5

...


 ∈ K

⌈n/2⌉, c′′ =




c2

c4

c6

...


 ∈ K

⌊n/2⌋,

s′ =




s1

s3

s5

...


 ∈ K

⌈n/2⌉,

a′ =




an

an+2

an+4

...


 ∈ K

⌈n/2⌉, a′′ =




an+1

an+3

an+5

...


 ∈ K

⌊n/2⌋.
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We eliminate T1 and T3 by




I 0 0

−T1L
−1
1 I 0

−T3L
−1
1 0 I


 ·




L1 L2

T1 T2

T3 T4




︸ ︷︷ ︸


L1 L2

0 ∆1

0 ∆2




·
[

c′

c′′

]

=




s′

a′ − T1L
−1
1 s′

a′′ − T3L
−1
1 s′




︸ ︷︷ ︸


s′

δ′

δ′′




,

where

∆1 = T2 −T1L
−1
1 L2 and ∆2 = T4 −T3L

−1
1 L2.

Compute the ΣLU representation of the Schur
complements ∆1 and ∆2 and compute the vec-
tors δ′ and δ′′. Note that L−1

1 has as the in-
verse of a triangular Toeplitz matrix displace-
ment rank one. Therefore, by the product for-
mula (4) the displacement ranks of each ∆i is no
more than 8.

Step 5: Here we compress the non-singular n×
⌊n/2⌋ system

[
∆1

∆2

]
· c′′ =

[
δ′

δ′′

]

to a ⌊n/2⌋× ⌊n/2⌋ non-singular system. Select a
random ⌊n/2⌋×n unit upper triangular Toeplitz
matrix

E = [E1 E2 ] =


1e2 e3 . . .e⌊n/2⌋+1. . . en

1 e2 . . .
. . . en−1

. . .
. . .

...
0

1 e2 . . .en−⌊n/2⌋+1




,

where E1 ∈ K
⌊n/2⌋×⌈n/2⌉ and E2 ∈ K

⌊n/2⌋×⌊n/2⌋

with the entries ei being random elements in the
set S. By Theorem 2 of Kaltofen and Saun-
ders (1991) the matrix ∆ = E1∆1 + E2∆2 ∈
K

⌊n/2⌋×⌊n/2⌋ is with high probability non-singular.
Compute a ΣLU representation for the matrix ∆
and compute the vector δ = E1δ

′ + E2δ
′′. By

(4) the matrix ∆ has displacement rank no more
than 21.

Step 6: By recursive application of the entire
algorithm, solve ∆ c′′ = δ.

Step 7: We can now back-substitute in (8) to
determine the coefficients of (6): Compute c′ =
L−1

1 (s′ − L2c
′′).

Singularity of A can be discovered in two ways:
either, ∆ becomes zero during the triangulation
process, or cn = 0. In the former case, A is sin-
gular with high probability, whereas in the later
case A is definitely singular.

Step 8: By the Cayley/Hamilton theorem we
have

Ã−1 =
1

cn

(
Ãn−1 − c1Ã

n−2 − · · · − cn−1I

)
.

Compute b̃ = V b and, with the help of the ΣLU
representation for (5) computed in Step 2, b̃[i] =

Ãi b̃ for all 1 ≤ i ≤ n − 1. Finally, determine

A−1b = WÃ−1b̃ =
1

cn
W

(
b̃[n−1] − c1b̃

[n−2] − · · · − cn−1b̃

)
. �

Aside from the basic techniques of the theory
of Toeplitz-like matrices, we think that there are
as many as 5 distinct ideas incorporated in the
above algorithm: first, the Le Verrier/Csanky ap-
proach to linear system solving; second, Wiede-
mann’s coordinate recurrence projections; third,
Pan’s parameterized Newton iteration for Toe-
plitz-like matrices; fourth, preconditioning á la
Borodin et al. (1982) which by (Kaltofen and
Saunders 1991) can be restricted to triangular
Toeplitz multipliers; and fifth, our recursive par-
allel triangulation. The parallel running time,
the work, which is the total number of all arith-
metic operations performed by all processors, and
the success probability of Algorithm 1 is summa-
rized in the following theorem.

Theorem 1. Algorithm 1 picks O(n) random
elements from a subset S ⊂ K. It performs
O(αn2 log n loglog n) arithmetic operations in to-
tal work, and has a parallel time of O((log n)3).
With probability no less than 1− 9n2/card(S) it
returns the correct answer.

Note that if the field K has fewer than n3,
say, elements we must perform the entire algo-
rithm in a finite algebraic extension of K in order
to guarantee success with a positive probability.
Therefore, the cost of a single arithmetic opera-
tion for our algorithm costs at least Ω(log n) bit
operations.

Proof. Algorithm 1 fails to produce an answer
if the minimum polynomial of Ã is not its char-
acteristic polynomial, that with probability no
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more than 4n2/card(S) (Kaltofen and Pan 1992,
Proposition 1), or if the linear generator of ai

is not the characteristic polynomial, that with
probability no more than 2n/card(S) (Kaltofen
and Pan 1991, Lemma 2), or if the matrix E of
Step 5 constructs a singular ∆, that with proba-
bility no more than n(n+1)/(2 card S) (cf. Kalt-
ofen and Saunders 1991, Theorem 2), or if the
recursive call of Step 6 fails. Therefore, the prob-
ability of failure, Pf (n, α) is bounded as

Pf (n, α)

≤ Pf (⌊n/2⌋, 21) + (9n + 5)n/(2 card S).

Step 1 by the product formula (4) reduces
to O(α2) triangular Toeplitz matrix-times-vector
products all of which in O(log n) parallel time
cost O(α2n log n loglog n) work. The cost of Steps
2 and 3 is by known methods (see, e.g., Bini and
Pan 1995) no more than O(αn2 log n loglog n)
work in O((log n)2) time. Step 3 requires the
inversion of a triangular Toeplitz matrix, that in
O(n log n loglog n) work and O((log n)2) parallel
time via a power series reciprocal (see §2), and
product constructions which because of constant
displacement ranks cost only O(n log n loglog n)
work and O(log n) parallel time. The same is true
for Step 5. Step 7 essentially leads to 2 triangu-
lar Toeplitz matrix-times-vector products and its
running time is negligible. Finally, the computa-
tion of b̃[i] in Step 8 is similar to the computation
of ai in Step 3 and the final sum for A−1b re-
quires O(n2) work and O(log n) time. Therefore,
we have the following recursive relations to the
work Wk(n, α) and parallel time T (n, α):

Wk(n, α) ≤ Wk(⌊n/2⌋, 21)

+d1αn2 log n loglog n,

T (n, α) ≤ T (⌊n/2⌋, 21) + d2(log n)2,

where d1 and d2 are positive constants, which
easily yields the stated complexities. ⊠

4 Coefficient Fields of

Characteristic > 2

Algorithm 1 can be generalized to coefficient
fields K of characteristic p with 3 ≤ p < n. All
but Step 4 are valid for any field of sufficient car-
dinality. In this section we show how Step 4 is
modified. We shall reduce the linear system (7)
to a ⌊n/p⌋× ⌊n/p⌋ linear system of displacement
rank O(p). We first proceed as in Step 4 and
rearrange (7) as follows. We remove those rows
among the first n rows that have an integer divis-
ible by p, that is, a zero in K on the diagonal. We

reorder the columns such that the pth, (2p)th, . . .
columns are placed after columns whose number
is not divisible by p. Finally, we move the rows
numbered n+p, n+2p, . . . below the rows n+1,
n + 2, . . ., n + p − 1, n + p + 1, . . . The resulting
system has a block shape similar to (8):




L1 L2

T 1 T 2

T 3 T 4


 ·

[
c′

c′′

]
=




s′

a′

a′′


 , (9)

where L1 is a triangular matrix of dimensions
(n − ⌊n/p⌋) × (n − ⌊n/p⌋), L2 is of dimensions
(n−⌊n/p⌋)×⌊n/p⌋, and T 1 and T 2 have n−⌊n/p⌋
rows and T 3 and T 4 have ⌊n/p⌋ rows. The main
difference to the case p = 2 occurs in L1. On
the diagonal, L1 has the elements 1, 2, . . ., p− 1,
1, 2, . . . and is therefore not a Toeplitz matrix.
However, by blocking this matrix into blocks of
size (p − 1) × (p − 1), this matrix becomes a
block Toeplitz matrix. Note that the blocks in
the last row/column may have fewer than p − 1
rows/columns. There are ⌈(n−⌊n/p⌋)/(p−1)⌉ =
n/p + O(1) blocks in this matrix. Similar block-
ing is possible in the remaining matrices: T 1 also
has (p−1)×(p−1) blocks, while L2 and T 2 have
(p− 1)× 1 blocks, T 3 has 1× (p− 1) blocks, and
T 4 has 1× 1 blocks. Again the blocks in the last
rows/columns may be of smaller dimensions. The
usage of bold face in (9) indicates that these ma-
trices are blocked in that way. It should be noted
that number of blocks in the rows and columns
of all matrices is n/p + O(1) and that they are
block Toeplitz matrices.

We shall perform elimination as in Step 4 of
Algorithm 1. The resulting compressed Schur
complement

∆ = E1(T 2 − T 1L
−1
1 L2)

+E2(T 4 − T 3L
−1
1 L2), (10)

where E1 has 1× (p−1) blocks and E2 has 1×1
blocks, is a ⌊n/p⌋×⌊n/p⌋ matrix with 1×1 blocks.

The shift matrices used for the block matrices
are block matrices Z with unit-diagonal matrices
on the block subdiagonal. For the (p−1)×(p−1)
blocks these unit-diagonal matrices are, of course,
(p− 1)× (p− 1) identity matrices. For example,

φ+(T 3) = T 3 − Z⌊n/p⌋T 3Zν
tr
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where ν = ⌈(n − ⌊n/p⌋)/(p − 1)⌉ and

Zν =




0 . . . 0

Ip−1 0 . . . 0

0 Ip−1
. . .

...

...
. . . 0 0

0 . . . 0 I ′ 0




is a ν × ν block sub-diagonal matrix, where the
last sub-diagonal entry I ′ is a rectangular diag-
onal matrix of dimensions (n − ⌊n/p⌋ mod (p −
1)) × (p − 1) with 1’s on the diagonal.

Block generators in the sense of (3) can be de-
rived for all matrices. In case of T 3, for example,
we have φ+(T 3) = y1z

tr
1 + y2z

tr
2 where y1 and

y2 have blocks of dimension 1 × (p − 1) and z1

and z2 have blocks of dimension (p−1)× (p−1),
except the last block which may be smaller. Inci-
dentally, since T 3 is a block Toeplitz matrix y1 is
the first column of T 3 with the first block entry in
ztr

1 the identity matrix and the other blocks be-
ing 0; the matrix ztr

2 contains the remaining first
row of T 3 and the matrix y1 has a single 1 in the
first entry of the first block. We emphasize that
these generators can be constructed although the
notion of rank is ill-defined for the block matrix
φ+(T 3).

We shall now briefly discuss the algorithm for
deriving the block ΣLU representation for L−1

1 .
From the Newton iteration algorithm presented
in §2 it follows that the inverse L−1

1 can be com-
puted in O(n/p log n loglog n) block operations.
Note that for this purpose we may extend the
blocks in the last row and column to dimension
(p − 1) × (p − 1); afterwards, we may reduce
the resulting inverse matrix by the corresponding
rows and columns, since the involved matrices are
lower triangular. The block operations amount
to matrix arithmetic and a single triangular ma-
trix inverse. Therefore the block generators for
φ+(L−1

1 ) can be computed in O((log n)2 log p)
parallel time and a total work of O(p2n log n×
loglog n) arithmetic operations in K, that with-
out using asymptotically fast matrix multiplica-
tions.

Once the block generators for all matrices in
(10) are determined, we can apply the product
construction (4). Again, the base operations are
either (p−1)×(p−1) matrix products or matrix-
times-vector products. All block matrices have a
fixed number of block generators/block LU terms
and are of dimensions (n/p+O(1))×(n/p+O(1)).
By application of (4) we obtain no more than
21 block generators for ∆. The left generators

have 1 × (p − 1) blocks and the right generators
have (p − 1) × 1 blocks. For example, consider
E1T 1L

−1
1 L2:

matrix left gen. block size right gen. block size
E1 1 × (p − 1) (p − 1) × (p − 1)
T 1 (p − 1) × (p − 1) (p − 1) × (p − 1)
L−1

1 (p − 1) × (p − 1) (p − 1) × (p − 1)
L2 (p − 1) × (p − 1) (p − 1) × 1

The shift matrices in φ+(E1T 1L
−1
1 L2) have,

luckily, 1 × 1 blocks. Therefore, the produced
block generators actually are plain generators of
length no more than 21(p−1). From known gen-
erators for φ+(L−1

1 ) these generators can be com-
puted in O(log n log p) parallel operations in K

with a total work of O(p2n log n loglog n).
As there are only O(logp n) recursive invoca-

tions we obtain by log n = (log p) (logp n) the fol-
lowing fact:

Theorem 2. For a field K of characteristic p
with 3 ≤ p < n of cardinality at least 10n2 a
modification of Steps 4 and 7 in Algorithm 1 al-
lows the computation of A−1b in O((log n)3) ex-
pected parallel time and a total expected work
of O(max{αn, p2}n log n loglog n) arithmetic op-
erations in K.
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