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ABSTRACT. We show that over any field, the solution
set to a system of n linear equations in n unknowns
can be computed in parallel with randomization simul-
taneously in poly-logarithmic time in n and with only as
many processors as are utilized to multiply two nxn ma-
trices. A time unit represents an arithmetic operation in
the field. For singular systems our parallel timings are
asymptotically as fast as those for non-singular systems,
due to our avoidance of binary search in the matrix rank
problem, except when the field has small positive char-
acteristic; in that case, binary search is avoided at a
somewhat higher processor count measure.

1. Introduction

Processor-efficient parallel algorithms have been con-
structed in (Kaltofen and Pan 1991) for the problems
of solving a non-singular linear system, computing the
determinant of a matrix, and inverting a non-singular
matrix; specifically, for an n-dimensional input the al-
gorithms solve the designated problem in O((logn)?)
time using as many processors as are asymptotically re-
quired by the n-dimensional matrix multiplication prob-
lem (see Karp and Ramachandran 1990 for the no-
tion of a processor-efficient parallel algorithm). Each
processor performs addition, subtraction, multiplica-
tion, and division over the field of entries; division
by zero is avoided for non-singular inputs by random-
ization. Our solution utilizes the Le Verrier (1840)/
Csanky (1976) algorithm (see also Preparata and Sar-
wate 1978 and Galil and Pan 1989) and is thus invalid
for fields of small positive characteristic, in which case
we have presented an n3-processor algorithm, based on
the Berkowitz (1984)/Chistov (1985) approach.

*This material is based on work supported in part by
the National Science Foundation under Grant No. CCR-90-
06077 and under Grant No. CDA-88-05910 (first author),
and under Grant No. CCR-90-20690 and by the PSC CUNY
Awards #661340 and #662478 (second author).
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In §2 we shall show how to overcome that restric-
tion. Specifically, if the field of entries, denoted by
K, is of characteristic 1 < p < n, we give processor-
efficient Las Vegas randomized algorithms that com-
pute the solution of an n-dimensional non-singular lin-
ear system, the determinant of a matrix, and the in-
verse of a non-singular matrix in parallel time at most
O((logn)?(loglogn)/(logp)). Our algorithm picks for
sufficiently large fields uniformly O(n) random elements
from a subset S C K, and then reports failure with prob-
ability O(n?/card(S)). In that case, the parallel time is
also asymptotically reduced by a factor loglogn. If K is
a small finite field, we need to work in a Galois exten-
sion and therefore asymptotically require a multiple of
at most logn more random elements.

A second contribution focuses on the problem of solv-
ing a singular system. In (Kaltofen and Pan 1991) we
have obtained a processor-efficient Las Vegas random-
ized parallel algorithm in the case p = 0 or p > n. How-
ever, our solution there required asymptotically more
time, namely O((logn)®). The extra log(n) factor was
introduced by performing binary search in order to de-
termine the rank of the system, which until now seems
to have been the only way to accomplish processor-
efficiency. In §3 we shall show how to compute the rank
of an n x n matrix directly, i.e., in random O((logn)?)
time without utilizing more processors. If binary search
is to be avoided for fields of characteristic 1 < p < n,
our processor count is currently O(n3logn loglogn).

Our solutions are facilitated by several innovations
in the design of parallel linear algebra algorithms, and
draw from recent developments on a diversity of top-
ics. The key underpinnings of the results in (Kaltofen
and Pan 1991) are the coordinate recurrence method
for solving sparse linear systems over arbitrary fields by
Wiedemann (1986) and parameterized Newton iteration
for the inversion of the matrix associated with the char-
acteristic polynomial of a Toeplitz matrix (Pan 1990).
The latter parallel algorithm explores the well-known



formula for the inverse of a Toeplitz matrix by Go-
hberg and Semencul (1972) (see also Trench 1964).
A far-reaching generalization of the Trench/Gohberg&
Semencul approach is the theory of the displacement
rank of a matrix by Kailath et al. (1979) and the cor-
responding parallel algorithms by Pan (1990) and Bini
and Pan (1992). Although both our small positive char-
acteristic and our rank results can rely on these ad-
vances, several additional innovations come to bear on
our solutions.

Our key idea in making linear system solving over a
field of small positive characteristic p processor-efficient
is that those Newton identities in Le Verrier’s linear sys-
tem for the coeflicients of a characteristic polynomial
that turn useless for such characteristic p can be re-
placed by additional linear equations obtained from the
coordinate recurrences. Le Verrier’s system can then
be reduced to a new linear system of dimension [n/p|,
which we may solve recursively. We call our technique
“recursive parallel triangulation,” since the recurring
size-reduction of the intermediately arising linear sys-
tems is based on block-elimination by triangular matri-
ces.

Our fast rank algorithm first uses the reduction by
Kaltofen and Saunders (1991) of the rank determination
of a general matrix to that of a certain Toeplitz ma-
trix. The parallel solution of the latter problem is then
based on Mulmuley’s (1985) method. Mulmuley’s algo-
rithm, as given, multiplies the arising Toeplitz matrix
by a certain diagonal matrix, which does not keep the
displacement rank constant; we would have no means
of computing in parallel the characteristic polynomial
of a such perturbed matrix, which is needed by that al-
gorithm, even with as many processors as are used by
general matrix multiplication. We by-pass this difficulty
by switching to the corresponding Hankel matrix and by
modifying the perturbation such that the Hankel struc-
ture is preserved. Finally, the characteristic polynomial
of the perturbed matrix can be computed in parallel
with few processors by the algorithms for matrices of
small displacement rank cited above.

The number of arithmetic processors used by our al-
gorithms depends both on processor count of n x n par-
allel matrix multiplication and the processor count of
computing in parallel the characteristic polynomial of
an n X n Toeplitz or Hankel matrix. In light of the pos-
sibility that the former is asymptotically smaller than
the latter, we shall introduce as our processor count
measure

M*(n) := max{M (n) logn, n*logn loglogn},

where the first of the arguments to the max-operator
corresponds to the processor complexity M (n) of paral-
lel matrix multiplication; at this time we have M(n) =
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n® with w < 2.3755 (Coppersmith and Winograd 1990).
Note that we restrict each processor to a constant num-
ber of arithmetic operations; without this restriction
M*(n) can be reduced by logn factors. It should also
be noted that our solutions use matrix multiplication as
a black-box. Therefore, the processor count and espe-
cially the constant in the big-O estimate is directly re-
lated to the particular matrix multiplication algorithm
used.

The time measures of our algorithms are for suf-
ficiently large fields of small positive characteristic p
asymptotically slower by a factor of log,n. As said
above, for fields of small cardinality we work in suffi-
ciently large Galois extensions, the purpose being the
guarantee of a positive success probability of our ran-
domizations. This introduces a further slow-down in
terms of base field arithmetic but does not increase the
processor count. Finally, in case 1 < p < n an addi-
tional log n factor is introduced by the binary search for
the rank. Therefore, we shall introduce the multiplier
function
1 forp=0orp>n,

[(logn)2/(1og p)]
for 1 < p < n and card(K) > n,
[(log n)*/(log p log(card K))]
for card(K) < n,

which becomes universal for any field. By card(K)
we shall denote the cardinality of the field K; note
that in the last case, by carrying out the arithmetic in
the Galois extension field of algebraic degree dk(n)
O(log.,rak ™) in parallel, we can improve the multi-
plier v (n,p) to [log,n logdk(n)], but we then need
to increase the number of processors by a factor of
dk(n) loglogdk(n). In any case, the multiplier is no
more than

VK(nvp) =

(1, p) = O((logn)?).

Our main result can now be stated as follows: a Las
Vegas-randomized algorithm is constructed that in par-
allel time O(vk(n,p) (logn)?) using M*(n) many pro-
cessors finds the rank of a matrix and the solution of a
linear system, which in the singular case consists of both
one specific solution vector and a basis for the right null
space of the coefficient matrix. For non-singular sys-
tems over fields of characteristic 1 < p < n our parallel
time is actually a factor of logn faster.

We shall not be very specific about the parallel model
of computation for which these results hold, although
a suitable parallel adaptation of the probabilistic alge-
braic random access machine defined formally in (Kalt-
ofen 1988) yields the stated complexity measures. In
(Kaltofen and Pan 1991) we used algebraic circuits,
which for the rank problem need to be amended ap-
propriately to account for the zero-tests (cf. von zur
Gathen’s (1986) arithmetic networks).



2. Recursive Parallel Triangulation

We shall presume a certain familiarity of the reader with
our methods in (Kaltofen and Pan 1991) for the non-
singular case over fields of characteristic p = 0 or p >
n. We now discuss how one can salvage the case 2 <
p < n in a processor efficient manner. The key and
only place where our previous methods fail is in the
Le Verrier/Csanky transition from

s; = Trace(T") = X + Ao+ + A, 1<i<n-—1,
where Aq,..., )\, are all eigenvalues of a non-singular
Toeplitz matrix T, to the coefficients of the character-
istic polynomial of T,

Det(A] — T) =:

A% — AN T AT e\ — .

(1)

The Newton identities,

1 0 c1
S1 2 cy
S2 S1 3
Sn—2 n—1 Cn—1
LSn—1 Spn—2 S1 n Cn
s
52
S3
= (2)
Sn—1
L S'n,

lead to a triangular non-singular system for the ¢; only
if in the field of entries one can divide by n!. For fields of
small positive characteristic it is in general impossible
to determine the fundamental symmetric functions from
the sums of powers.

Our solution hinges on the fact that we can find other
linear equations for the unknown ¢;. Let us suppose for
a moment that the minimum polynomial of T is equal
to the characteristic polynomial (1). Then by Wiede-
mann’s (1986) theory of coordinate recurrences we have
for the column vectors u,v € K™ and for the field ele-
ments @; := T that for all j > 0

(3)

If the entries in u and v are chosen randomly and uni-
formly from a sufficiently large subset of K, then with
a high probability the first n equations in (3) form a
non-singular system (Kaltofen and Pan 1991, remarks
after Theorem 1).

Cn(_lj + Cnfla‘jJ’,l + 4 cldern,l = C_lj+n.
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For simplicity, we shall continue the argument for the
case that the characteristic of K is p = 2. We remove all
even numbered rows from (2), which have 0 on their di-
agonal position. We also reorder the columns such that
the odd numbered columns precede the even numbered
ones. Thus we obtain the first [n/2] rows of our new
system,

c
(L] 2] | 5] =191, where
C
1 0
S92 1 0 S1 0 O
Ll = S4 S92 1 ’ L2 = S§3 851 0 ’
C1 Co S1
C C S
and ¢ = ° = 4 s = 3

Finally, after rearranging the columns in the system (3)
appropriately as

o d _
] Aal| 5| =5, (4)
where A; € Knxm/21 A, € K»*1n/2] and b € K",
we compress the system (4) to |[n/2] equations by mul-
tiplying both the left-hand side coefficient matrix and
the right-hand side vector by a |n/2] x n matrix C
whose entries are chosen randomly from a sufficiently
large subset of K. This randomization guarantees that
with a high probability the system

c/
-
is non-singular. The heart of argument lies in the fact
that in (4) there are |n/2] rows that are linearly inde-
pendent of the rows in [L; | L], because (3) has by
our assumption full rank. Thus there exists a specific
matrix C that selects those rows, and hence a matrix
C with indeterminate elements also has the property
that the corresponding determinant is non-zero, now as
polynomial in the unknown entries of C. By a lemma
of Zippel (1979)/Schwartz (1980) a matrix with random
elements chosen uniformly from a sufficiently large sub-
set of K also has with high probability that property.

We now can proceed recursively. First, we eliminate
the block CA; by pre-multiplying (5) with

S/

Ch

Ly | Lo

- - _ — 5
CA, | CA, )

Ity | OM/21x1n/2)

—CA LT |

T2



Since L; is Toeplitz and lower triangular, its inverse
can be computed easily in O((logn)?) time with n? x
log n loglog n processors. This leads to a [n/2] x [n/2]
non-singular system for ¢’ which we may solve by re-
cursive application of the entire algorithm. Finally, we
determine ¢’ by back-substituting into the first row of
blocks. The algorithm clearly has depth O((logn)?),
and it uses

P(n) < M*(n)+ P(|n/2]), ie., O(M*(n))

many processors; constant rescaling reduces the number
of processors to M*(n). For characteristic p > 2 the
recursion is on blocks of size |n/p], hence the general
slow-down in time is by the factor vk (n,p).

It is possible perform the needed compression by C

with fewer random elements. Suppose we first eliminate
Ay in (4) using L7 "

Ipnjzy | OI/2Dn Y Ly | Ly
—fllLfl | I, Ay | Ay
L | Lo

0n><]'n/2—\ | _AlLflLQ‘f’AQ

Then by (Kaltofen and Saunders 1991, Theorem 2) it
suffices to pre-multiply the n x |[n/2| matrix —A; x
Li'Ly + Ay by a random |n/2] x n unit upper trian-
gular Toeplitz matrix C' and thereby obtain with high
probability a |n/2| x |[n/2]| compressed matrix of full
rank. Applying these transformations to the right-hand
side vector of our system also, we have thus established
the need of only O(n) many random field elements for
that phase of the construction. Note that all matri-
ces involved in the smaller system have a special struc-
ture. Therefore, our recursive triangulation approach
may also be applicable to the processor-efficient solution
of structured systems, such as Toeplitz and Sylvester
systems.

At last, we shall consider the case where the minimum
polynomial of T is a proper divisor of the characteris-
tic polynomial, in which case the first n equations in
(3) are linearly dependent. The needed sub-problem in
(Kaltofen and Pan 1991), namely the determination of
the coefficients ¢; of the characteristic polynomial of the
matrix A (ibid. p. 185, bottom of the second column),
is actually the computation of T~ for a known vector
b, which there is solved in a processor-efficient way via
the coefficients of (1). However, we may instead work
with

T:=VTW and b:= Vb,
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where
1 vy w3 Up,
1 v Up—1
V.= 1 (6)
0 v
1
and
w1y
w2 w1 O
W .= | w3 w2 w1 , (7)
Wp  Wn-1 wz W1

because then T~'b = W (T~'b) can still be determined
efficiently. If we choose the entries v; and w; randomly
from a sufficiently large subset of K, then with high
probability the minimum polynomial of T' agrees with
its characteristic polynomial. Furthermore, we may also
compute for 1 < i < n all ’I‘race(Ti) in the same asymp-
totic complexity measures as those we have for the orig-
inal s;. The proofs for these two claims are, however,
quite involved. The argument for minimum = charac-
teristic polynomial can be deduced from the perturba-
tion theory developed in Wiedemann (1986) and Kalt-
ofen and Saunders (1991), while the argument for com-
puting the traces of the powers of the perturbed matrix
follows from the parallel algorithms by Pan (1990) asso-
ciated with the theory of matrices of fixed displacement
rank by Kailath et al. (1979). The matrix T, being
a product of three Toeplitz matrices, has displacement
rank at most 7.

We first prove that with high probability the mini-
mum polynomial of T is its characteristic polynomial.

Proposition 1. Let M € K™ ™ be a non-singular
matrix and let the entries va,...,v, of V in (6) and
wy,...,w, of W in (7) be randomly and uniformly
selected from a subset S C K. Then the minimum
polynomial of M := VMW is equal to the charac-
teristic polynomial of M with probability no less than
1 — 4n?/card(S).

Proof. We follow the proof of Wiedemann (1986, Lemma
in §V) and show that with high probability the charac-
teristic polynomial of M is square-free. Let V and W be
Toeplitz matrices of the form V and W, respectively, but
with their entries being indeterminates. We first prove
the square-freeness of the characteristic polynomial of
M = VMW for such generic multiplier matrices, and
then consider with what probability randomly chosen
values for these indeterminates will preserve this condi-
tion. In order to prove the square-freeness of the generic
case, we need the additional condition that all ¢ x ¢ sub-
matrix blocks in the right upper corner of VM, which
we denote by (VM);, are non-singular. This condition



follows from the proof of Theorem 2 in (Kaltofen and
Saunders 1991):

Let Vi ; be the determinant of the submatrix of V
formed by including only the rows contained in the set I
and only the columns contained in the set J. It is shown
there that for all ¢ = 1,... n the set of all polynomials

{V{l,...,i},.] ‘ card(J) = Z}

is linearly independent over K. Furthermore, by the
Cauchy-Binet formula,

(VM){I,...,i},{n—i—i-l,...

> VY

J={j1,-Ji}
1<ji<<gi<n

n} =
(8)

1,...,1},J MJ,{n—i-ﬁ-l,..A,n}'

Since M is non-singular, there exists a set of row indices
Jo such that M, rn—iy1,..n} # 0, hence the sum (8) of
linearly independent polynomials also does not vanish.

The rest of the argument is by induction on n, as
in Wiedemann’s lemma. Consider the characteristic
polynomial Det(A] — M) as a polynomial in A with
coeflicients being polynomials in the variable entries
vo,...,wy of V and W. If we set w; = 0, this poly-
nomial is equal to

A Det()\I - (VM)nflj Wl_ nfl),

where W_ ,—1 is the (n — 1) X (n — 1) sub-matrix at the
lower left of W. Since (VM),,_1+ is non-singular, as was
shown above, by induction hypothesis the characteristic
polynomial of (VM ),,—1-W_ —1 must be square-free; it
is also not divisible by A. Therefore, the characteristic
polynomial of the genericly randomized matrix VMW is
square-free even for w; = 0, hence must be square-free
for an indeterminate w;.

It remains to estimate the probability of success. We
appeal to the Zippel (1979)/Schwartz (1980) lemma and
must therefore estimate the total degree of the discrim-
inant in A of Det(AI — M), which is a polynomial in
the entries of V and W. However, that total degree is
certainly less than 4n2. X

Wiedemann chooses a random diagonal matrix in
place of our W of Lemma 1. That our choice of a
Toeplitz matrix can be proven to work is somewhat
fortunate, since otherwise we would not know how to
compute the required Trace(T") efficiently. The under-
lying reason is the fact that a Toeplitz matrix has fixed
displacement rank, while for a random diagonal matrix
the displacement rank is n. A similar problem has to
be overcome in §3 in regard to Mulmuley’s randomiza-
tion. We now shall explain the theory of Toeplitz-like
matrices in some more detail.
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We consider n x n matrices; define the lower-shift
matrix

0
1

0 0
1

0

and define the matrix shift operators

1 0

|A:=ZA, 9A:=AZ and TA:=AZ".

The matrix |A is equal to A after being shifted down by
one row, filling the first row by zeros, and the matrices
9A and " A are equal to A after being shifted to the
left /right by one column, filling the last/first column by
zeros. Following Kailath et al. (1979) we define

b (A) = A— |(PA) = A— ZAZ"™

and
ay(A) :=rank ¢ (A),

the latter being the displacement rank of A. The
fundamental property is that given 2« column vectors
Yis---,Ya and 21,..., 2, the functional equation in the

matrix X,
(03
X) =Yy
j=1

has the unique solution

9)

X =YLyl ULV, (10)
j=1

where L[y] denotes a lower-triangular Toeplitz matrix
whose first column is y and U[2""] denotes an upper tri-
angular Toeplitz matrix whose first row is z**. Therefore
a matrix of displacement rank « is a sum of « products
of lower and upper triangular Toeplitz matrices. We
shall call

21
« Z;r
Y=Yy ={(n|va| - |vl| (11)
j=1
o

the generators of the resulting n x n matrix Y, which
is in the above case the displaced matrix ¢, (X); the
representation (10) we shall call the Gohberg-Semencul
representation for X. That representation requires only
the storage of O(an) field elements. Clearly, one may
derive a generator (11) for Y by choosing the vectors y;
to be the linearly independent columns of Y, and the



entries in each column of the right factor matrix with
the rows z;r to be the linear combination that yields the
corresponding column of Y.

We wish to argue that matrices of fixed displacement
rank are closed under matrix multiplication. To show
this, we introduce the alternate displacement operator
(see Pan 1990)

¢T(A) =9A— |A=AZ — ZA

and
at(A) :=rank¢T (A).

We then have ay (A) < a™(A) + 1, in fact we can find
the generators for ¢, (A) from the generators for ¢*(A),
since

¢+ (A) = 7 (A)Z" + (Aer ey,

where e; := [1 0 0]". Note that the vectors
25" in (11) for ¢*(A) are shifted to the right by post-
multiplication by Z*. Quite similarly we can easily ob-

tain the inequality

(12)

at(AB) < at(A) +a™(B),
namely from
6" (AB) = A¢*(B) + 6" (A)B.

The vectors y; generating ¢ (B) are pre-multiplied by
A, and the vectors z; are post-multiplied by B. Note
that this approach allows us to efficiently compute the
Gohberg-Semencul representation (10) for X = T =
VTW. Since at(V) = a™(T) = ot (W) = 2, we we
will compute 6 = ((2+2) +2) generators (11) for ¢+ (T
and thus 7 for ¢, (T).

Finally, we have the following theorem at our dis-
posal:

Proposition 2 (Pan 1990, Proposition 3.1). Let T
be given in Gohberg-Semencul representation with a
fixed displacement rank, i.e., with a fixed number of
LU-products. Then the traces

si = Trace(T?) foralli=2,...,n

can be computed in parallel in O((logn)?) time using
n?logn loglogn processors.

There is a very elegant proof for this important
fact, due to Dario Bini, which we shall briefly sketch.
Pan’s (1990) approach computes a Gohberg-Semencul
representation for

X, =1+ T S )\2’Flf2’?1
= = XT)""' (mod A?") (13)
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(cf. §3 in Kaltofen and Pan 1991). This is done by “lift-
ing” the representation of X; to the squared modulus
using Newton iteration, namely

Xip1 = X;(20 — (I — XT)X;).
Bini’s method is based on the identity

pT(A =417 -zA7!
=-AYAZ - zA)A7!
= —A"lpT(A) AL

Then by (13) we have the congruence

¢*(Xip1) = —Xis1 67 (I = AT) Xip1 (mod A7),

Thus, we obtain generators (11) for Y = ¢ (X;41)
from the generators (11) of Y = ¢ (I — )\Tv) by pre-
multiplying the generators y; by X; 41 = X;(2I — (I —
)\T)Xi) and post-multiplying the generators z; by the
same matrix, all modulo A2 However, since we have
the Gohberg-Semencul representation for X;, this pro-
cess can be carried out efficiently by using fast poly-
nomial multiplication for the needed Toeplitz matrix
times vector products. Finally, the Gohberg-Semencul
representation (10) for X;4q is deduced from the thus
determined generators (11) of Y = ¢ (X;.1) by the
conversion mechanism (12) to ¢4 (X;41) and the func-
tional equivalence (10). In our situation there will be
nine LU-products under the sum (seven for )\f, one for
I, and one produced by the conversion to ¢ ).

Note that this approach does not require any general-
ization of the Gohberg-Semencul formula for (I—A\T')~1,
and is based solely on the solution (10) of the func-
tional equation (9). Furthermore, the product formula
for a™(AB) is valid over any field, unlike Chun’s et
al. (1987, Lemma 3) formula for ay (AB), where a divi-
sion by 2 is performed.

We conclude this section by stating the main theorem.

Theorem 1. Given a non-singular matrix A € K"*"
and a vector b € K™, where K is a field of characteris-
ticl < p < n, a vector x € K" with Avx = b can be
computed (on a randomized algebraic PRAM) in

O(vk(n,p) logn) time with M™(n) processors.

In the case where card(K) > n, the algorithm uniformly
chooses O(n) many random elements from a subset S C
K and with probability no more than O(n?/card(S))
reports “failure.” In the case where card(K) < n, the
algorithm uniformly chooses O(n (logn)/(logcard K))
many field elements and with probability no more than
1/n°W reports “failure.”



3. Parallel Rank Computations

The results in Borodin et al. (1982) imply that a processor-
efficient randomized parallel algorithm for the solution
of singular linear systems can be reduced probabilisti-
cally to the problem of inverting a non-singular matrix
and to the problem of determining the rank of a matrix
that has the added property that all its leading princi-
pal sub-matrices of dimension no larger than its rank are
non-singular. Their method picks random non-singular
matrices V,W € K"*" — by (Kaltofen and Saunders
1991, Theorem 2) these matrices may even be of unit up-
per and lower triangular Toeplitz form — and computes
for the singular coefficient matrix A € K"*" the product
matrix A := VAW, which can be shown to have with
a certain probability non-singular i x i leading principal
sub-matrices Ar;, where i < r and r := rank A. Then

N ;{I’T | Orx(nfr)
AFE =
A | 0(n—7')><(n—r)
for
g:: grr | B dE = I, | _gFer
A’ |A// O(nfr)xr| I,

Hence the right null space of A is spanned by the
columns of

orx (n—r)
WE [7] ,
Iy

while for a vector b such that Az = b is solvable one
gets

AWE

A e
On—'l" ’

where (V) is the vector formed by the first  enties
of Vb. We mention these standard linear algebra for-
mulas since with them the probabilistically determined
rank and the solvability of Az = b can be certified.
Therefore the randomized method is of the Las Vegas
kind.

Using a construction by Baur and Strassen (1983)
(see also Linnainmaa 1976), it is shown in (Kaltofen
and Pan 1991) that the determinant and thus by (Kalt-
ofen and Singer 1991) also the inverse of a non-singular
matrix can be computed in a randomized, parallel, and
processor-efficient fashion. The results of §2 extend to
the determinant and inverse computation. While for
non-singular matrices the recursive triangulation algo-
rithm is Las Vegas, the method cannot produce a proof
that a matrix is singular, i.e., that its determinant is
equal to zero. The reason for this is that for a singular
matrix, the additional linear equations (4) may never
be sufficient to yield a compressed non-singular system
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for the coefficients of (1). An example for this is 7' = 0.
Therefore, we obtain a proof for the singularity of a
matrix only after having probabilistically computed its
rank. _
It remains to show how to determine the rank of A.
At the cost of slowing the parallel time asymptotically
by a factor of logn, one may perform a (Monte Carlo)
binary search for the largest non-singular leading prin-
cipal sub-matrix. We now give a method that avoids
this slow-down without utilizing asymptotically more
processors, provided the characteristic of the field K is
0 or >n. In (Kaltofen and Saunders 1991, Lemma 2)
the problem of determining the rank of a singular A
is probabilistically reduced to the problem of determin-
ing the rank of a Toeplitz matrix. In particular, it is
shown there that if the entries in the diagonal matrix D
are selected randomly from a sufficiently large set, then
with a high probability the degree of the minimum poly-
nomial fAP(X\) of AD is equal to rank(A) + 1. By the
Wiedemann (1986) coordinate recurrence technique, for
random column vectors u and v the Toeplitz matrix

[ Qp—1 Ap—2 o a1 ag ]
Qp, Ap—1 . ag a1
a : a
T:= K 2 (14)
a2n—3 Qn—1
La2n—2 A2p—3 ... QAp Gp—1

with the entries a; = u* A%v has with a high probabil-

ity the rank equal to deg(f4P). We probabilistically
find the rank of T" by appealing to an idea of Mulmu-
ley (1987). Consider the n-dimensional anti-diagonal
unit matrix O )

J = . ;

0

the matrix H := TJ is Hankel, i.e., on each anti-
diagonal there appears a single element. In particular,
a Hankel matrix is symmetric. Furthermore, for the
diagonal matrix

1

! 0

the matrix H = X HX is also Hankel. Note that XTX
is not Toeplitz, which is the reason for switching to the
Hankel form. It follows by Mulmuley’s (1987) argu-
ments that, with the possible exception of at most n?



field elements x, the multiplicity of A in the characteris-
tic polynomial Det(AI — H) is equal to n—rank(H). The
key property in his proof (loc. cit., Proof of Lemma 1)
is the condition that for an indeterminate x

rank(H H) = rank(H).

It is shown there that rank(HXH) = rank H, hence
also rank(H X2 H) = rank(H ), which by pre- and post-
multiplying with the non-singular matrix X yields the
needed condition. Note that the trailing coefficient of
the characteristic polynomial of H has, as a polynomial
in z, degree no more than n?.

Therefore, we shall compute the characteristic poly-
nomial of the Hankel matrix H. Kailath et al. (1979,
Footnote on p. 405) give a displacement operator that
for fields of characteristic 0 or >n leads to a O((logn)?)-
time and n?(loglogn)/(log n)-processors parallel algo-
rithm (see also Bini 1983, Bini and Pan 1992). We shall
present a direct method, which is also based on paral-
lel algorithms for matrices with fixed displacement rank
(see §2). Making some simplifying assumptions first, we
shall sketch the entire method now. The key algorithm
computes for a Toeplitz matrix T' two lower triangular
Toeplitz matrices L1 (), La(A) over K[A] and two upper
triangular Toeplitz matrices Uy (\), Us(\) such that

T4+ NT + 2272 ... g \n—ipn—1
= Li(NUL(A) + La(MUs(A) (mod A™). (15)

This is the Gohberg-Semencul representation (10) of
(I- )\f)*l mod A", as was explained following Proposi-
tion 2 in §2; just two LU-products are obtained by using
the original Gohberg-Semencul formula (see Pan 1990
or Kaltofen and Pan (1991), §3), but this is not critical
here. The trace of the right-hand-side matrix expres-
sion in (15) can now be computed in parallel with no
more than n? loglog(n)/log(n) processors; for instance,
we have

w1
w2 w1 O
Trace(| W3 W2 Wi
Wp  Wp—1 w2 W1
v V2 U3 Un
U1 V2 Un—1

U1 V2
U1
= nwivy + (n — Dwave + -+ + wpvy,. (16)

The coefficient of A" in the trace of (15) is then s; =

721

Trace(T"). Suppose for a moment that 7' = H.J would
be also symmetric. Then JT'J =T, hence for i > 1,

HY = (TJ)¥ =T%, R+ = 7%+

In this special case we therefore have
Trace(H?) = s9;

and o o
Trace( H*"*1) = anti-Trace(T?%*1),

with the anti-trace of a square matrix being the sum
of all elements on the main anti-diagonal. The needed
anti-traces can be computed from (15) like the traces;
e.g., the anti-trace of the product-matrix in (16) is for
odd n

[n/2]
Z wa;—1(v1 + V3 + - + Vpp2-2i)
i=1
Ln/2]
+ Z wa;(v2 +va + -+ + Vng1-2i),

i=1

where all the partial sums of the v;’s can be found by
parallel prefix (Ladner and Fischer 1980). Thus we can
compute Trace(H?") for all 1 < i < n, from which for a
field K of characteristic 0 or >n we may determine the
coefficients of the characteristic polynomial Det(AI— H)
by solving the Newton identities (2).

However, H is most likely not anti-symmetric. There-
fore, we consider the “anti-symmetrized” block matrix

ﬁ |On><n Onxnl J
_ X
[O”X”IJHJ] ] [ J IO"X"]

ﬁﬁﬂ J2n

[Onxn ‘ ﬁ,]
|\ JH | grxn

Ts

in place of H and T. Then
Det(Aa, — Hg) = (Det(A, — H))?

and all Trace(.FNIéﬂ) can be determined from the traces
and anti-traces of 7} . Propostion 2 now allows the same
approach for that block matrix as was discussed above.
In fact at(Tm) < 4, thus one can compute five lower
triangular Toeplitz matrices L; () and five upper trian-

gular Toeplitz matrices U;(A) over K[A] such that
T+ Mg+ NTE + -+ A iTp !

= Li(\U;(A) (mod A™).

j=1

In summary, we have the following theorem.



Theorem 2. Given A € K"*" and b € K", where
K is a field of characteristic p = 0 or p > n, vectors
g, ..., Tn_r € K" that determine the solution manifold

Azg + Koy + -+ + Kap—y) = {b},

can be computed (on a randomized algebraic PRAM)
in
O((logn)?) time with M*(n) processors.

In case the system Ax = b is unsolvable the algorithm
returns &. The algorithm uniformly chooses O(n) ran-
dom elements in S C K, and with probability no more
than O(n?/card(S)) reports “failure.”

Finally, we comment on the case where the charac-
teristic p of K is 1 < p < n. For any Hankel matrix H,
with

n®logn loglog n many processors
we even know how to compute deterministically over
any field K and in

O((logn)?) parallel time
all characteristic polynomials
Det()\L- — Hri),

Hence, if we give ourselves slightly more processors,
we can show how to determine the rank of matrices
over fields of small positive characteristic in parallel
time O(yk(n,p)/(log,n) logn), which surpasses, e.g.,
our current processor-efficient solution for a Galois field
with 2 elements by a factor of (logn)?. We make us of
an identity by Chistov (1985), namely that for any nxn
matrix M
1

Det(Il — )\Mr‘z)

t=1,...,n.

K3 n
=[] D_(ME;)05, 51 AF (mod A™F1).
j=1k=0

Thus, if we can find for M = H the entries in row
and column j of the k-th power of H-;, the elements
(Hfij) [4,7] in the above formula, we can complete the
computation by parallel prefix polynomial multiplica-
tion and power series inversion. But, by the above de-
scribed algorithms, we can find for any Hankle matrix
H the Gohberg-Semencul representation for

I+ Mg+ -+ AT,

that in O((logn)?) parallel time and with n?logn x
loglog n many processors. By the symmetry of Ty we
have

ok _ 2k pp2k4l _ 2k

HY =T, HI =T,
hence we can find from the Gohberg-Semencul rep-
resentation, similarly to the trace, all (HJ)[n,n] =

(H¥)[n,n]. The stated processor count now follows
by using that approach for each of the Hankel matrices
H=H,;.
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