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1 Introduction

Algorithms invented in the past 25 years make it possible on a computer to
efficiently factor a polynomial in one, several, or many variables with coefficients from
a certain field, such as a finite field or the rational, real, or complex numbers. I have
surveyed work up to 1986 in the papers (Kaltofen 1982 and 1990a). This article discusses
important developments of the past five years; I also take a fresh perspective of some older
results. Although a conscientious effort has been made to cover (at least by citation)
the significant contributions of that period, omissions are likely, which I ask to be kindly
brought to my attention.

Three parameters partition the factorization problem: first, the mathematical na-
ture and computational representation of the coefficient domains of the input polynomial,
second, that of the irreducible factors, and, third, the representation of the input poly-
nomial and the sought irreducible factors, which depends not only on the degree and
number of variables but also on properties such as sparsity. Say, for instance, that a bi-
variate polynomial with rational coefficients is to be factored into irreducible polynomials
with real coefficients. The input polynomial as well as the factors may be represented by
lists of monomials, that is terms and their corresponding non-zero coefficients. For the
rational input the coefficients can be just fractions of two long integers, but the represen-
tation of the real coefficients for the factors is less standardized. One choice represents
a real algebraic number by its rational minimum polynomial and an isolating interval
with rational boundaries (Collins 1975), while another uses a rational linear relation of
powers of a complex algebraic number that is universal for all coefficients of a single
factor (Kaltofen 1990b).

The organization of this survey is governed by these distinguishing problem speci-
fications. We first discuss the “classical univariate problems” of factoring a polynomial
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represented densely by an array of coefficients in a finite field (§2), in the rational num-
bers (§3.1), and in an algebraic, Kronecker-style, extension (§3.2). We then discuss
factor coefficient fields whose elements can be represented by approximations, such as
complex or p-adic numbers (§3.3). The former is the classical problem of finding high
precision rational approximations to the complex roots of a rational, say, polynomial.
There is a well-defined notion of sparsity (Plaisted 1977) and straight-line program size
(see Strassen 1990) for univariate polynomials, both of which allow for degrees being ex-
ponential in the representation size. Under these models, a few exponential lower bounds
for the computational complexity of factorization can be established. For instance, some
complex (reducible) factors of the cyclotomic polynomial xL + 1, with L = 2l, require
Ω(

√
L/l) complex arithmetic operations for evaluation at a complex number for x (Lip-

ton and Stockmeyer 1976; more references can be found in Strassen 1990). Note that in
the sparse model xL +1 is represented by O(l) bits, the binary representation-size for the
exponent L, which is also the number of arithmetic operations needed to evaluate that
polynomial by repeated squaring. In §7 we will pose an open problem in this setting.

When solving a system of linear equations over a field, it is possible, by Gaussian
elimination, to compute the solution by the arithmetic operations +, −, ×, ÷, and by
testing whether elements are equal to zero, without needing any information about the
nature and representation of the coefficient field. In computer science terms, the coef-
ficient field can be viewed as an abstract data type. It is even possible to estimate the
bit-size of each intermediately computed field element relative to the dimension of the
system and the bit-size of the input elements by observing that any such element is a
fraction of two minors of the augmented input matrix (Gantmacher 1959, §2). Although
much of the results in the past decade make univariate polynomial factorization over
concrete coefficients fields such as the rational numbers a polynomial time process, it is
long known that there are fields whose arithmetic is effective, but over which polyno-
mial factorization becomes undecidable (van der Waerden 1930; see also Fröhlich and
Shepherdson 1955).

Fortunately, the multivariate polynomial factorization problem is not any harder. It
is possible to construct for fields of characteristic zero a “generic” polynomial-time algo-
rithm that reduces the problem to factoring a univariate polynomial (§4.1). Another such
generic algorithm computes the multivariate factorization into absolutely irreducible poly-
nomials, which have coefficients in the algebraic closure of the input coefficient field and
which do not factor in any further (transcendental) field extension (§4.2). For example,
if the input polynomial has rational coefficients, the absolutely irreducible factors remain
irreducible over the complex numbers; e.g., the rational bivariate polynomial x3 − y2

is absolutely irreducible. Similar examples, also with algebraic coefficients, can be con-
structed using Eisenstein’s criterion applied to the unique factorization domain C[y] as
coefficient domain, or Dumas’s far-reaching generalization (van der Waerden 1953, §24).
Such examples are useful for benchmarking implementations of algorithms.

The coefficients of the absolutely irreducible factors lie in an algebraic extension of
the coefficient field of the input polynomial. One thus has to design representations for
elements that are algebraic over an abstract field. In §4.2 we give an account of models
that have been developed. Surprisingly, the question of testing a multivariate polynomial
for absolute irreducibility can be settled by arithmetic in the coefficient field itself, that
is, absolute irreducibility is a purely rational problem, like linear system solving, with no
restriction on the characteristic of the coefficient field. Noether (1922) proved this fact via
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the construction of so-called irreducibility forms. Our generic polynomial-time algorithm
leads to irreducibility forms of small size (§4.2), which in turn can be used to establish
several effective versions of irreducibility theorems, such as the Hilbert irreducibility
theorem (§5).

For polynomials with many variables one has a notion of sparsity and straight-
line complexity that lies between the dense and sparse or straight-line representations
discussed above for univariate polynomials. Consider polynomials with n variables of
total degree d: there are

(
n+d

d

)
≥ 2min{n,d} many possible terms, but such polynomials

may have much fewer non-zero monomials, such as the Newton polynomial xd
1 + xd

2 +
· · · + xd

n, or they may be given by polynomial-sized straight-line programs, such as the
determinant of a d×d matrix with the entries being linear sums of x1, . . . , xn, which can
be computed division-free in at least O(d4 log d) arithmetic operations (Berkowitz 1984).
The point is that such polynomials can have degrees that are bounded by a polynomial
in the size of their representations, while their dense encodings still require exponential
size. Several efficient randomized algorithms have been constructed that can handle the
factorization of polynomials that are input in such ways (§5).

All general purpose computer algebra systems, such as Sac-2, Derive, Macsyma,
Maple, Mathematica, Reduce, and Scratchpad (marketed by The Numerical Algorithms
Group Ltd. under the name Axiom) have facilities for factoring polynomials. Moreover,
several implementations exist outside these systems, such as factorization algorithms
over finite fields used in coding theory. These implementations are employed in diverse
problem solving situations such as in Gröbner basis methodology, geometric modelling, or
in the computation of closed form solutions to elliptic integrals. These implementations
and applications are discussed in some more detail in §6.

Despite these dramatic theoretical and practical advances, several challenging prob-
lems, some of key importance to the symbolic-computation practitioner, remain unsolved.
I will propose several such problems in §7.

2 Univariate Polynomials over Finite Fields

Striking advances on polynomial-time deterministic and fast randomized factorization
over finite fields have been achieved within the past five years. The table below summa-
rizes several classical and new algorithms and their associated (expected, if randomized)
running times when factoring a univariate polynomial of degree n over a finite field with
q = pk elements, which we shall denote by Fq. If the running time is given as a function
T (n, q) the meaning is that the corresponding algorithm needs O(T (n, q)) arithmetic op-

erations in Fq to fully factor any such input polynomial. Several algorithms call linear
algebra procedures, such as null space construction of an n × n matrix, or polynomial
arithmetic, such as greatest common divisor computation of two n-degree polynomials.
If linear algebra is required, we write nω for the arising asymptotic running time, where
ω is the matrix multiplication exponent — ω = 3 classically, and ω = 2.3755 the the-
oretically best (Coppersmith and Winograd 1990); fast polynomial arithmetic enters in
terms of poly-log factors (logn)O(1) with reasonable exponent, 2 or 3, say. The exponents
of most deterministic algorithms, when given as O(1), seem unfortunately not to be so
reasonable.

Work prior to 1983 is described in detail in the books by Knuth (1981) and Lidl and
Niederreiter (1983). In the past decade much attention has been spent, unfortunately, on
controlling randomization rather than the actual computational complexity. Bach and
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Author(s) Running time

Tonelli (1891) log p
k = 1 and n = 2: requires a quadratic non-residue mod p; such a residue can be determined
in (log p)O(1) time by linear search if one assumes the validity of an extension of the
Riemann hypothesis (ERH) (Ankeny 1952). Generalized to higher roots by Adleman et
al. (1977).

Arwin (1918) (n2 log q)(log n)O(1)

Splits factors of different degree only, i.e., outputs the products of irreducible factors of
the same degree; denoted by “distinct degree factorization” (see also Knuth 1981, §4.6.2).
Running time improved in von zur Gathen and Shoup (1991, see below).

Butler (1954) nω + (log q) n (log n)O(1)

Irreducibility test based on “Q-matrix” construction also used by Berlekamp; see also
Schwarz (1956).

Berlekamp (1967) nω + qn2(log n)O(1)

For large p the asymptotic time can be reduced by re-arranging the last phase of the
algorithm.

Berlekamp (1970) nω + (log q) n (log n)O(1)

Randomized solution attributed to Collins and Knuth (1967) and Zassenhaus (1969, §3,
last paragraph); probability of success not completely analyzed. Using a sparse linear

system solver (Wiedemann 1986) this method can be run in time (log q)n2(log n)O(1) or

(n3 + n log q)(log n)O(1) and, simultaneously, O(n) space using a modification by Cantor
and Zassenhaus (1981, §4).

Moenck (1977) n2(log p) (log n)O(1)

k = 1: p−1 must be “smooth,” e.g., p = s2t +1, s = O(t); in addition, the method requires
a primitive root for Fp. See also von zur Gathen (1987) and Shoup (1991a); the latter
reference gives a method whose running time is linear in the square root of the largest
prime factor of p − 1. Further citations of other “special prime” results are found there as
well.

Rabin (1980) (log q) n3(log n)O(1)

Randomized method based on root finding in algebraic extensions with a clever failure
probability analysis; a randomized algorithm for construction irreducible polynomials of
degree n over Fq is also presented. Improvements are found in Ben-Or (1981); see also
Camion (1982).

Cantor and Zassenhaus (1981, §3) n2(log q) (log n)O(1)

Randomized solution; first O(n)-space polynomial-time complete factorization method.

Schoof (1985) (log p)6(loglog p)O(1)

k = 1 and n = 2: computes square roots mod p of constant integers, such as −1; running
time stated as bit complexity. Only known deterministic factorization method that is
unconditionally of polynomial running time as a function in log p.

Huang (1991a and 1991b) (n log p)O(1)

k = 1, i.e., Fq = Z/(p) and the given pre-image polynomial with integer coefficients has
an Abelian Galois group over Q. The running time is conditional on the validity of the
ERH. See Rónyai (1989) for the generalization to the case where the Galois group can be

arbitrary of cardinality nO(1).

von zur Gathen and Shoup (1991) (n2 + n log q) (log n)O(1)

Randomized solution with O(n
√

n) space requirement. If all irreducible factors have the

same degree, the time drops to (n(ω+1)/2 + n log q)(log n)O(1) and the space to O(n).
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Shoup (1990) reduce the number of random bits needed, up to the point where trying all
choices produces a

√
p (n log p)O(1) algorithm (Shoup 1990b). The latter complexity has

also been achieved by H. W. Lenstra, Jr., through an adaptation of the Pollard-Strassen
integer factoring method.

If one represents the Galois field Fq, q = pk, as the polynomial algebra Fp[z]/(g(z)),
where g is an irreducible polynomial of degree k over the fixed field Fp, it becomes
intriguing to investigate the complexity of factoring over Fq in terms of the input degrees n
and k. Efficient methods are described by Thiong ly (1989) and Shoup (1991b). The
asymptotically fastest deterministic method is at this time due to von zur Gathen and
Shoup (1991). A related problem is the deterministic construction of an irreducible
polynomial of degree n over Fp. The first solution that has running time a polynomial
function in n and p seems to be Chistov’s (1984) (see also Shoup 1990b and the survey
by Shparlinskiy 1990).

3 Univariate Polynomials over Fields of Characteristic Zero

3.1 The Rational Numbers

The dramatic events leading to the polynomial-time factorization algorithm for Q[x]
(Lenstra et al. 1982) are described in proper detail in (Kaltofen 1990a). It appears
that I have coined the name “Berlekamp-Hensel algorithm” for the basic algorithm that
factors a rational polynomial first modulo a prime p and then lifts to a factorization
modulo a sufficiently high power pk before recovering the rational factors (Kaltofen 1982).
I now prefer the more appropriate name “Berlekamp-Zassenhaus algorithm,” as this
technique was introduced by Zassenhaus (1969). In this algorithm exponentially many
steps may occur due the possibility of so-called “extraneous” factor images which do
not correspond to rational factors. The French literature calls such factors “parasitic,”
a notion which I now also prefer. Indeed, parasitic factorizations are closely related to
what mathematicians refer to as higher reciprocity laws and non-Hilbertian fields. The
polynomial-time method by Lenstra et al. (1982) was called by Susan Landau the “L3

(pronounced: L-cubed)” algorithm, a name which apparently stuck.
I sometimes read that when it comes to factoring an actual polynomial, the Berle-

kamp-Zassenhaus approach is always the successful choice. This is not so: Mona-
gan (1986) has demonstrated that by finding integer values for the variable of certain
irreducible polynomials with integer coefficients which produce, when evaluating the poly-
nomials at those values, integers with sufficiently large prime factors, one may exhibit
the irreducibility of the given polynomials; however, that would be quite hopeless by the
Berlekamp-Zassenhaus method. Such a reduction to integer factoring was theoretically
analyzed by Adleman and Odlyzko (1983).

The time for the L3 algorithm out-performing the Berlekamp-Zassenhaus method in
especially nasty cases — products of so-called Swinnerton-Dyer polynomials (Kaltofen et
al. 1983) — also seems to have arrived. In our studies of defining equations of class fields
(Kaltofen and Yui 1991) we have implemented a version of an algorithm that finds the
minimum polynomial from a high precision approximation of one of its complex roots
(Schönhage 1984, Kannan et al. 1988). Imin Chen has implemented in the programming
language C a version of the lattice reduction algorithm that avoids rational number
arithmetic by keeping track of the numerators κi,j ∈ Z of the µi,j = κi,j/dj ∈ Q (see
Lenstra et al. 1982 for the definition of the quantities µi,j and dj) and which is based
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on the long integer arithmetic of the PARI system (Batut et al. 1991). On a Sun 4
workstation the minimum polynomial of degree 47 of a real algebraic number has been
computed in about 31 hours.

A problem somewhat related to polynomial factorization is functional decomposition

of a polynomial: given f(x) ∈ K[x], where K is a field, find polynomials g(x) = asx
s +

· · · + a1x+ a0, h(x) ∈ K[x] such that

f(x) = g(h(x)) = ash(x)
s + · · · + a1h(x) + a0.

For K = Q, Kozen and Landau (1989) discovered a surprisingly simple solution of
quadratic running time in the degree of f . Their solution was further improved and
generalized by von zur Gathen (1990a and 1990b). I also refer to the latter papers
for a comprehensive bibliography to previous work. Most recently, Zippel (1991) has
investigated the problem of rational function decomposition.

3.2 Algebraic Number Fields

It is known at least since Kronecker (1882) that factoring polynomials over finite
algebraic extensions of Q can be reduced to factoring polynomials over Q. Kronecker
introduces a transcendental element, hence increases the number of variables by one,
which Trager (1976) shows how to avoid. The latter method is analyzed in Chistov and
Grigoryev (1982) and in Landau (1985).

Here the question of representing algebraic elements arises. Abbott et al. (1986)
demonstrate that it can be advantageous to keep multiple algebraic extensions Q(α1, . . . ,
αs) rather than construct a simple extension Q(ϑ). Arithmetic in such fields can be also
speeded by modular imaging. In particular, we point to work by Weinberger and Roth-
schild (1976), by Lenstra (1983) and (Abbott 1988), and by Smedley (1989) (see also
Geddes et al. (1988)). These methods usually lead to faster ways of factoring polyno-
mials over algebraic extensions than the Kronecker reduction, since the latter produces
inadvertently bad inputs for the Berlekamp-Zassenhaus method.

3.3 The Complex Numbers and P-adic Fields

The well-studied problem of finding complex roots of rational, say, polynomials, can
also be considered a polynomial factorization task. Here we are not considering numer-
ical methods but those that can for a given precision 2−l, l > 0, find complex rational
numbers aj +i bj , aj , bj ∈ Q, such that for the roots ζj ∈ C we have |ζj−(aj +i bj)| < 2−l.
One such method, invented in the last century by Routh and Hurwitz, is based on the
Cauchy principal of argument and Sturm sequences (see Marden 1949, Pinkert 1976,
and Wilf 1978). Collins (1977) observed that the computation of the necessary Sturm
sequences can be replaced by any real root isolation method. A different modification
computes the change of arguments around the nested contours by approximate complex
integration (Schönhage 1982). A further issue is to find well-balanced splits of the root
clusters, so that each sub-division contains sufficiently many complex roots. All these
ideas can be combined to prove that arbitrary high precision approximations can be com-
puted within the theoretically important parallel complexity class NC (Neff 1990; see also
Ben-Or and Tiwari 1990 building on earlier work with Feig and Kozen; see Cook 1985
for a discussion of the complexity model NC). We wish to point out that multidimen-
sional Newton iteration (see, e.g., Linwood 1990 or Kerner 1966) seems computationally
far more efficient than any of the “infallible” methods mentioned above. However, the
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question of how to compute a suitable starting point for the Newton iteration appears
unsolved (see §7).

A similar problem is the computation of p-adic approximations to the p-adic factors
of an integer, say, polynomial. By the Hensel lemma, the difficult case is when the
prime radix divides the discriminant of the polynomial. We merely refer to the papers
by Zassenhaus (1975), Trotter (1982), and Chistov (1987) for a discussion of this case.

4 Polynomials in Two Variables

Although the title of this section may suggest otherwise, all but two algorithms disussed
in this section generalize to several variables, the exceptions being the algorithms by
Duval (1991) and Bajaj et al. (1989) on algebraic curves. However, the running times of
the other algorithms, when applied to an input with n variables, are exponential in n,
which is only acceptable if the input or output also has a comparable size growth. As
explained in §1, such a dense representation model becomes exceedingly unrealistic as n
increases. In that situation, the approach discussed in §5 ought to be taken.

4.1 Finite Extensions of Prime Fields

At least three decidedly distinct methods are known for factoring densely repre-
sented multivariate polynomials over Q or finite algebraic extensions in polynomial-time.
One is a generalization of the lattice reduction method (Lenstra 1987). Chistov’s and
Grigoryev’s (1982) algorithm combines a modular version of an effective Hilbert irre-
ducibility theorem (Kaltofen 1985a, §7) with a polynomial-time lattice-reduction based
algorithm for factoring in Fq[x, y], and thus determines the proper combinations of para-
sitic univariate rational factor images quickly. A third approach (Kaltofen 1985a) applies
Zassenhaus’s (1981) root approximation scheme, which reduces the problem to univariate
factorization. That algorithm has the advantage that it can be formulated for an abstract
coefficient field, provided a univariate polynomial factorization method over that field is
also given. This universality has yielded a plethora of other results (see §4.2).

The problem of factoring in Fq[x, y] is polynomial-time equivalent as a function in the
input degree and log q to the problem of factoring in Fq[x] (Chistov and Grigoryev 1982,
§3). Hence for large characteristic any known polynomial-time solution requires ran-
domization; but in testing polynomials in Fq[x, y] for irreducibility randomization can be
avoided (Kaltofen 1987).

It is not completely clear to me on which inputs any of these methods yields a
procedure on a computer that is practically superior to the multivariate Berlekamp-
Zassenhaus method (Musser 1975, Yun 1974, Wang 1978, and von zur Gathen 1984).
The reason is that by virtue of the orginal Hilbert irreducibility theorem, parasitic factors
are rare, although no complete mathematical justification for this phenomenon seems to
be known (cf. Sprindžuk 1983). An even more special case is the problem of factoring in
Fq[x, y]. The univariate Berlekamp-Zassenhaus approach can be taken with lifting in the
domain Fq[[y]], and combining the appropriate parasitic factors can then be accomplished
quite reasonably (see Viry 1990).

Nevertheless, the polynomial-time algorithms are not a purely theoretical feat. If one
needs to factor a multivariate polynomial over the complex numbers, say, the univariate
image in the Berlekamp-Zassenhaus method is guaranteed to factor into linear polyno-
mials, that is, one always produces the maximum possible number of parasitic factors
and the algorithm requires, on absolutely irreducible inputs, surely at least exponential
time. How one can avoid such computational explosion is discussed next.
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4.2 Algebraically Closed Fields

It is possible to concisely characterize an algebraic extension of the input polyno-
mial’s field of coefficients that contains all coefficients of any individual absolutely irre-
ducible factor. Note that the minimum common super-field for all factors can be an exten-
sion of degree d !, where d is the degree of the input, as this is already the case for univari-
ate polynomials. Several persons, among them Chistov and Grigoryev (1983, Lemma 1),
Trager (1984, §3.2), Kaltofen (1985b, Theorem 1), and Dvornicich and Traverso (1987)
have discovered the following simple but powerful lemma.

Lemma. Let f(x, y) ∈ K[x, y], where K is a field of characteristic zero, be irreducible

over K and monic in x, that is, with a lead monomial xdeg(f). Let g(x, y) ∈ K[x, y], where

K is the algebraic closure of K, be an absolutely irreducible monic factor of f . Then

there exists a root ζ ∈ K of f(x, 0) such that the field generated by the coefficients of g
is isomorphic to a sub-field of K(ζ).

Monicity of f can be achieved by a generic transformation of coordinates y = ax+y′,
a ∈ K. Note that irreducibility of f implies that the degree of g must divide the degree
of f , which can be exploited (Yokoyama et al. 1990). Not only can one prove this lemma
from the root approximation algorithm, but that algorithm also yields several additional
properties (Kaltofen 1991). For one, the irreducibility condition for f may be replaced
with the condition that the Sylvester resultant

Resultantx(f(x, 0), ∂f(x, 0)/∂x) 6= 0,

which is true in characteristic zero if f has no square factor. Then, once the field L = K(ζ)
is constructed, all remaining work can be carried out by arithmetic operations in K(ζ). It
has to be recognized that, generally, different roots f(ζ1, 0) = f(ζ2, 0) = 0 may produce
the same absolutely irreducible factor. Of course, the question on how to identify such
collisions and, for example, correctly count the number of factors is intimately connected
with the representation of the fields L1 = K(ζ1) and L2 = K(ζ2) themselves.

One possible solution is to factor f(z, 0) = φ1(z) · · ·φr(z) such that φi are irreducible
factors in K[z]. Then we can choose the Kronecker model (see, for instance, Loos 1982)

Li = K[z]/(φi(z)), ζi = z mod φi(z), (1)

and represent elements in Li in the vector algebra spanned by {1, z, z2, . . . , zdeg(φi)−1}
over K. Notice that all conjugates of ζi are represented in this way. With this represen-
tation the arithmetic in Li can be reduced to arithmetic in K. By use of a polynomial
factoring algorithm in K[z] and arithmetic in K we now may diagnose that the same
absolutely irreducible factor is produced by two different φ1 and φ2, or by different roots
of one φi (Kaltofen 1990b, Remarks in §2 after the algorithm Factorization over the
Algebraic Closure).

For the concrete ground field Q = K, other representations of ζ are useful. For
instance, in addition to the factor φi, one may associate with ζ a high precision complex
rational approximation to a root of φi. The absolutely irreducible factors can then be
converted to complex rational polynomials that approximate the actual complex factors.
By appealing to factor coefficient separation results and by choosing very precise approx-
imations, not only double factors but also entirely real factors or complex conjugate ones
can be discerned (Kaltofen 1990b).
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Emmy Noether (1922) established that the problem of deciding whether a polynomial
is already absolutely irreducible requires no arithmetic in an algebraic extension and can
be decided by arithmetic in K itself. The reader is also referred to Schmidt (1976)
for an account of her approach written in English. This approach establishes that the
coefficients of those polynomials of a given degree that factor over the algebraic closure
form an algebraic variety of an ideal generated by polynomials with integer coefficients,
the irreducibility forms. In (Kaltofen 1991) we give the following effective construction.

Theorem. Let d ≥ 2 and n ≥ 2; there exist 2(d+n)O(1)

polynomials

Φt(. . . , Ce1,...,en
, . . .) ∈ Z[. . . , Ce1,...,en

, . . .],

ei ≥ 0, e1 + · · · + en ≤ d, such that for any field K and any polynomial

f(X1, . . . , Xn) =
∑

0≤e1+···+en≤d

ce1,...,en
Xe1

1 · · ·Xen
n

in K[X1, . . . , Xn] we have

∀ t: Φt(. . . , ce1,...,en
, . . .) = 0 ⇐⇒ f is reducible over K, or deg(f) < d.

If K has positive characteristic p, the coefficients of Φt are to be taken modulo p in the

left-hand-side equality. Furthermore, for all t,

deg(Φt) ≤ 12d 6 and ‖Φt‖1 ≤ (2d)12d7+12d6n+32d6

,

where ‖Φt‖1 denotes the sum of absolute values of the integral coefficients of Φt.

This fundamental theorem has many consequences in the theory of factorization over
the algebraic closure. There are no reducible polynomials arbitrarily close to an abso-
lutely irreducible one, and effective separation is possible (Kaltofen 1991, Theorem 10).
Modular projection of the coefficients preserves absolute irreducibility for all but a finite
number of exceptions, and these exceptions can be effectively bounded (Kaltofen 1991,
Theorems 8 and 9).

The Kronecker representation (1) requires the factorization of f(z, 0) and therefore
does not yield an absolute irreducibility test based on arithmetic alone. Already in
(Kaltofen 1985) we have removed this requirement at least if the field characteristic is
zero. Essentially, we perform the algorithm simultaneously for all Li, that is, in

K[z]/(f(z, 0)) ∼= K[z]/(φ1(z)) ⊗ · · · ⊗ K[z]/(φr(z))

in place of in each separate Li. This model of algebraic number field arithmetic has been
formalized by Dicrescenzo and Duval (1987): an algebraic number ζ is represented by a
not necessarily irreducible, but square-free, defining equation

ψ(z) ∈ K[z], ψ(ζ) = 0. (2)

Elements β ∈ K(ζ) are represented as elements in the algebra K[z]/(ψ(z)). The element β
is not zero if GCDz(β, ψ) = 1, interpreting β as an element in K[z]. In that case, β can be
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inverted by computing the Euclidean scheme σβ+ τψ = 1, σ, τ ∈ K[z], yielding β−1 = σ.
If β and ψ are not relatively prime in K[z], then, according to Dicrescenzo and Duval
(loc. cit.), the computation has to split. If ζ is a root of GCD(β, ψ), then the element β is
zero, otherwise it is not zero. In both cases, we obtain new defining equations for ζ. We
call this representation of algebraic number fields the lazy factorization model. Indeed,
Duval (1991) gives a procedure based on the geometry of the plane curve determined
by f(x, y) = 0 that can count the number of irreducible components by use of the lazy
factorization model.

I derive the above theorem by analyzing that variant of my algorithm for absolute
irreducibility testing which executes that algorithm on generic inputs, that is polynomials
whose coefficients are indeterminates. Polynomial degree and coefficient size bounds
for all intermediately computed generic rational function field elements are obtained
(Kaltofen 1991). These estimates then make it possible to formulate the bit complexity

of my algorithms without specifying the actual coefficient field. For if we know that all
arithmetic operations, that is +, −, ×, ÷, and = 0?, on field elements of polynomial size
is of polynomial-time bit complexity, then we can conclude that factoring algorithm using
the lazy factorization model, for example, is also of polynomial-time bit complexity, that
is the size of all intermediate values stay polynomially bounded. Of course, the actual
element representation must be canonical with respect to the arithmetic operations. A
famous counter-example otherwise is that of computing polynomial GCDs using quotient
field arithmetic without reducing numerators and denominators by a common factor,
which results in exponential bit complexity for an algorithm with quadratic arithmetic
complexity (Knuth 1981, §4.6.1, Eq. (27)).

Algebraic elements in the lazy factorization representation (2) are difficult to com-
pare if they are computed by different branches. To illustrate this fact, consider ψ(z) =
(z2 − 2)(z2 − 18): assume the computation has split and the resulting algebraic numbers
of the two branches are z1 mod z2

1 − 2 and z2/3 mod z2
2 − 18. There are conjugates of

both defining equations such that the resulting algebraic numbers both represent
√

2.
By associating with ζ an element ζ̃ that allows the distinction of conjugates of ψ this
problem may be remedied. Note that the element ζ̃ depends on the field K: if K is an
algebraic number field, we can use a rational complex number that isolates a root of ψ;
if K is a function field, we may use a truncated Puiseux series.

An element β ∈ K(ζ) is now represented by the triple

χ(z) ∈ K[z], ψ(z) ∈ K[z], ζ̃ (3)

with β = χ(ζ). As in the lazy factorization model, zero-testing requires the GCD com-
putation γ(z) = GCD(χ(z), ψ(z)). Then β = 0 if and only if γ(ζ) = 0, which can be

checked using the approximate root ζ̃. Non-zero elements can be inverted again using
the Euclidean scheme σχ + τψ = γ, and we get as the representation of β−1 the triple
σ(z), ψ(z)/γ(z), and ζ̃. Arithmetic now has changed from the lazy factorization model in
that the operands may have different defining equations, say β1 = χ1(ζ) with ψ1(ζ) = 0
and β2 = χ2(ζ) with ψ2(ζ) = 0. We can compute ψ3(z) = GCD(ψ1(z), ψ2(z)) and then
perform the arithmetic operations modulo ψ3. We call the representation (3) the single

path lazy factorization model for the field K(ζ) (Kaltofen 1991 and Lombardi 1989).
A salient feature of the single path lazy factorization model is that the factorization

problem over the algebraic closure can then be solved in parallel computational models,



304 Kaltofen

such as the theoretically important complexity class NC. For K = Q, poly-log bit com-
plexity is accounted for in part by my generic analysis discussed before, and in part by
Neff’s (1990) parallel complex root approximation algorithm mentioned in §3.3. Further-
more, this theory immediately generalizes to function fields Q(u). Entirely sequential
factoring methods over function fields are also discussed in Chistov (1987). Precursory
NC-results are found in Kaltofen (1985b) and Bajaj et al. (1989). The latter paper in-
vestigates the geometry of the four dimensional real two-fold corresponding to the curve
f(x, y) = 0.

5 Polynomials in Many Variables

When the problem size may depend on the number of variables, a key issue is the repre-
sentation of the input polynomials and their irreducible factors. For example, a classical
such problem, Frobenius’s (1896) original approach to group characters, is the factoriza-
tion of the determinant of the multiplication table of a finite group whose elements are
denoted by n variables. Clearly, such a determinant has potentially

(
2n−1

n

)
> 22n−2/n

many monomials, but it may be represented by a division-free straight-line program of
length O(n4 log n) which computes its value for any value of its variables. The theory
of efficient manipulation of polynomials in straight-line representation (Kaltofen 1988
and 1989) proves that then all suitably normalized irreducible factors can also be rep-
resented by polynomial-sized straight-line programs. Furthermore, these straight-line
programs can be constructed in random polynomial-time.

All algorithms known with this flavor utilize so-called effective Hilbert irreducibility
theorems that probabilistically prevent the occurrence of parasitic factors (Heintz and
Sieveking 1981, von zur Gathen 1985, Kaltofen 1985a, Bajaj et al. 1989, Kaltofen 1991).
In the last reference the following estimate is proven.

Theorem. Let K be a perfect field, g ∈ K[X1, . . . , Xn]. If the elements a1, . . . , an,

b1, . . . , bn, c2, . . . , cn ∈ S ⊂ K are randomly and uniformly selected from the set S, then

the probability

Prob(g(x+ a1, b2x+ c2y + a2, . . . , bnx+ cny + an)

has the same number of irreducible factors over K as g) ≥ 1 − 2 deg(g)4
/
card(S),

where card(S) denotes the cardinality of S.

We have implemented the algorithm for factoring polynomials given by straight-line
programs (Freeman et al. 1988). Although we then could factor polynomials inaccessible
to any other factorization method, it was observed that the straight-line answers become
larger and larger. The explanation is simply the fact that the size of the answer is related
to the time it takes to compute it, since a part of the algorithm performs Hensel lifting
by encoding it in the answer. For instance, the quadratic factor of a 16 × 16 group
determinant is found as a straight-line program with 199,732 instructions.

Fortunately, our work on the so-called black-box representation (Kaltofen and Tra-
ger 1990) provides a way out of this predicament: a black box is an object which takes
as input a value for each variable, and then produces the value of the polynomial it
represents at the specified point (see Figure 1).

The algorithm’s outputs are procedures which will evaluate all irreducible factors at
arbitrary points (supplied as the input). These procedures make oracle calls to the black
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p1, . . . , pn ∈ K−−−−−−−−−−−−−−−−−→

f(x1, . . . , xn) ∈ K[x1, . . . , xn]
K a field of characteristic 0

f(p1, . . . , pn) ∈ K−−−−−−−−−−−−−−−−−→

Figure 1: Black box representation of a polynomial.

box given as the input to the algorithm to evaluate them at certain points dependent on
the inputs to the procedure (see Figure 2). It is, of course, crucial that the program for
the irreducible factors evaluates a fixed associate for each multivariate factor. Moreover,
the program is with controllably high probability correct, that is it then will always return
the correct evaluations of the factors, independently of the input values an adversary may
have chosen for the variables.

p1, . . . , pn ∈ K−−−−−−−−−−−−→

Precomputed data including e1, . . . , en.
Program makes “oracle calls”:

a1, . . . , an−−−−−−−−−→

f(x1, . . . , xn)

f(a1, . . . , an)−−−−−−−−−−→

b1, . . . , bn−−−−−−−−−→

f(x1, . . . , xn)

f(b1, . . . , bn)−−−−−−−−−−→

...
c1, . . . , cn−−−−−−−−−→

f(x1, . . . , xn)

f(c1, . . . , cn)−−−−−−−−−−→

. . .

f(x1, . . . , xn) = h1(x1, . . . , xn)e1 · · ·hr(x1, . . . , xn)er

hi ∈ K[x1, . . . , xn] irreducible.

h1(p1, . . . , pn)−−−−−−−−−−−−−→
h2(p1, . . . , pn)−−−−−−−−−−−−−→

...

hr(p1, . . . , pn)−−−−−−−−−−−−−→

Figure 2: The program for evaluating the irreducible factors
of a black box polynomial.

Our constructed programs with oracle calls to the input black box are much more
space efficient than the straight-line program anwers. Both can be rapidly converted
to sparse format using any of the new sparse polynomial interpolation algorithms (Ben-
Or and Tiwari 1988, Grigoryev et al. 1990, Zippel 1979 and 1990, Kaltofen et al. 1988
and 1990). For polynomials given by black boxes, the sparse interpolations of the factors
can be easily distribute over a series of processors, since the amount of data that needs to
be sent to the individual processors is very small. Precisely this strategy has motivated
our design of the DSC distributed symbolic computing tool (Diaz et al. 1991).

6 Implementations and Applications

As said in §1, any of the general purpose symbolic computation systems provide a poly-
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nomial factorization facility, mostly based on the Berlekamp-Zassenhaus approach. On
the design of the factorizer in Macsyma the reader is referred to Wang (1978), on the
one in Reduce to Norman and Moore (1981), and the one in Axiom a.k.a. Scratchpad to
Lucks (1986) (see also Davenport et al. 1991). The latter was used to factor a univariate
polynomial of degree 388 with rational coefficients with numerators and denominators
up to 200 decimal digit long, which arose as an intermediate result in one of Gebauer’s
Gröbner basis reductions. The factorization into 4, 16, 32, 56, 64, 80, and 128 degree
factors could be carried out on an IBM 3081D in a few hours.

One of the first study of sparse factorizations is by Claybrook (1976). Zippel (1981)
has also implemented his method. The implementation of a factorizer based on straight-
line program representation is described in Freeman et al. (1988), with which one of the
largest polynomials ever was factored: a 16 × 16 group determinant, which if expanded
would have over 300 million terms. The factorization and subsequent conversion of the
single quadratic factor to sparse format took several hours on a Symbolics 3600 Lisp
machine. One of the few careful implementations of multivariate factorization over alge-
braic function fields is described in Abbott (1988). This algorithm forms a building block
of closed-form integration methods of algebraic functions. The problem of factoring in
Fq[x] is somewhat more specialized. Different implementations are discussed in Menezes
et al. (1988), Wang (1990), and Trevison and Wang (1991); the first reference comes from
Berlekamp’s original motivation: coding theory.

Large scale polynomial factorizations arise in several problem solving methodologies.
The greatest impetus is perhaps given by the solution of non-linear algebraic equations
by means of Gröbner basis reduction: in certain situations, only the factorization of
an intermediate polynomial can make such an approach feasible (Melenk et al. 1988).
Furthermore, factorizations over the reals and complex numbers are useful in geometric
modeling. E.g., the algorithm for parameterizing an implicitly given curve by Abhyankar
and Bajaj (1988) requires an absolutely irreducible input. The applications to Galois
theory, e.g., by Landau and Miller (1985) and by Landau (1989), are quite classical.

7 Open Problems

Before I discuss several challenging unsolved problems, which illustrate the vitality of
research on the subject of polynomial factorization, I shall give a brief update on the open
problems raised in Kaltofen (1990a, §6). On the questions of, within the complexity class
NC, factoring polynomials in standard representation in Q[x], or testing for irreducibility
in Fp[x], where p is large, and in Q[x, y], no progress can be reported. However, several
new NC-complexity results have been obtained in the meantime; see §3.3 and §4.2. Also,
the following problem remains open: given is a straight-line program of length l that
computes a multivariate polynomial. Are then all irreducible factors of degree polynomial
in l computable by straight-line programs of length also polynomial in l? Nonetheless,
Lickteig (1990) could establish polynomial straight-line complexity for such factors in the
weaker approximative algebraic complexity model.

Problem 1 (von zur Gathen and Shoup 1991): Given a polynomial of degree n in Fp[x],
can one find with randomization all factors in (nκ + n log p)(log n)O(1), κ < 2, expected
arithmetic operations in Fp?

Problem 2 (communicated by M. Karpinski and L. Lovász): Given integers C0, . . . , Ct

and exponents l, E1, . . . , Et with |Ci| < 2l, Ej < 2l, can one determine in time polynomial
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in l whether the polynomial

C0 + C1x
E1 + C2x

E2 + · · · + Ctx
Et

has a real root?

Problem 3 (communicated by B. Sturmfels): From the support vectors (ej,1, . . . , ej,n)
of a sparse multivariate polynomial

t∑

j=1

cej,1,...,ej,n
X

ej,1

1 · · ·Xej,n
n ,

compute by geometric considerations the support vectors of all possible factorizations.
Note that Dumas’s irreducibility criterion (van der Waerden 1953, §24) is an example of
such arguments.

Problem 4: Consider the symmetric functions

xn +

n∑

i=1

(−1)iσi(z1, . . . , zn)xn−i =

n∏

j=1

(x− zj).

For n complex rational coefficients c1, . . . , cn, consider the system of algebraic equations

ci = (−1)iσi(z1, . . . , zn), 1 ≤ i ≤ n. (4)

Give a fast, infallible method to compute initial complex rational values ζj such that the

multidimensional Newton iteration started at the initial points z
(0)
j = ζj converges for

the system (4) to the roots of xn + c1x
n−1 + · · ·+ cn (cf. Linwood 1990 and Pasquini and

Trigiante 1985).

Problem 5: Given f(x, y) ∈ Q(i)[x, y] monic in x and absolutely irreducible, can one
then decide in polynomial time in the degree and coefficient size of f , and the precision
l > 0, whether there exists a factorizable polynomial f̃(x, y) ∈ C[x, y] all of whose
coefficients are in absolute distance within 2−l of the corresponding coefficients of f? in
mathematical terms: ∃f̃ ∈ C[x, y] absolutely reducible such that ‖f − f̃‖∞ ≤ 2−l. A
solution of this problem may lead to a method of factoring polynomials whose coefficients
are given imprecisely by complex floating point numbers.

Acknowledgement: I wish to express my appreciation to Joachim von zur Gathen, Hendrik

Lenstra, Jr., Victor Shoup, and Igor Shparlinskiy for their input.
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angew. Math. 92, pp. 1–122 (1882).



Polynomial factorization 311

Landau, S., “Factoring polynomials over algebraic number fields,” SIAM J. Comp. 14, pp. 184–
195 (1985). Erratum: SIAM J. Comput. 20/5, p. 998 (1991).

Landau, S., “Simplification of nested radicals,” Proc. 30th Annual Symp. Foundations of Comp.
Sci., pp. 314–319 (1989).

Landau, S. and Miller, G. L., “Solvability by radicals,” J. Comp. System Sci. 30, pp. 179–208
(1985).

Lenstra, A. K., “Factoring polynomials over algebraic number fields,” Proc. EUROCAL ’83,
Springer Lec. Notes Comp. Sci. 162, pp. 245–254 (1983).

Lenstra, A. K., “Factoring multivariate polynomials over algebraic number fields,” SIAM J.
Comp. 16, pp. 591–598 (1987).

Lenstra, A. K., Lenstra, H. W., and Lovász, L., “Factoring polynomials with rational coeffi-
cients,” Math. Ann. 261, pp. 515–534 (1982).

Lickteig, T. M., “On semialgebraic decision complexity,” Tech. Report TR-90-052, Internat.
Computer Sci. Inst., Berkeley, California, September 1990. Habilitationsschrift.

Lidl, R. and Niederreiter, H., Finite Fields; Addison-Wesley, Reading, MA, 1983.

Linwood, D. A., “Roots of a polynomial via a parallel Newton’s method,” Manuscript, Dept.
Math., California State University, Fresno, CA, July 1990.

Lipton, R. and Stockmeyer, L., “Evaluations of polynomials with superpreconditioning,” Proc.
8th ACM Symp. Theory Comp., pp. 174–180 (1976).
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Postscript

On November 21, 1991, around 6 o’clock in the morning, Prof. Hans Zassenhaus passed away.
Hans Zassenhaus has fundamentally affected progress on the polynomial factoring problem: he
is the inventor of Hensel-based algorithms; he considered randomizations as a means to speed
factorization over large finite fields; he reduced the polynomial-time factorization problem over
the rationals to a diophantine optimization problem solvable by lattice reduction; that reduction
played a key role in my polynomial-time solution of the bivariate problem; and with David
Cantor, he constructed a very space efficient factorization method over finite fields. I will miss
Prof. Zassenhaus’s thoughts.


