On Computing Determinants of Matrices Without Divisions*

Erich Kaltofen

Department of Computer Science, Rensselaer Polytechnic Institute
Troy, New York 12180-3590; Inter-Net: kaltofen@cs.rpi.edu

An algorithm is given that computes the determinant of an n X n matrix with entries from an arbitrary commu-
tative ring in O(ng\/ﬁ) ring additions, subtractions, and multiplications; the “soft-O” O indicates some missing
logn factors. The exponent in the running time can be reduced further by use of asymptotically fast matrix
multiplication. The same results hold for computing all n? entries of the adjoint matrix of an n X n matrix with

entries from a commutative ring.

1. Overview

1.1. Statement of Result

For any n?, n > 1, elements y; j, 1 < 4,7 <n, of an
arbitrary commutative ring (with multiplicative unit),
consider the determinant of the corresponding n x n
matrix Y,

Y11 Yi,n
Y21 Y2,n
Det(Y) = Det(| . ,
Yn,1 R
n
= Z (Sign(g)nyi,o(i)),
g€S, =1

where S,, is the set of all permutations on the column
indices {1,2,...,n}. Furthermore, consider the adjoint
matrix of Y,

Adj(Y) = [(—1)“”Det(Yu,j)]

9
1<i,j<n

where Y4, j is that (n— 1) x (n — 1) submatrix which is
derived from Y by removing the i*® row and j*" column.

*This material is based on work supported in part by
the National Science Foundation under Grant No. CCR-90-
06077 and under Grant No. CDA-88-05910.

In Proc. Internat. Symp. Symbolic Algebraic Comput. IS-
SAC 92, P. S. Wang, ed., ACM Press, pp. 342-349 (1992).

342

We present algorithms that can compute both Det(Y)
and Adj(Y) in

O(n®v/n logn loglogn) ring operations,

i.e., +, —, and x. Our method can also be speeded by
using any of the asymptotically fast matrix multiplica-
tion algorithms. With matrix-multiplication exponent
w < 3 we may compute determinant and adjoint in

O<nw/2+2 logn loglogn) ring operations.

For the best-known exponent w < 2.3755 (Coppersmith
and Winograd 1990) this yields O(n®1®8) ring opera-
tions. Note that if the ring does not have a multiplica-
tive unit, it may be embedded into its Dorroh super-
ring, which then does (Jacobson 1974, §2.17).

Our model of computation may either be algebraic
circuits (straight-line programs, directed acyclic com-
putation graphs) or the more programming-oriented al-
gebraic random access machines, which are formally de-

fined in (Kaltofen 1988).

1.2. Discussion of Earlier Work

Removing divisions from programs that compute quan-
tities that are in polynomial relation to the inputs, but
which use rational functions in intermediate results,
is first addressed in Strassen’s (1973) seminal paper.
Strassen shows that divisions do not help for the asymp-
totically fast matrix multiplication problem, but with
his approach the determinant problem can be solved
by a division-free computation of O(n***!logn loglog n)
ring operations. It is supposed here that one can mul-
tiply polynomials of degree n over the ring of entries
in O(nlognloglogn) ring additions, subtractions, and

multiplications. An algorithm with that complexity is,
however, much more recent (Cantor and Kaltofen 1991).
Strassen’s result can also be derived explicitly for the
determinant from the so-called exact-division version
of Gaussian elimination (Sasaki and Murao 1982, §5).
Note that the standard way of computing the determi-
nant of a matrix by Gaussian elimination makes use of
division by non-zero pivot elements.

Division-free computation for determinant and ad-
joint have played a significant role in estimating the par-
allel complexity of basic linear algebra problems, such as
matrix inversion. The sequential division-free algebraic
complexity then corresponds to the work the parallel
algorithm performs, which usually is within a poly-log
factor of the processor count. It is in this setting that
improvements have been made. If the coefficient do-
main is a field with inverses for the integers 2,3,... n,
the determinant of an n xn matrix can be computed in a
little less than O(n“*1/2) additions, subtractions, mul-
tiplications, and divisions by 2,3, ..., n (Preparata and
Sarwate 1978 and Galil and Pan 1989). Recently, the
parallel processor count for matrix inversion has been
reduced to optimal (within a log-factor), but in that al-
gorithm divisions (and randomizations) are performed
(Kaltofen and Pan 1991).

For fields of characteristic 2, say, the study of par-
allel methods (Berkowitz 1984; see also Chistov 1985)
merely shaved of a loglogn factor from Strassen’s ap-
proach. The results in this paper improve the best-
known division-free complexity asymptotically by a fac-
tor of n®/2~1. We note that any method for com-
puting the determinant can be automatically converted
to one for computing the adjoint while increasing the
complexity by no more than a constant factor. This
fact follows easily from the generic program transfor-
mation for computing all partial derivatives by Baur
and Strassen (1983) (see also Linnainmaa 1976), since
8Det(Y)/8yi,j = (—l)iJ’_jDet(Yli,j).

1.3. Relevance of Result to Symbolic Computation

Computing determinant and adjoint over arbitrary
commutative rings is significant for the categorical ap-
proach to computer algebra itself (Davenport and Tra-
ger 1990). Our algorithm also removes divisions from
the determinant problem even when the entries are field
elements. This is particularly important when manipu-
lating matrices, their determinants, and their inverses,
whose entries are symbolic, that is, contain parameters
whose values remain unspecified. Due to exponential
expression-size explosion such determinants cannot al-
ways be represented in expanded, explicit, form. A
possible alternative is the implicit representation by
straight-line programs (see Kaltofen 1988 and 1989).
The straight-line representation of a determinant by a

343

program encoding a Gaussian elimination process con-
tains divisions, that is, it is not valid for certain pa-
rameter settings. With the results here that problem is
avoided.

One can also represent determinants and inverses of
symbolic matrices by so-called black boxes that evaluate
the objects for values of their parameters (Kaltofen and
Trager 1990). These black boxes can, of course, test
intermediately computed elements for zero. We wish to
point out, however, that such tests are not always easy.
Difficulties arise, for example, when the inputs to the
black box are not precise, e.g., numeric, or truncated
p-adic or power series. Then with the algorithm of this
paper the black box can always produce a numeric or
truncated p-adic or power series result. Furthermore,
zero testing can be affected by the characteristic of the
coefficient field. It can be desirable to have black boxes
that are oblivious to the characteristic (cf. Duval 1989).
Finally, for certain function models zero-testing may be-
come even undecidable (Richardson 1968).

1.4. Outline of Approach

In his seminal paper, Wiedemann (1986) has taken
so-called Krylov subspace methods for sparse linear sys-
tem manipulation one step further by reducing the aris-
ing “smaller” linear problems to the Berlekamp/Mas-
sey (1969) algorithm. As it turns out, Wiedemann’s
approach is applicable to abstract fields (Kaltofen and
Saunders 1991, Kaltofen 1992), and the approach has
yielded new insight into the problem of solving general,
dense, linear systems (Kaltofen and Pan 1991). Here
we combine that approach with Strassen’s (1973) avoid-
ance of divisions. The latter requires a concrete input
on which an algorithm with divisions does not divide
by zero. For Gaussian elimination without pivot-search
this would be the identity matrix. However, for Wiede-
mann’s determinant algorithm, which not only divides
but is also randomized, the construction of this con-
crete input is more involved. We need a matrix and
vectors for projection that produce a linearly generated
sequence such that the recursion equation can be deter-
mined without ever having to divide, say, when applying
the Berlekamp/Massey algorithm.

By a stroke of some luck, such a sequence can be “re-
versely engineered.” We inspect the Berlekamp/Massey
algorithm and its relation to the extended Euclidean al-
gorithm (Dornstetter 1987), and instead of computing
discrepancies, by some of which is divided, we deter-
mine the next sequence elements such that any division
is by the unit 1. There are several more conditions that
need to be enforced, but that is also possible. In the
end, all needed constants can be defined by explicit for-
mulas with binomial coefficients (§2). Our concrete ma-
trix is then chosen the companion matrix of the linear
generator of that sequence, and the projection vectors

i fi() ti(z)

0 126 + 70z + 3522 + 202> + 10z* + 62° + 328 + 227 + 28 + 2° 1

1 126 — 56z — 3522 — 1523 — 10z* — 42° — 326 — 27 — 28 —x+1

2 126 + 1962 — 2122 — 1523 — 5t — 425 — 26 — 27 —2 441

3 126 — 182z — 23122 + 623 + 5zt + 2° + 26 3 —a? -2z +1

4 126 + 322z — 203x2 — 24623 + x* + 2° 2t — a2 =322+ 2z +1

5 126 — 308z — 55322 4 20923 4 251x* —a® ot 4403 — 322 —3x+1
G 7932834 , 20267632, _ 12688669 .2 L6 209 .5 4 61955,4 624163

63001 63001 63001 251 63001 63001 63001
_ 15368221 .3 _ 188124)2 | 125877 , 62959
63001 63001 63001 63001

Figure 1: Special remainder sequence for n = 5.

are taken such that the Wiedemann algorithm produces
precisely that sequence. We then employ Strassen’s
technique. However, additional improvements in the in-
nards of that method, not unlike those in (Preparata
and Sarwate 1978), are required to obtain the stated
complexity (§3).

Over fields, our result has asymptotically at least
a factor n2~“/2 more operations than can be accom-
plished with divisions. For w > 2, the efficient solution
of a plausible sub-problem (§3, Step 1 in n*(logn)°™M
ring operations) would remove that extra factor.

Used Notation

The symbols Z and Q denote the set of integers and
rational numbers, respectively. In appropriate context,
Z shall also denote the sub-ring generated by the mul-
tiplicative unit of the ring of entries. By capital letters,
eg., C, Y, Z etc.,, we shall always denote matrices,
while vectors are denoted by lower case letters, e.g., u
and v, and which are then always column vectors. Row
vectors are denote by transposition of column vectors,

as in uT.

2. Normal Linear Recurrences

In this section we establish that the infinite sequence of
integers a; € Z for i > 0,

aozl,a1 :1,a2:2,a3:3,...,ai: <|_Z/22J>7

has the following properties (1) and (2). For any n > 1
consider the polynomials

f-1(z)

2", fo(x) = apr® "t 4+ ag,-1,

and their polynomial remainder/quotient sequence f;(z),
qi(z) € Q[z] for i > 1,

fi(x) = fi—a(x) — qi(x) fi—1 (), deg(fi) < deg(fi—1)-
Then it is true that forall 1 <i<n—1,
fi(z) (1)

= 4+2%2""17% 4 lower order monomials.

344

It immediately follows by induction from (1) that
fi(z) € Z[z] for all =1 <i < n,
and that for the extended Euclidean schemes

si(x) f-1(x) +ti(2) fo(z) = fi(z), si(x),ti(x) € Q)

for ¢ > 1, we must also have for all ¢ < n that
si(x),t;(z) € Z]x]. Our sequence also guarantees that

t,(x) = £2" 4 intermediate monomials + 1. (2)
The arising polynomials for the case n = 5 are given in
the Figure 1, including the polynomials f,, 1 and 1,
which are not integral any more.

We shall explain the significance of properties (1) and
(2), before we prove them. These stem from the way
that one computes the determinant of an n X n ma-
trix by the Wiedemann (1986) method. Briefly, that
method for a matrix C' with minimum = characteristic
polynomial finds for random vectors v and v a linear
recurrence for the sequence of domain elements

a; = uTC’iv, 7> 0.

The polynomial associated with the linear recurrence
turns out to be, at least with high probability, equal to
the minimum polynomial of C'. Thus the determinant
of C'is the constant coefficient of that polynomial. As it
follows from the theory of linearly generated sequences
(see, e.g., Kaltofen 1992), our sequence restricted to the
first 2n elements,

ap =1,a1 =1,a2 =2,...,a2,-1,
is linearly generated by the polynomial
+t,(z) =" — g™t — -

— ¢

with

¢ = —(=1)Ln=i /2 (L(” +ii)/2j).

Ao(x) < 1;Eo(z) < 03lp < 036 — 1;
Forr=1,2,3,... Do {
At this point, ag, ..

., Qp_o € 7 are determined.

With A, (z) = cr,l,oxdT‘*l + cr,l’lxd'ffl_l + - 4 Cr-1,d_ys Cr—1,0 # 0, the r-th discrepancy is
Op «— Cr—1,dy, 10r—1+ Cro1,d,_1—1Gr—2+ -+ Cr_100r_q,_,—1; Dote that always c¢,_1 4. , =1.
Note that for the coefficients in (3) we have ¢; = —cap ;-
We now choose a,_1 such that (1) and (2) is true.
If 21,_1 < r or r =2 Then {Determine a,_1 such that 6, = 1;

this branch occurs for r =1,2,3,5,7,9,... }

Else {Determine a,_1 such that é, = 0;

this branch occurs for r =4,6,8,10,... }

The rest of the loop body is the Berlekamp/Massey algorithm; note that always 6 = 1.

If 6, #0

Then {A,(z) — Ar_1(x) — 5(; ¥, _1(x);

If 20,1 <7 Then {3, () — Ar_1(z); b — 17— lr—1; 0 «— Oy}
this branch occurs for odd r }
Else {X.(x) — aX,_1(x); I} « lr—1;
this branch occurs for » = 2 }}
Else {A.(z) — Ar_1(x); Bp(z) «— 221 (2); 1, — l—q;
this branch occurs for even r > 4 }}

Return {ag,a1,...,ar_1,...}.

Figure 2: Algorithm to generate special sequence.

Being a linear generator means that
a; = Cp—10;—1+Cp_2a;—o+--+coa;—, forn <i<2n.

If we now choose C' the companion matrix of (3), i.e.,

0 1
0 1 0
0 0 1
Ch C1 Cp—2 Cn—1
then

ag
) ay

a;=[1 0 0 0] xC" xv, wv=

6'11‘ an—1

Therefore, if we perform Wiedemann’s algorithm on C
using u = e, which is the 1-st unit vector, and v
as it is defined, the arising linear recurrence problem
is the one described above. Solving the linear recur-
rence by the extended Euclidean algorithm, and sub-
sequently making the computed characteristic polyno-
mial monic, necessitates by the properties (1) and (2),
respectively, no divisions. We will use this special case
as the point of translation for Strassen’s elimination of
divisions scheme.

We can actually construct our sequence by exploit-
ing the interpretation of the polynomial remainder se-
quence of f_; and fy as the Berlekamp/Massey algo-
rithm (Dornstetter 1987; see also Kaltofen 1992). Es-
sentially, we can choose the next a; in such a way that

345

the discrepancy, which corresponds to the leading co-
efficient of the next remainder is equal to 1. This is
possible because the so-called error-locator polynomi-
als have always the constant coefficient 1. Thus one
may enforce condition (1), but it does not yet guaran-
tee condition (2). Indeed, for a polynomial remainder
sequence without degree gaps, a so-called normal PRS,
one more discrepancy computation completes the linear
quotient. By making that discrepancy 0, the current
error-locator polynomial remains untouched, thus can-
not drop in degree. Therefore, throughout the Berle-
kamp/Massey algorithm performed on the constructed
sequence, the leading (and trailing) coefficients of the
error locator polynomials are +1. The same property
must then hold also for the reverse of those polynomi-
als, the multipliers ¢;(z). Since in the initial phase of
the algorithm the situation is somewhat different, we
give the complete construction.

A few more comments are in order. The case r =
4,6,8, ... corresponds to the computation of the con-
stant coefficient of the quotients in the polynomial re-
mainder sequence. Since the discrepancies for r =
1,2,3,5,7,... are all equal to 1, the quotients are all
linear, and Ay = 1, Ao = 1 — =z, Agyp_1 = Ag,, with
deg(A2m—1) = m for all m > 2. The reason for treating
r = 2 exceptionally is so that the process gets initialized
correctly. By setting §4, = dg = -+ = 0, one guarantees
that always cg = £1. This condition is essential because
at the end of our application cg corresponds to the lead-
ing coeflicient of the polynomial that is an associate of
the characteristic polynomial. One also has to divide
by that coefficient in order to obtain the determinant

correctly.

One of the referees for this paper discovered the ex-
plicit formulas for both a; and cay,, ; given earlier, which
now can be derived from the algorithm given in Fig-
ure 2. The decisions in that algorithm are entirely
known. In particular, d, = |(r + 1)/2] for all r > 2,
and I, = [(r+1)/2] for all r > 0, and §, = § = 1 for
all » > 0. Therefore, A,.(z) = Y% ¢, 2%~ is updated
only for odd r = 2m + 1 (and r = 2, which we need not
consider here). In that case,

Aomy1 = Ao — 2¥om
=Ny — - 2X9m 1

= Aoy, — 1U2A2m72~
Comparing the coefficient of 27 in this equation, noting

that doy+1 =m+1, doy, = m, and dop—2 =
obtain

m—1, we

Com+1,m+1—j = C2mm—j — C2m—2m+1—j-

Therefore, it can be established by induction on m, us-
ing properties of Pascal’s triangle, that for all m > 1
and 0<71<m

Com—14 = Com,i = (_1)_(m—i+1)/2j (_(m +Z)/2J) (5)

]

Furthermore, we have the following identities for a,.:
for even r = 2m

m
0= E Com—1,i0m+i—1,
i=0

(6)

and for odd r =2m —1

i=0

Com—2,im+i—1-

These identities yield for all » > 1

“T:(u;u>'

Here we shall prove only that (5) and (8) yield (7); iden-
tity (6) follows similarly. Plugging in (5) and (8) for the
product under the summation sign, and applying the

000

as well as replacing m — 1 by m, we have for the right-
hand-side of (7)
(L(m

(8)

m

Z(_l) [(m—i+1)/2]

=0

m

Z')/QJ) (mf: Z)

(9)

346

We consider only the subcase where m = 2k + 1 is odd:
then for even i,
(i+1)) j)

(i
)

1) Lm—=(i+1)+1)/2]
)i/2.

m

—me‘(u

<2k+1

(i/2)
(_1)L(m—i+1)/2J = —(—
= (-1

and

Therefore, in (9) the two coefficents to (10) can be com-
bined as

m+e\ (mti+l) _ [(m+i
m m N m—1
C(2k+1+1
2k ’
which yields for j = k — /2 the following sum for (9):
i 2+ 1) (4 +1-2j
2k '

7=0
We may extend the summation to the full range of in-
tegers by adding 1, since

<4k +21k_ Zj) N {

If we expand the first binomial coefficient,

() -0) (%)

then (11) is equal to

S

(11)

0 fork+1<j<2k,
1 forj=2k+1.

j=—00
2k dk—-1-2(7—-1
. j—1 2k
J=—00
However, both sums in (12) are 22*, since generally
Z (—1)L<K> (,u B UL) =" fork>0
= L K

(Graham et al. 1989, (5.53)). Therefore (12) = (11) =
(9) = 1, proving (7) for odd m. The case where m is
even follows similarly.

3. Division-Free Determinant Computation

The main idea of the algorithm is the application of
Strassen’s (1973) general method of avoiding divisions
to Wiedemann’s (1986) determinant algorithm. There
are, of course, several obstacles that need to be over-
come. For one, Wiedemann’s algorithm is randomized.
Also, on arbitrary matrices it requires O(n®logn) steps,
which after elimination of divisions generally would re-
quire by a factor of O(n logn loglogn) more time. And
finally, there still would be divisions by elements in the
algebraic closure of the coefficient field. We shall give
the solutions to all these problems by outlining our al-
gorithm right away.

Step 1: Let Y by an n X n matrix with indeterminate
entries y; ;.
Fori=0,1,...,2n — 1 Do

{Compute the coefficients of z7, 0 < j < i, of

ao

ai

ai(z) = el (C+2Y")v, wvo=| . |,

Gp—1

where C'is the companion matrix (4) of §2, Y/ =Y -C,
and a; are the entries in the sequence of §2. Note that
the computed quantities are homogeneous polynomi-
als of degree j in the entries y; ; of Y’. }

Step 2: Compute the Euclidean scheme
5 (2)2%" 4t (2) (on 122" 4 -+ ap) = fol(z),

such that deg(f,,) = n—1, with coefficients in the domain
of truncated power series in 2, Q(...,y; ;,...)[[z]] mod
2" +1. Note that the coefficients of z!z* in the remain-
ders f; and the corresponding “Bezout” multipliers ¢;,
1 < i < n, are actually elements in Z[...,y;,..]
= Z[...,Yij,-...], since for z = 0 all leading coeffi-
cients of the intermediate polynomial remainders are
+1 (see also the remarks below). It is these elements in
Z[...,y; ;-] that are computed here.

Step 3: Make
to(x) = (£1+2-(...)) 2" + lower order terms

monic by dividing by the truncated power series inverse
of the leading coefficient. Let the constant coefficient
of the resulting polynomial, which is the characteristic
polynomial of C' + zY”, be

.)zj + O(z"'H),

Tj(..
1

/
'ayi,ja"

n
=

where we so far have computed all 7;. The determinant

347

of Y is then
Det(Y) = Z’Tj(. csYi5 — Ciygy - .),
j=1

where c; ; are the entries in C'. Note that the translation
of y; ; occurs in Step 1 at the beginning of the com-
putation, so one can return the sum of the 7’s as the
determinant.

Before going through the complexity analysis of the
algorithm, we shall give further explanation on the
workings of our method. First, it is crucial to observe
that for z = 0 the algorithm represents Wiedemann’s
method on the input matrix C. No randomization is
necessary, since for the matrix C' the minimum polyno-
mial is equal to the characteristic polynomial, which in
turn is the minimum linear generator for the sequence
{ap = ap(0),a1 = a1(0),...}. The algorithm makes
Strassen’s elimination of divisions explicit using the spe-
cial input C' as the point at which the algorithm never
divides by zero. Indeed, at that special point no division
occurs at all, due to the construction in §2. The leading
coefficients of all arising remainders are +1, and so is
the leading coefficient of ¢, (z) (again setting z = 0). It
may be helpful for the reader to consult the paper (Kalt-
ofen 1988, Theorem 7.1) for an alternate description of
Strassen’s method.

We now analyze each step, in reverse order of occur-
rence. Step 3 is simply the division of a truncated power
series by another, hence requires O(n log n loglog n) ring
operations (Sieveking 1972, Kung 1974, and Cantor
and Kaltofen 1991). Step 2 can be taken care of in
O(n?logn loglogn) ring operations, since the extended
Euclidean algorithm requires O(n?) domain operations,
which in our case are truncated power series opera-
tions. We note that by the construction of the case
z = 0 the remainder sequence is normal. Step 2 can
be done faster, namely in O(n?(logn)3(loglog n)?) ring
operations using the Knuth (1970)/Schénhage (1971)
“half-gcd” approach. Divisions are then again only
by the leading coefficients of the remainders, which is
most readily seen from Strassen’s (1983, Proof of The-
orem 4.2) explicit statement of that algorithm (see also
Moenck 1973 and Brent et al. 1980).

We are thus left with Step 1. Let » = [v/2n] and
s = [2n/r]. We compute in the given order:

Substep 1.1. For j =1,2,...,r — 1.
vj(2) = (C + 2Y") vy;
Substep 1.2. Z(z) = (C' + 2Y")";
Substep 1.3. For k= 1,2,...,s:u} (2) = ef Z(2)";
Substep 1.4. For 5 =0,1,...,r—1:
For k=0,1,...,s:
g (2) = g, (2)0;(2).

Substep

Standard matrix multipl.

Fast matrix multipl.

L1. (C+ 2Y")ivg:
1.2. (C+2Y")":
1.3. eT Z(2)*:

L4, uf (2)v;(2):

r-0(n?) - O(r)

s-0(n?) - M(n)
rs-O(n) - M(n)

Y jctogr O(n?) - O(M(27F1))

5 ctogr On) - O(M(27+1))
Same as in 1.1.

5-0(r?s?) - M(r)

(r?/s)- O(s*) - M(n)

Total

O(n3y/n logn loglogn)

O(n*/?>*21logn loglogn)

Figure 3: Summary of running times for Substeps of Step 1.

Note that
vj(2) € (Z[.- -,y 5o D"
Z(2) € (Z[. - yijo-- 2™,
ug (2) € (Z[.. .91 5, - DT,
i (2) € Z[. ..y 5, 2]

Figure 3 summarizes the cost, in terms of ring opera-
tions, of each substep. We shall give the measures for
both standard O(n?) and fast O(n*) matrix multipli-
cation time. The function M(n) = O(n logn loglogn)
measures the cost of the truncated power series arith-
metic. In order to make the entries more intuitive, we
decompose our running time measures, first counting
the number of iterations, then the cost in terms of ma-
trix or vector operations, and finally the cost for the in-
dividual truncated power series operation. Note that for
substeps 1.1 and 1.2 the maximum degree is 2", which
is one of the reasons why things run faster.

Both entries for substep 1.2 are validated by expo-
nentiation with repeated squaring. A similar matrix A
times vector b doubling argument, sketched as

A [| ... | 4210
=LAz Az || a2,

justifies the second entry in substep 1.1. Aside from
the second entry in substep 1.4, which is derived by
blocking the arising matrix times matrix problem into
(s x s)-sized blocks, the only other entry using non-
standard techniques is the dominating second entry in
substep 1.3. The argument for the complexity measure
stated there considers the problem of computing

upr(2) = Z(2)" x Zuk’l(z)(z")ﬂ
1=0

where the entries of the vectors uy ;(z) have degree less
than r in z. One first computes the matrix product

Z()" % [ugy(2) |, (2) | oo | g (2)]

348

by (s x s)-sized blocking. Thus, we are required to do
O(r?) block-products, each block costing O(s*) power
series operations truncated at O(z2"). Summing the
resulting vector polynomials up is dominated by that
count.

Note added on June 14, 1995: Thomas H. Spencer
has observed that by choosing » = [(2n)'™#] and
s = [(2n)?] with 8 = (w—2)/(w—1) $ 0.273, the
time with fast matrix multiplication is overall reduced
to O(n®*1=P), which with the currently best w < 2.3755
becomes O(n3193). Using in Substep 1.3 a fast method
for multiplying an n X n matrix by an n X s ma-
trix in O(nv=7toMs7+e()) arithmetic operations (by
blocking the m x m matrix into (¢ x t)-sized blocks
and the n x s matrix into (¢ x t%)-sized blocks such
that n/t = s/t% and that the individual block prod-
uct only take O(t2t°(1)) arithmetic steps each), where
v =(w—2)/(1 —¢) with § = 0.2946289 (Coppersmith,
private communication), the overall running time can be
improved to O(n®+1/(+1+0(1)) which with w 5 2.3755
yields O(n3:9281),

Acknowledgement: The explicit formulas for the in-
tegers a; and ¢; in §2 were pointed out to me by one
of the referees. Another referee made me aware of the
work by Sasaki and Murao. Furthermore, my colleague
M. S. Krishnamoorthy provided the proof for (9) = 1. I
am grateful for all these contributions.

Literature Cited

Baur, W. and Strassen, V., “The complexity of partial
derivatives,” Theoretical Comp. Sci. 22, pp. 317-330
(1983).

Berkowitz, S. J., “On computing the determinant in
small parallel time using a small number of pro-
cessors,” Inform. Process. Letters 18, pp. 147-150
(1984).

Brent, R. P., Gustavson, F. G., and Yun, D. Y. Y., “Fast
solution of Toeplitz systems of equations and compu-
tation of Padé approximants,” J. Algorithms 1, pp.
259-295 (1980).

Cantor, D. G. and Kaltofen, E., “On fast multiplica-
tion of polynomials over arbitrary rings,” Acta In-
form. 28/7, pp. 693-701 (1991).

Chistov, A. L., “Fast parallel calculation of the rank
of matrices over a field of arbitrary characteristic,”
Proc. FCT ’85, Springer Lec. Notes Comp. Sci. 199,
pp. 63-69 (1985).

Coppersmith, D. and Winograd, S., “Matrix multiplica-
tion via arithmetic progressions,” J. Symbolic Com-
put. 9/3, pp. 251-280 (1990).

Davenport, J. H. and Trager, B. M., “Scratchpad’s view
of algebra I: basic commutative algebra,” in Design
and Implementation of Symbolic Computation Sys-
tems, Springer Lect. Notes Comput. Sci. 429, edited
by A. Miola; pp. 40-54, 1988.

Dornstetter, J. L., “On the equivalence between Berle-
kamp’s and Euclid’s algorithms,” IEEE Trans. Inf.
Theory 17-33/3, pp. 428-431 (1987).

Duval, D., “Simultaneous computations in fields of dif-
ferent characteristics,” in Computers and Mathemat-
ics, edited by E. Kaltofen and S. M. Watt; Springer-
Verlag, New York, pp. 321-326, 1989.

Galil, Z. and Pan, V., “Parallel evaluation of the de-
terminant and of the inverse of a matrix,” Inform.
Process. Letters 30, pp. 41-45 (1989).

Graham, R. L., Knuth, D. E.; and Patashnik, O., Con-
crete Mathematics; Addison-Wesley Publ. Comp.,
Reading, Massachusetts, 1989.

Jacobson, N., Basic Algebra I; W. H. Freeman & Co.,
San Francisco, 1974.

Kaltofen, E., “Greatest common divisors of polynomials
given by straight-line programs,” J. ACM 35/1, pp.
231-264 (1988).

Kaltofen, E., “Factorization of polynomials given by
straight-line programs,” in Randomness and Compu-
tation, Advances in Computing Research 5, edited by
S. Micali; JAI Press, Greenwhich, Connecticut, pp.
375-412, 1989.

Kaltofen, E., “Efficient Solution of Sparse Linear Sys-
tems,” Lect. Notes, Dept. Comput. Sci., Rensselaer
Polytech. Inst., Troy, New York, 1992.

Kaltofen, E. and Pan, V., “Processor efficient parallel
solution of linear systems over an abstract field,” in
Proc. 3rd Ann. ACM Symp. Parallel Algor. Architec-
ture; ACM Press, pp. 180-191, 1991.

Kaltofen, E. and Saunders, B. D., “On Wiedemann’s

349

method of solving sparse linear systems,” in Proc.
AAECC-5, Springer Lect. Notes Comput. Sci. 536;
pp- 29-38, 1991.

Kaltofen, E. and Trager, B., “Computing with poly-
nomials given by black boxes for their evaluations:
Greatest common divisors, factorization, separation
of numerators and denominators,” J. Symbolic Com-
put. 9/3, pp. 301-320 (1990).

Knuth, D. E.; “The analysis of algorithms,” Actes du
congrés international des Mathématiciens 3, pp. 269—
274 (1970).

Kung, H. T., “On computing reciprocals of power se-
ries,” Numer. Math. 22, pp. 341-348 (1974).

Linnainmaa, S., “Taylor expansion of the accumulated
rounding error,” BIT 16, pp. 146-160 (1976).

Massey, J. L., “Shift-register synthesis and BCH decod-
ing,” IEEE Trans. Inf. Theory IT-15, pp. 122-127
(1969).

Moenck, R. T., “Fast computation of GCDs,” Proc. 5th
ACM Symp. Theory Comp., pp. 142-151 (1973).

Preparata, F. P. and Sarwate, D. V., “An improved par-
allel processor bound in fast matrix inversion,” In-

form. Process. Letters 7/3, pp. 148-150 (1978).

Richardson, D., “Some undecidable problems involving
elementary functions of a real variable,” J. Symbolic
Logic 33/4, pp. 511-520 (1968).

Sasaki, T. and Murao, H., “Efficient Gaussian elimina-
tion method for symbolic determinants and linear sys-
tems,” ACM Trans. Math. Software 8/3, pp. 277-289
(1982).

Schonhage, A., “Schnelle Kettenbruchentwicklungen,”
Acta Inform. 1, pp. 139-144 (1971). In German.

Sieveking, M., “An algorithm for division of power se-
ries,” Computing 10, pp. 153-156 (1972).

Strassen, V., “Vermeidung von Divisionen,” J. reine u.
angew. Math. 264, pp. 182-202 (1973). In German.

Strassen, V., “The computational complexity of con-
tinued fractions,” SIAM J. Comput. 12/1, pp. 1-27
(1983).

Wiedemann, D., “Solving sparse linear equations over
finite fields,” IEEE Trans. Inf. Theory IT-32, pp. 54—
62 (1986).

