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Abstract. New features of our DSC system for distributing a symbolic com-
putation task over a network of processors are described. A new scheduler
sends parallel subtasks to those compute nodes that are best suited in han-
dling the added load of CPU usage and memory. Furthermore, a subtask can
communicate back to the process that spawned it by a co-routine style calling
mechanism. Two large experiments are described in this improved setting.
We have implemented an algorithm that can prove a number of more than
1,000 decimal digits prime in about 2 months elapsed time on some 20 com-
puters. A parallel version of a sparse linear system solver is used to compute
the solution of sparse linear systems over finite fields. We are able to find
the solution of a 100,000 by 100,000 linear system with about 10.3 million
non-zero entries over the Galois field with 2 elements using 3 computers in
about 54 hours CPU time.

1 Introduction

In Diaz et al. (1991) we introduced our DSC system for distributing large scale
symbolic computations over a network of UNIX computers. There we discuss in
detail the following features:

— The distribution of so-called parallel subtasks is performed in the applica-
tion program by a DSC user library call. A daemon process, which has
established IP/TCP/UDP connections to equivalent daemon processes on
the participating compute nodes, handles the call and sends the subtask to
one of them. Similarly, the control flow of the application program is syn-
chronized by library calls that wait for the completion of one or all subtasks.

— DSC distributes not only remote procedure calls to precompiled programs,
but also programs that are first compiled on the machine serving the sub-
task. This enables the distribution of dynamically generated “black-box”
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functions (cf. Kaltofen and Trager 1990) and easy use of computers of dif-
ferent architecture.

— DSC can be invoked from both Common Lisp and C programs. It can
distribute within a local area network (LAN) and across the Internet.

— The interface to the application program consists of seven library functions.
Processor allocation and interprocess communication is completely hidden
from the user.

— The progress of a distributed computation can be monitored by an inde-
pendently run controller program. This controller also initializes the DSC
environment by establishing server daemons on the participating computers.

— We document experiments with DSC on a parallel version of the Can-
tor/Zassenhaus polynomial factorization algorithm and the Goldwasser-
Kilian/Atkin (GKA) integer primality test.

New experiments with the GKA primality test that run on so-called “ti-
tanic” integers, i.e., integers with more than 1000 decimal digits, and experi-
ments with a parallel sparse linear system solver, namely, Coppersmith’s block
Wiedemann algorithm (Coppersmith 1992), have lead to several key modifica-
tions to DSC. In this article we describe these changes, as well as the results
obtained by applying the improved environment to both titanic primality test-
ing and sparse linear system solving.

Unlike on a massively parallel computer, where each processor has the same
computing power and internal memory, a network of workstations and machines
is a diverse computing environment. At the time the application program dis-
tributes a subtask, the DSC server has to determine which machine will receive
this subtask. Our original design used a round-robin schedule, which resulted
in quite bad subtask-to-processor allocation. The new scheduler continuously
receives the CPU load and memory usage of all participating machines, which
are probed by resident daemon processes at 10 minute intervals. In addition, the
application program supplies an estimate of the amount of memory and a rough
measure of CPU usage. The scheduler then makes a sophisticated selection of
which processor is to handle the subtask. If certain threshold values are not met,
the subtask gets queued for later distribution under hopefully better load con-
ditions on the network. The details of the scheduling algorithm are described in
§2.1. Without this very fine tuned distribution scheduler, neither the primality
tester nor the sparse linear system solver could have been run on as large inputs
as the ones we had. Note that DSC’s ability to account for the heterogeneity of
the compute nodes is one distinguishing mark to other parallel computer algebra
systems such as Maple/Linda (Char 1990), PARSAC-2 (Collins et al. 1990), the
distributed SAC-2 of Seitz (1992), or PACLIB (Hong and Schreiner 1993).

DSC supports a very coarse grain parallelism. This was quite successful for
the primality tester, where each parallel subtask is extremely compute intensive
but uses a moderate amount of memory. However, the Wiedemann sparse linear
system solver can be implemented by slicing the coefficient matrix and storing
each slice on a different processor. These slices will repeatedly be multiplied by
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a sequence of vectors. We have implemented a mechanism whereby the subtasks
remain loaded in memory (or swap space) on first return, and can be continued
at the point following the previous return with different data supplied by the
calling program, much like co-routines (see §2.3). This introduces a finer grain
parallelism and allows two-way communication between the subtask and the
parent process. This co-routine mechanism tends to make use of the distributed
memory more than the parallel compute power.

DSC has also been modified internally in two important ways. First, the
environment can now be initialized on a user supplied UDP port number. Sev-
eral users can thus set up individual DSC servers without interfering with one
another. We note that the inter-process communication does not take place on
the system level, where a single port number could have been reserved for DSC.
Hence no system modifications are necessary to run DSC, which is often desired
when linking to off-site computers. Nonetheless, the port number is public and
servers could be started, perhaps maliciously, to communicate with an existing
environment. We guard against such mishap by tagging each message with a
key set by the individual user. More details on these enhancements are found in
§2.2.

Our first test problem has been the GKA primality test applied to numbers
with more the 1000 decimal digits. We are successful in proving the primality
of a 1111 digit number on a LAN of some 20 computers in about 2 months
turnaround time. The details and observations of this experiment are described
in §2.4. Our second test problem is a distributed version of the Coppersmith
block Wiedemann algorithm. This algorithm for solving unstructured sparse lin-
ear systems has very coarse grain size, unlike classical methods such as conjugate
gradient, which makes it very suitable for the DSC environment. We have imple-
mented two variants, one for entries being from prime finite fields whose elements
fit into 16 bits, and one for entries from GF(2), the field with two elements. In
the latter case, we not only realize Coppersmith’s processor internal parallelism
by performing the bit operations simultaneously on 32 elements stored in a sin-
gle computer word, but we further “doubly” block the method and distribute
across the network. The details of our experiments are described in §3; we are
successful in speeding up the solution of 100,000×100,000 linear systems with
10.3 million entries over GF(2) by factors of 3 and more. Such large runs would
very likely not have completed using our old round-robin scheduling, since only
the selection of compute nodes with large memory makes our programs feasible.

2. New DSC Features

2.1 The DSC Scheduler

The goal of process scheduling in DSC is to locate available resources in the
network and to distribute subtasks without creating peak loads on any node.
Selection of a suitable computer is based on three factors:

Load on nodes Rating of resources Requirements for subtask

– Long term – MIPS of processors – crude estimates by user
– Most recent – Installed memory
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The hardware resources are defined in three fields of the node list: the core
memory size in MByte, the CPU power in MIPS and the number of processors.
In the application program the user has to specify an estimate for the expected
memory needs in MByte and a “fuzzy” value (LOW, MEDIUM, HIGH) for CPU
usage.

In order to provide the scheduler with information about the current and
the expected load at each compute node, a method of data collection had to be
developed. The ideal load-meter would provide exact data in real time with some
corrections derived from trend predictions. This would require the monitoring
program being tied to the operating system on a low level. Unfortunately this
would place excessive burden on the user (request for higher privileges) and
it would make the system less portable. However, most of the time it is not
desirable to have measurements with high resolution. The readings should reflect
trends for longer time periods rather than being just snapshots. As a first
solution the UNIX ps command was chosen to measure CPU and memory usage
about 8 to 10 times an hour. Due to the latency (up to one minute) involved
with ps, and for better modularity, a separate process “DSC_ps” was added in
the current version of DSC.

Once a DSC server is running, it spawns off the DSC_ps process for its node.
DSC_ps maintains a table of statistics, which is saved to disk after each update.
At the end of the hour, the mean of CPU and memory usage is averaged with the
previous value for this hour of the day. At the end of the day (or week) the values
for this day of the week (or week of the year) are adjusted by the latest readings.
From all four levels (current reading, hour, day and week) a weighted average is
computed to include long term effects. The resulting two values (CPU, memory)
are sent to the local DSC server which in turn will communicate the update to
all other servers on the network. The backup file allows the initialization of load
parameters according to anticipated patterns of usage. DSC_ps will then adapt
those guessed values with respect to the new readings.

The scheduler in the DSC server uses the values received from DSC_ps,
the ratings from the node database, and the estimated needs of the next task
to select the target machine. For this purpose a sorted list of compute nodes
which satisfy a minimum requirement of available memory is maintained. Based
on the memory estimate of the application, all nodes which would stay above a
certain threshold (allowing for some moderate paging) are preselected. Among
them the one with the lowest CPU usage is finally chosen for distribution. If
none of the nodes can satisfy the requirements, the job is put back into a queue
until the load on one of the computers decreases to a sufficient level.

After distributing the new task the server adjusts for the expected change
in the load parameters of the selected node. Because of the long latency period,
it cannot wait for the next readings of the actual load when it has to distribute
many tasks in a short period of time. In time it can replace the estimates by
the actual values whenever new load readings are received from the other server.
This has the convenient side effect that the distributing server does not have to
rely on transient measurements resulting from the startup phase of the new task
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(which can involve compilation of source code). Most of the time it will receive
the steady-state readings because the server of the selected compute nodes will
send the update of the load parameters with low priority.

2.2 Interprocess Communication and Message Validation

DSC uses the User Datagram Protocol (UDP) for most of its communication and
Transmission Control Protocol (TCP) stream sockets for file transfer. For the
sake of portability, all inter-process communication adheres to the DARPA Inter-
net standard TCP/IP/UDP as implemented in UNIX 4.2/4.3bsd (see Diaz 1992).
This low level approach avoids the high latency present in the UNIX rsh and
ftp commands, and it provides real time information on subtasks and compute
nodes for possible control actions such as subtask rescheduling. Before a user
starts an application program that distributes parallel subtasks over the network,
the DSC server daemons must be started. These daemon programs execute in
the background and monitor a single UDP datagram address for new external
stimuli from other DSC servers, the DSC controller program, the resource and
work load monitor daemon program DSC_ps, and application programs. In or-
der for a client process to contact a DSC server, the client must have a way of
identifying the DSC server it wants. This can be accomplished by knowing the
32-bit Internet address of the host on which the server resides and the 16-bit
port number which identifies the destination of the datagram on the host ma-
chine. Each DSC server must be using the same UDP port number in order to
communicate with the others. UDP port numbers are not reserved and can be
allocated by any process. The run time port number allocation option allows the
user to automatically poll the machines in the configured DSC network to find
a suitable port number for the initiation of a set of DSC servers. This is done
via the DSC control program and consequently all DSC servers can be started
using the determined available port number for their UDP communication.

If the control program could not establish a connection to a DSC server
via the port number specified in the configuration file, the control program will
assume that no active DSC server is monitoring this port. Consequently, the
control program searches for an available port number which is not used on
any machines in the “farm” of compute nodes in the DSC network. Optionally,
the user may specify its own port number thereby bypassing the runtime port
number allocation mechanism.

Once a port number has been determined the control program will start up
the remote DSC servers via a rsh command supplying the executable and the
port number to the remote or local compute node. Once all DSC servers are
active communication takes place only via the IP/TCP/UDP protocols.

The primary function of the DSC server daemon program is to monitor a
single UDP datagram address for incoming messages. Each message is a request
for the DSC server to perform some action. However, in order to act only on
messages received from the user that started the server, all messages contain
a message validation tag which is specified by the user. If for any reason the
message validation tag received by the DSC server does not match the server’s
message validation tag, the message is ignored and the invalid action request
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is logged. This avoids the inadvertent message passing that could occur when
multiple DSC systems execute concurrently in the same open network computing
environment using the same datagram port number.

2.3 Co-Routines

The C and Lisp DSC application programmer can take advantage of the re-
sources found in the DSC network by utilizing 5 base functions callable from
a user’s program. The function dscpr_sub is used for the activation of paral-
lel subtasks and designating their respective resource usage specifications. The
calls to dscpr_wait, dscpr_next, and dscpr_kill are used to wait on a specific
parallel subtask or on the completion of all parallel subtasks, to wait for the next
completed parallel subtask and to kill a specific parallel subtask, respectively.
Finally, the function dscdbg_start can be used to track a task and is useful
when one wishes to debug tasks using interactive debuggers such as Unix’s dbx.

Main Task

dscpr_sub()

dscpr_wait()

dscpr_coresume()

Parallel Subtask

dscpr_cosetup()

dscpr_cowait()

Sleep State

Awake State

Figure 1: Co-routine flow of control.

In order to meet the sparse linear system challenge (see §4), where there is a
need to maintain large amounts of data within parallel subtasks, the C User Li-
brary has been extended to allow the user to implement co-routines (Kogge 1991,
§9.6.3). The function dscpr_cosetupmust be called at the beginning of any par-
allel subtask that is to be treated as a co-routine. This initialization is necessary
so that the wake up signal received by a parallel subtask from the DSC server
can be interpreted as a command to resume execution of the subproblem. Specif-
ically, the dscpr_cosetup function specifies how the subtask process will handle
an asynchronous software interrupt by providing the address of an internal DSC
function that wakes the process from a sleep state when the corresponding in-
terrupt signal is detected. When the subtask calls the dscpr_cowait function,
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it enters a sleep state and optionally transmits a data file back to its parent.
Once a co-routine parallel subtask or a set of co-routine parallel subtasks has
been spawned by a call to dscpr_sub, the returned indices have been recorded,
and a successful wait has completed, the parent task can send a wake up call
to a sleeping parallel subtask via the dscpr_coresume function. Arguments to
this function are an integer which uniquely identifies a parallel subtask (returned
from the spawning call to dscpr_sub) and a string which identifies which input
file if any should be sent to the co-routine before the parallel subtask is to be
resumed. This call essentially generates the software interrupt needed for the
waking of the sleeping parallel subtask. Figure 1 denotes the relationship that
could exist between DSC utility function calls in a main task and its co-routine
parallel subtask child.

2.4 The GKA Primality Test

In this section, we describe new experimental results with our distributed
implementation of the Goldwasser-Kilian/Atkin (GKA) primality test, which
uses elliptic curves to prove an integer p prime; for earlier results, see Kaltofen
et al. 1989, Diaz et al. 1991. In particular, we discuss here our success in proving
“titanic” integers, i.e., integers with more than 1000 decimal digits, prime (see
also Valente 1992, Morain 1991).

Let us briefly summarize the algorithm. The test has two phases: in the
first phase, a sequence {pi} of probable primes is constructed, such that p =
p0 > p1 > p2 > · · · > pn. Each pi+1 is obtained from pi by first finding
a discriminant d such that pi splits as ππ in the ring of integers of the field
Q(
√
d ). If (1 − π)(1 − π) is divisible by a sufficiently large (probable) prime q,

we set pi+1 to q, thus “descending” from pi to pi+1. We then repeat the process,
seeking a descent from pi+1. The first phase terminates with pn having fewer
than 10 digits. In the second phase, it is necessary to construct, for each pi from
the first phase, an appropriate elliptic curve over GF(pi) which is used to prove
pi prime, provided pi+1 is prime. This results in a chain of implications

pn prime =⇒ pn−1 prime =⇒ · · · =⇒ p0 = p prime.

In our experiment, we started with a probable prime number of 1111 deci-
mal digits. Our code is written in the C programming language calling the Pari
library functions (Batut et al. 1991) for arbitrary precision integer arithmetic.
Each time a descent is required in the first phase, a list of nearly 10,000 dis-
criminants is examined. In fact, we chose to search all d with |d| ≤ 100,000,
where Q(

√
d ) has class number ≤ 50. Unfortunately, when p is titanic, few if

any of these discriminants will induce a descent. For our prime of 1111 digits,
we distributed the search for a descent from pi to pi+1 to 24 subtasks, each of
which is given approximately 400 discriminants to examine. The first subtask
to find a descent reports it to the main task which then redistributes in order to
find a descent from pi+1. We required 204 descents before a prime of 10 digits
was obtained. Our first phase run with the 1111 digit number as input began on
January 12, 1992, and ended on February 13, 1992. The total elapsed time for
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Figure 2: Graph of progress of GKA first phase.

the run was measured at about 569 hours, or approximately 3 1
2 weeks. Figure 2

depicts the progress of this run during this period.

Notice that after 135 elapsed hours, the 1111 digit number is “reduced”
to a number having 1044 digits. After an additional 43 hours, it appears that
we regress, because the number shown now has 1045 digits! In fact, what has
happened is that our program failed to find a descent from the 1044 digit number,
and was forced to backtrack to a larger prime and find an alternate descent. Slow
but steady progress is evident, until the last day, when the 322 digit number
rapidly shrinks, and the first phase suddenly ends. Interestingly, it appears that
about half of the total elapsed time of this run is spent merely reducing the
original number to subtitanic size.

For our second phase run with 1111 digit inputs, there are a total of 204
descents to process. Typically, each of the 20 or so workstations is given about
10 descents. For each descent, the subtask must construct a class equation for
the class field over Q(

√
d ), find a root of the class equation, then use this root

to construct an elliptic curve over the appropriate prime field GF(p). Once
this curve is found, verification proceeds by finding a point on the curve which
serves as a witness to the primality of p. Difficulties arise when the root-finder
must handle class equations of degree 30 or more. Since the second phase is so
sensitive to the degree of the class equation, it is critical that in the first phase
we do whatever is possible to insure that only discriminants of relatively low
class numbers are passed on to the second phase. Because of these factors, our
phase two run for this titanic input takes approximately three weeks elapsed
time. In a situation like this where a distributed subtask has a long running
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time it is much more difficult to schedule the task on a processor with expected
low load, thus insuring high performance.

3 Distributed Sparse Linear System Solving

3.1 Introduction and Background Theory

We now discuss our experience with DSC in the solution of homogeneous systems
of sparse linear equations. The problem is to find a non-zero w such that Bw = 0,
where B is a matrix of very large order N . The classical method of Gaussian
elimination is not well suited for this task as the memory and time complexity
are bounded by functions that are quadratic and cubic, respectively, in N .

Wiedemann (1986) gives a Las Vegas randomized algorithm with time com-
plexity governed by O(N) applications of B to a vector plus O(N 2) arithmetic
operations in the field of entries. The algorithm does not alter the sparsity of
the coefficient matrix and requires only a linear amount of extra storage. The al-
gorithm yields a non-zero solution with high probability. Wiedemann also gives
a similar method for non-singular systems, although one could easily transform
the non-singular to the homogeneous case by the addition of an extra column.

Coppersmith (1992) presents a generalization of Wiedemann’s algorithm
which can be implemented in a distributed setting. For the purposes of this
paper we shall now give a brief description of it, which is outlined in Figure 3.

(0) Select random x, z such that xtrBz has full rank;
y ← Bz;
comment: x, y, z are N × n block vectors
with random entries from the ground field.

(1) L← b2N/nc+ 5;
for i = 0, 1, . . . , L do

a(i) = (xtrBiy)
tr
;

comment: the m× n matrices a(i) are coefficients
of a polynomial A(λ) of degree L.

(2) Λ← find_recurrence(A);
comment: Λ(λ) is obtained by the generalized,
block Berlekamp/Massey algorithm.

(3) for l = 1, . . . , n do

wl ← evaluate(Λ, B, z, l);
comment: This steps yields wl such that Bwl = 0
and hopefully wl 6= 0.

Figure 3: Outline of the block Wiedemann algorithm.

In the initializing step (0), one generates block vectors x and z with dimen-
sions N × m and N × n whose entries are randomly chosen from the ground
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field. The vectors meet the conditions that xtrBz has full rank. In subsequent
discussions we shall take m = n and refer to n as the blocking factor of the
algorithm.

Next, step (1) is the computation of L = b2N/nc + 5 terms of a sequence
whose ith term is a(i) = (xtrBiy)

tr
where y = Bz. It is clear that the individual

columns of a(i) can be computed independently and in parallel. To do this we
distribute the vector x and the νth column of y along with B and collect the νth

columns of a(i). Each of the parallel subtasks involves no more than b2N/nc +
5 multiplications of B by vectors (Kaltofen 1993). The original Wiedemann
algorithm requires 2N such applications.

Step (2) is to find a polynomial Λ(λ) representing a linear recurrence that
generates the sequence. In the original Wiedemann Algorithm, the a(i) are field
elements and their recurrence is obtained by the Berlekamp/Massey Algorithm.
In the present context, the a(i) are n × n matrices and we have to use Copper-
smith’s generalization. The individual a(i) are treated as the coefficients of the
polynomial A(λ) =

∑L

j=0 a
(j)λj . We iteratively compute the matrix polynomial

Fj(λ) =

[

Λj(λ)
Ψj(λ)

]

.

During each iteration 1 ≤ j ≤ L we also compute a discrepancy matrix ∆j ,
which is the coefficient of λj in Fj(λ)A(λ).

The first n rows of Fj are analogous to a bank of “current” shift registers and
the last n rows represent a “previous” bank, as in the original Berlekamp/Massey
algorithm. The task at hand is to compute a non-singular linear transformation
T j that will zero out the first n rows of ∆j . Initially, the rows of F are assigned
nominal degrees and in determining T j , one selects a pivot row in ∆j corre-
sponding to a row of lowest nominal degree in Fj and uses it to zero out the
appropriate columns of ∆j . Completing the iterative step, Fj is updated by set-
ting Fj+1 = DT jFj , where D = diag[1, . . . , 1, λ, . . . , λ] increments the nominal
degrees of the last n rows by 1. Overall, the whole step requires O(nN 2) field
operations. At present this step is done sequentially.

In step (3) one obtains a vector wl which is non-zero with high probability,
and which satisfies Bwl = 0. It involves a Horner-type evaluation at B of
a polynomial derived from Λ with coefficients that are N -dimensional vectors
and, additionally, O(N 2) arithmetic operations. This step requires no more than
N/n+ 2 multiplications of B by vectors. There are n options of finding vectors
in the kernel of B, one for each 1 ≤ l ≤ n. With high probability the solutions
found are nontrivial, at least, if the field of entries is sufficiently large. For
GF(2), hopefully, some of the solutions will be nontrivial. That these different
solutions sample the entire null space can so far only be argued heuristically.
For the details the reader is referred to (Coppersmith 1992 and Kaltofen 1993).

Our implementation is in the C programming language on computers run-
ning UNIX. The programs are written generically, meaning that the underlying
field of entries can be changed with very little difficulty. We have successfully
used DSC to distribute the task outlined in step (1). The DSC scheduler was
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given a list of approximately 30 machines of diverse processing power and mem-
ory capacity and the processing and storage requirements of the subtasks. From
this information it selected suitable target hosts.

3.2 The Generic Arithmetic Package

In our implementation we sought the ability to program the arithmetic oper-
ations generically. This was accomplished by writing all the field arithmetic
operations as macros and implementing the macros in a way specific to the un-
derlying field. At the moment, arithmetic can be done in the fields GF(2k) and
GF(p) where k can be from 1 to 31 and p is a prime requiring at most 15 bits
for its binary representation. These restrictions come from the maximum size of
a word in the target machines. The macro implementations and corresponding
basic datatypes are selected by setting a single software switch at compile time.
The actual programs require no changes.

For the GF(2k) case the binary operations are implemented using the bit
operations of exclusive-or, and, and shift available in the C language. Field divi-
sion is done by computing the inverse of an element with the extended Euclidean
algorithm inside of which division is done using bit operations. In GF(2), a single
bit is sufficient to represent an element and hence the operations of addition and
multiplication are exactly the bit-operations exclusive-or and and, respectively.
In Coppersmith’s implementation, 32 bit vectors are packed into a single vector
of machine words. Thus, on a single processor, 32 vectors can simultaneously
be multiplied into a matrix with bit entries. We have used the same approach
in a special implementation for GF(2). In addition, we do “double blocking” in
step (1), where we distribute several packed vectors to different compute nodes.

For the field GF(p) the binary operations are implemented with built-in in-
teger arithmetic operations. The limit of 15 bits keeps any intermediate product
of two members of the field from overflowing the bounds of an unsigned 31-bit
integer. The maximum permitted value of p is thus 215 − 19 = 32749.

3.3 Experimental Results and Observations

We conducted tests in the field GF(32749) using sparse square matrices with row
dimensions of 10,000 and 20,000, and in the field GF(2) with dimensions 10,000,
20,000, 52,250, and 100,000 respectively. In the case of dimension 10,000 there
are between 23 and 47 non-zero elements per row and approximately 350,000
non-zero entries in total; in the case of dimension 20,000, 57 to 73 non-zero ele-
ments per row and 1.3 million non-zero entries in total. In the case of dimension
52,250 there are between 9 and 34 non-zero elements per row and altogether
1.1 million non-zero entries. The largest matrix contained 89 to 117 entries per
row and a total of 10.3 million entries. The matrix of dimension 52,250, aris-
ing from integer factoring by the MPQS method, was supplied to us by A. M.
Odlyzko, while the other matrices were generated with randomly placed random
non-zero entries. The tests were done with blocking factors of 2, 4, and 8 in the
GF(32749) case and 32, 64, and 96 in GF(2). The calculation of the sequence
〈a(i)〉 was done in a distributed fashion using DSC. Pointers to the matrix and
the vectors x and yν were sent out to separate machines and the corresponding
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components of A were returned. The computation of the generator polynomial
and the evaluation of the solution were done on a single SUN-4 machine rated at
28.5 MIPS. Compilation was done with the optimizer flag activated. Figures 4
and 5 below give the actual CPU time taken for each task. The evaluation time
is the time to find the first non-zero solution.

Task Blocking Factor
N 2 4 8

10,000 (1) 〈a(i)〉 7h29′ 3h54′ 2h09′

(2) b-massey 2h25′ 4h08′ 8h00′

(3) evaluation 3h47′ 1h59′ 1h05′

total 13h41′ 10h06′ 11h14′

20,000 (1) 〈a(i)〉 57h17′ 28h43′ 15h21′

(2) b-massey 9h48′ 16h36′ 33h39′

(3) evaluation 29h42′ 14h44′ 7h53′

total 96h47′ 60h02′ 56h53′

Figure 4: CPU Time (hourshminutes′) for different blocking factors
with all arithmetic in GF(32749). Each processor is rated
at 28.5 MIPS.

It can be seen in both tables that the time for computing the sequence 〈a(i)〉
decreases as the blocking factor increases. In the field GF(32749), the cost drops
approximately in half each time the blocking factor doubles. This is as expected
because the length of the sequence and hence the number of Biy computations
is O(N/n). In the GF(2) case the overall trend is still visible but the rate of
decrease is less because more work has to be done in unpacking the doubly
blocked bit-vectors x and yν . We note that it took us about 114 hours CPU
time to solve the system with N = 52, 250 by the original Wiedemann method
(blocking factor = 1 × 1). The memory requirement per task is the quantity
needed to store B plus O(nN) field elements for the vectors and intermediate
results.

For the computation of the linear recurrence in step (2), the complexity
is O(nN2) and we thus expect the CPU time to increase with blocking factor.
This is borne out very well by the results in the table. The memory requirement
of this step is O(nN). It is also clear that step (2) dominates when n is large
and this is a potential bottleneck. In the evaluation step we report only the
time taken to find the first non-zero solution. As stated above, other non-zero
solutions may be derived at a similar cost. Note that in Figure 5 the time of
28 minutes includes the time of computing one additional solution that was zero.

As a final note, we observed that the scheduler met the minimum desired
goal of sending one subtask at a time to a target machine. It could also recognize
when a host had surplus capacity and in such a case would send more than one
task there if conditions permitted. It distinguished and eliminated from the
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Task Blocking Factor
N 1× 32 2× 32 3× 32

10,000 (1) 〈a(i)〉 0h10′ 0h06′ 0h05′

(2) b-massey 0h06′ 0h08′ 0h10′

(3) evaluation 0h06′ 0h02′ 0h02′

total 0h22′ 0h16′ 0h17′

20,000 (1) 〈a(i)〉 1h12′ 0h40′ 0h30′

(2) b-massey 0h25′ 0h31′ 0h39′

(3) evaluation 0h29′ 0h28′ 0h10′

total 2h06′ 1h39′ 1h19′

52,250 (1) 〈a(i)〉 3h53′ 2h11′ 1h37′

(2) b-massey 2h30′ 3h09′ 3h54′

(3) evaluation 1h15′ 0h33′ 0h22′

total 7h38′ 5h53′ 5h53′

100,000 (1) 〈a(i)〉 77h37′ 44h05′ 27h28′

(2) b-massey 10h03′ 12h28′ 15h42′

(3) evaluation 74h37′ 27h48′ 11h09′

total 162h17′ 84h31′ 54h19′

245,811 (1) 〈a(i)〉 72h55′ 49h31′

(2) b-massey 31h02′ 38h16′

(3) evaluation 21h40′ 22h54′

total 143h31′ 110h47′

Figure 5: CPU Time (hourshminutes′) for different blocking factors
with all arithmetic in GF(2). Each processor is rated at
28.5 MIPS.

schedule machines with high power and memory capacity that were under high
load conditions at the time of distribution. We experienced an exceptional case
in which two nodes were rendered inoperative by external causes. The scheduler
diagnosed the condition, identified the subtasks and successfully restarted them
on two other active machines.

4 Conclusions

Using intelligently scheduled parallel subtasks in DSC we have been able to prove
titanic integers prime. We have also been able to solve sparse linear systems with
over 10.3 million entries over finite fields. Both tasks have been accomplished
on a network of common computers. We have solved linear systems with over
100,000 equations, over 100,000 unknowns, and over 10 million non-zero entries
over GF(2). The challenge we propose is to solve such systems over GF(p) for
word-sized primes p, and ultimately over the rational numbers. In order to meet
our challenge, we will explore several improvements to our current approach, by
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which we hope to overcome certain algorithmic bottlenecks in the block Wiede-
mann algorithm. As Figure 4 shows, higher parallelization of step (1) slows
step (2). One way to speed step (2) with high blocking factor is to use a blocked
Toeplitz linear system solver (Gohberg et al. 1986) instead of the generalized
Berlekamp/Massey algorithm. The latter method can be further improved to
carry out step (2) in O(n2N(logN)2 loglogN) arithmetic operations using FFT-
based polynomial arithmetic and doubling (see Bitmead and Anderson (1980),
Morf (1980), and a May 1993 addendum to Kaltofen (1993)).

Another way to speed step (2) is to set up a pipeline between the subtasks
that generate the components of a(i) and the program that computes the linear
recurrence. Each subtask would compute a segment of M ≤ 2N/n sequence
elements at a time, and pass it on to the Berlekamp-Massey program which could
begin working on these terms of A. Meanwhile the subtasks would compute the
next M terms of the sequence. We plan to use co-routines to implement this
pipeline.
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