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Abstract

Motivated by a constructive realization of generalized dihedral groups as Galois groups over Q and by

Atkin’s primality test, we present an explicit construction of the Hilbert class fields (ring class fields) of

imaginary quadratic fields (orders). This is done by first evaluating the singular moduli of level one for

an imaginary quadratic order, and then constructing the “genuine” (i.e., level one) class equation. The

equation thus obtained has integer coefficients of astronomical size, and this phenomenon leads us to the

construction of the “reduced” class equations, i.e., the class equations of the singular moduli of higher levels.

These, for certain levels, turn out to define the same Hilbert class field (ring class field) as the level one class

equation, and to have coefficients of small size (e.g., seven digits). The construction of the “reduced” class

equations was carried out on MACSYMA, using a refinement of the integer lattice reduction algorithm of

Lenstra-Lenstra-Lavász, implemented on the Symbolics 3670 at Rensselaer Polytechnic Institute.
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I. INTRODUCTION

I.1 Backgrounds and the main results.

Singular moduli (class invariants) and class equations have been extensively studied over the years by

many mathematicians.

In this paper, we shall discuss the explicit construction of the class equations (the defining equations of

the Hilbert class fields (the ring class fields)) of imaginary quadratic fields (orders) over Q. The “genuine”

class equations having the singular moduli of the elliptic modular j-invariant as roots—the class equations

of level one—have integer coefficients of astronomical size, although their constant terms and discriminants

are highly divisible numbers with small prime factors (Duering [D1] and Gross-Zagier [G-Z1]; see Theorem

(A2.1) below).

The main theme of this paper is to present an algorithm for the construction of the “reduced” class

equations which have very small coefficients and define the same Hilbert class fields (ring class fields) over

Q as the “genuine” ones, using a refinement of the integer lattice reduction algorithm (the L3-algorithm),

implemented with MACSYMA on the Symbolics 3670.

Let τ be a imaginary quadratic number which is a root of the quadratic equation az2 + bz + c = 0 with

a, b, c ∈ Z. We assume that Im τ > 0. We define the discriminant of τ to be d = disc(τ) = b2 = 4ac < 0. Let

K = Q(τ) = Q(
√
d). Let O = Z

[

b+
√

d
2

]

be an imaginary quadratic order of K of class number h(d) =: h.

Let j(z) be the elliptic modular j-invariant. Then the singular modulus j(τ) for τ ∈ O is an algebraic integer

of degree h over Q, called a class invariant of O. The minimal polynomial, Hd, of j(τ) is know as the class

equation of O ⊂ K = Q(
√
d), which we shall call the “genuine” class equation or the class equation of level

one. The splitting field of Hd over Q is the field K(j(τ)) which is the ring class field of conductor f over

K = Q(
√
d), where d = dKf

2 with dK a fundamental discriminant of K. By the Artin reciprocity theorem,

the Galois group Gal(Hd/Q) is isomorphic to the generalized dihedral group Pic(O) o C2 where Pic(O)

denotes the ideal class group of O.

Weber [W] considered the explicit construction of the field K(j(τ)) = Q(τ, j(τ)), τ ∈ O using other

modular functions (of higher level) f(z). When f(τ) does lie in K(j(τ)) = Q(τ, j(τ)), f(τ) is also called a

class invariant of O, and its minimal polynomial, hd, over Q, is called the “reduced” class equation or the

class equation of higher level. The polynomial hd has small integer coefficients and (from its construction)

defines the same ring class field as Hd over Q.

Weber [W] initiated the construction of the reduced class equations of O ⊂ K = Q(
√
d), d < 0 with

d ≡ 1 or 5 (mod 8) and carried out computations for 65 values of d; the largest class number treated by

Weber was 7. Berwick [B] computed the singular moduli of degree 2 and 3. However, it was Watson who
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first discussed systematically the explicit construction of class invariants and reduced class equations, in his

series of papers [W1, W2, W3, W4]. Watson’s algorithm was based on finding all the roots of the class

equations that were to be constructed. For instance, for d ≡ 1(mod 8) (with |d| prime), the Watson class

equation of degree h had the single real root, f(
√
d)/

√
2, where f(z) was a Weber function (see B1.1)), and

Watson described the complex roots only up to cubic conjugation. Thus, Watson had to choose from three

candidates for each of the h− 1 complex roots. The “right” choice was tested for whether the h− 1 complex

roots and the single real root added up to approximately a rational integer. However, this trial and error

method required 3h−1 test sums. And, in fact, Watson stopped his construction at h = 19.

There are other methods for constructing class equations of imaginary quadratic orders. One of the meth-

ods is based on function theoretic arguments and utilizes the Schläfli modular equations. This approach was

used by Schläfli, Weber [W] (§73-75), Hanna [H], and by others. Hanna [H] tabulated all of the known Schläfli

modular equations, and constructed class equations of imaginary quadratic orders O ⊂ K = Q(
√
d), d < 0,

with discriminants d > −239. Construction of the class fields by arithmetic means was also carried out by

Herz for unramified cyclic extensions of small degree, e.g., 4, 8, ... , in [B-C-H-I-S].

Recently, Cox [Cx] has written a book in which he discusses, among other things, computation of the

class equations of level one, in the framework of primes of the form x2 + ny2 (n > 0) (see (I.3) below).

In this paper, we take up the task of explicit construction of the “reduced” class equations of imaginary

quadratic orders O ⊂ K = Q(
√
d), d = dKf

2 < 0 with 3 - d, from where Watson left off, by presenting an

algorithm based on integer lattice reductions. The paper consists of two parts, Part A and Part B. Part A

exposes the construction of the “genuine” (level one) class equations Hd by three different methods. The

construction of the polynomials Hd is illustrated for the maximal order OK ⊂ K = Q(
√
−719) with h = 31.

Part B is concerned with the construction of the “reduced” class equations of imaginary quadratic orders

O ⊂ K = Q(
√
d). Geometrical aspects of the “reduced” class equations may be explained as follows. The

elliptic modular function j(z) gives a complex analytic isomorphism (the uniformizer) between the compact

Riemann surfaces

j : H∗/Γ −→ P1(C), z −→ j(z),

of genus zero, where

H = {z ∈ C|Im z > 0},

Γ = PSL2(Z) =

{(

a b
c d

)

|a, b, c, d ∈ Z, ad− bc = 1

}

/± I2

and

H∗/Γ = H/Γ ∪ P1(Q) .
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Take a suitable subgroup G of Γ of finite index such that the associated compact Riemann surface H∗/G =

H/G∪{cusps of G} is again of genus zero (e.g., G = Γ0(2
i) =

{(

a b
c d

)

|c ≡ 0 (mod 2i)

}

for i = 0, 1− 4).

Then there is again a complex analytic isomorphism

uG : H∗/G −→ P1(C) (uΓ = j)

which we shall call the uniformizer of higher level. Now let O ⊂ K = Q(
√
d), d < 0, d 6≡ 5 (mod 8) and 3 - d

be an imaginary quadratic order of class number h. Then the singular modulus uG(τ) for τ ∈ O∩FG where

FG is a fundamental domain for G, is an algebraic integer of degree h over Q, and the minimal polynomial

of uG(τ) defines the field K(uG(τ)). If uG(τ) ∈ K(j(τ)), then K(uG(τ)) is isomorphic to the ring class field

K(j(τ)) of O. This gives rise to the “reduced” class equation for O. The “reduced” class equation is not

always equivalent to the “genuine class” equation under Tschirnhausen transformation. Note, however, that

if O ⊂ K = Q
√
d, d < 0, has odd prime class number h, then the reduced class equation is Tschirnhausen

equivalent to the genuine one (cf. (I.2.5)).

The construction of the “reduced” class equation is discussed for an arbitrary imaginary quadratic order

O ⊂ K = Q(
√
d) using an appropriate class invariant. Put D = d/4 if d ≡ 0 (mod 4) and D = d if d ≡ 1

(mod 4). Assume that D is square-free. We use the following class invariants (which differ slightly from

Weber’s class invariants): f(
√
D)/

√
2 if D ≡ 1 (mod 8); f1(

√
D)2/

√
2 if D ≡ 2, 6 (mod 8); f(

√
D)4 if D ≡

3 (mod 8); f(
√
D) if D ≡ 5 (mod 8) and f(

√
D)/

√
2 if D ≡ 7 (mod 8). An algorithm for the construction

of the “reduced” class equations is described in B3. Our algorithm is “generic” in the sense that the

reduced class equation can be constructed for arbitrary imaginary quadratic order O ⊂ K = Q(
√
d) once an

appropriate class invariant is provided. The idea is to construct the minimal polynomial of a class invariant

(e.g., a real singular modulus) of O ⊂ K = Q(
√
d) using a refined integer lattice reduction algorithm. We

are able to construct the “reduced” class equation up to class number h = 43 with this method.

Analysis of the reduced class equation is carried out in B4. The constant term of the reduced class

equation is either (−1)h, ±1, ±2h or (−2)h, and no prime divisors of the discriminant can split completely

in K. It is expected that there is a formula of Gross-Zagier type for the discriminant of the reduced class

equations.

We tabulate in B5 the “reduced” class equation in several examples.

I.2 A motivation: The construction of integral polynomials with generalized dihedral Galois

groups.

Our motivation for the study of singular moduli and class equations is impelled from constructing “nice”

integral polynomials with a given finite group as Galois group. The group we wish to consider here is a
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generalized dihedral group, which is a semi-direct product GoC2 where G is a finite abelian group on which

C2 = {1, τ} acts via στ = σ−1. When G is the cyclic group Cn of order n, Cn o C2 is the usual dihedral

group Dn - the group of symmetries of a regular n-gon. These groups are solvable, and hence are realizable

as Galois groups over the field Q of rational numbers (Shafarevich). The problem is to construct a “nice”

integral polynomial with a generalized dihedral group as Galois group.

Given a monic integral polynomial of degree n (odd), there are effective algorithms which determine

if its Galois group over Q is the dihedral group Dn. Jensen and Yui [J-Y] (Thm. II.1.2) have found a

characterization theorem for polynomials with dihedral Galois group Dp of prime degree p. This has been

generalized by Williamson [Wi] to odd degree polynomials with dihedral Galois group Dn.

(I.2.1) Proposition. Let f(x) be a monic irreducible polynomial of odd degree n over Z. Let

f(x) =
n
∏

i=1

(x− αi) ∈ C[x]

and let

R(x1 − x2, f)(x) =:

n
∏

i, j = 1
i 6= j

(x− (αi − αj)) ∈ Z[x]

be the resolvent polynomial. Then the splitting field of f(x) over Q has degree n, if and only if R(x1−x2, f)(x)

factors into irreducible polynomials of degree n over Q. In this situation, the necessary and sufficient

conditions for Gal (f) ∼= Dn are

(i) The monic irreducible factors of R(x1 − x2, f)(x) are even polynomials and the field K = Q(
√
−c)

where c is the constant coefficient of some monic irreducible factor of R(x1 − x2, f)(x) is quadratic over Q

and is independent of the choice of the irreducible factor,

(ii) The polynomial f(x) is irreducible over K and the splitting field of f(x) over K has degree n, and

(iii) For some prime p - disc(f) which remains inert in K, f(x) (mod p) factors into a linear polynomial

times a product of (n-1)/2 irreducible quadratic polynomials.

Before going into constructing polynomials with generalized dihedral Galois groups we need to settle the

following question.

(I.2.2) Question. When do two integral polynomials of degree n with the same Galois group become

equivalent under Tschirnhausen transformation?

We first observe the following general facts concerning Tschirnhausen transformation.
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(I.2.3) Proposition. Let f(x) and g(x) be irreducible polynomials of degree n > 1 over Q. Let

{αi|i = 1, · · · , n} and {βj |j = 1, · · · , n} be the roots of f(x) and g(x) in C, respectively. Then the following

assertions hold true.

(a) f(x) and g(x) are equivalent under Tschirnhausen transformation, if and only if Q(αi) = Q(βj)

for some i,j.

(b) If f(x) and g(x) are equivalent under Tschirnhausen transformation, then f(x) and g(x) have the

same splitting field over Q.

The converse of the assertion (b) in Proposition (I.2.3) is not always true, that is, even if f(x) and g(x)

have the same splitting field over Q, they are not necessarily equivalent under Tschirnhausen transformation.

However, this holds true in the following special case.

(I.2.4) Proposition. (cf. Bruen-Jensen-Yui [B-J-Y], Remark (I.2.6)). Let f(x) and g(x) be irreducible

polynomials of prime degree p over Q. Then f(x) and g(x) are equivalent under Tschirnhausen transformation,

if and only if they have the same splitting field over Q and a solvable Galois group.

(I.2.5) Remarks. (a) The assertion of Proposition (I.2.4) is not true, for example, for a polynomial

of prime degree p having a simple group as Galois group (e.g., PSL(2,7)).

(b) In order to construct integral polynomials with generalized dihedral Galois groups, we, at the moment,

have to rely on singular moduli and on the construction of Hilbert class fields (ring class fields) of imaginary

quadratic fields (orders). This construction, however, is not universal, that is, not all integral polynomials

with generalized dihedral Galois groups can be obtained in this manner.

(c) There are other methods for constructing integral polynomials with dihedral Galois groups over Q.

For instance, Mestre [M] has utilized elliptic curves over Q with torsion points of order 5 (resp. 7) to realize

D5 (resp. D7).

I.3 A motivation: The Goldwasser-Kilian-Atkin primality test.

Another motivation for constructing the “reduced” class equations stems from the Goldwasser-Kilian-

Atkin primality test, discussed, for instance, by Lenstra-Lenstra [L-L] and Morain [Mo]. This primality test

certifies large integers to be prime via an elliptic curve certificate as in the test by Goldwasser and Kilian

([G-K]).

Let p > 1 be an integer whose primality is to be tested. The test tries to choose an elliptic curve with

complex multiplication by an imaginary quadratic order in order to have an efficient way of determining

the number of points on the reduced elliptic curve over Z/pZ. The elliptic curve itself is then obtained
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by factoring the “genuine” class equation that corresponds to the imaginary quadratic order (the ring of

endomorphisms of the elliptic curve) used, modulo the number p. More precisely, Goldwasser-Kilian-Atkin’s

primality test is based on the following fact.

(I.3.1) Theorem. Let n > 0 be an integer. Then there exists a monic irreducible integral polynomial

H−4n(x)—the genuine class equation of the imaginary quadratic order O = Z[
√
−n] of discriminant −4n

and class number h(−4n)—such that if p is an odd prime dividing neither n nor the discriminant of H−4n,

then

p = x2 + ny2 with (x, y) ∈ Z2 ⇐⇒







(

−n
p

)

= 1 and

H−4n(x)(mod p) has an integer solution.

(I.3.2) The Atkin-Goldwasser Kilian primality test. Let p > 1 be an integer whose primality

is to be tested.

Step 1. Choose a fundamental discriminant D < 0 (among −3,−4, · · · ) such that p splits in the ring

OK of integers in K = Q(
√
D), i.e., p = π π′ with π, π′ ∈ OK , π 6= π′.

Step 2. For this π, compute m = p+ 1 − (π + π′). If m = kg with k > 2 and q a probably prime, go

to Step 3; else go back to Step 1.

Step 3. Compute j as a root of the class equation HD(x) (mod p) or H4D(x) (mod p), and construct

an elliptic curve E over Z/pZ with j as its absolute invariant.

Step 4. For this elliptic curve E over Z/pZ with m = # E(Z/pZ), search for a rational point P ∈

E(Z/pZ) such that mP = OE but for the prime divisor q of m in Step 2, m
q P 6= OE . If there is such a point

P with m > ( 4
√
p+ 1)2, then p is prime; else p is composite.

Step 5. Test the primality of q in the same way.

(I.3.3) Remark. The Goldwasser-Kilian-Atkin primality test has been implemented by Morain [Mo]

(see also F. Morain: Atkin test: News from front (to appear in Proc. EUROCRYPT ’89)). Morain has

proved the primality of numbers with 100 to 728 digits using this algorithm.

Here we propose a modification of the Goldwasser-Kilian-Atkin primality test (see also Kaltofen-Valente-

Yui [K-V-Y]). Our modification is to replace the “genuine” class equations H4D(x) by “reduced” class

equations h4D(x), and, in fact, is based on the following fact.

(I.3.4) Theorem. With the notations of Theorem (I.3.1) in force, let h−4n(x) be a “reduced” class

equation of O = Z[
√
−n]. Then

p = x2 + ny2 with (x, y) ∈ Z2 ⇐⇒
{ (

−n
p

)

= 1 and

h−4n(x) (mod p) has an integer solution.
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(I.3.5) Remark. The above theorems (I.3.1) and (I.3.4) characterize primes p which are representable

by the form x2 + ny2 (n > 0). There are corresponding theorems that characterize primes which are

representable by the form x2 + xy+ 1−D
4 y2 with (x, y) ∈ Z2, where D < 0, D ≡ 1 (mod 4) is a fundamental

discriminant.

There exist the “genuine” class equation HD(x) or a “reduced” class equation hD(x), both of degree h(D)

such that if p is an odd prime dividing neither D nor the discriminant of HD(x), then

p = x2 + xy +
1 −D

4
y2 with (x, y) ∈ Z2

⇐⇒
{ (

D
p

)

= 1 and HD(x) (mod p) (or hD(x) (mod p))

has an integer solution.
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PART A

THE CONSTRUCTION OF THE “GENUINE” CLASS EQUATIONS*

Contents

A1. Singular moduli of level one and the “genuine” class equations.

A2. A Theorem of Gross-Zagier on the “genuine” class equation.

A3. The construction of the “genuine” class equations:

A method of Kaltofen-Yui and a method of Zagier.

A4. The construction of the “genuine” class equations via the modular equations.

A5. The construction of “genuine” class equations: Illustrations H−719(x).

* The announcement of this work in early stage was published in [K-Y1].
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A1 Singular moduli of level one and the “genuine” class equations.

In this section, we shall recall the theoretical aspect of our computations on singular moduli of level one

and class invariants. A full account of the classical theory can be found in Weber [W]. We also incorporate

the recent results of Gross and Zagier [G-Z1] on singular moduli of level one, in particular, on the difference

of two singular moduli, since their formulae become useful for our calculations.

(A1.1) Class numbers of imaginary quadratic orders. Let ax2 + bxy + cy2, a, b, c Z, a >

0, GCD(a, b, c) = 1 be a positive definite reduced primitive quadratic form of discriminant d = b2−4ac < 0.

Such a form is denoted by the symbol [a, b, c]. The integral matrix

(

α β
γ δ

)

with determinant 1 transforms

[a, b, c] by replacing x by αx + βy and y by γx + δy into another quadratic form [a′, b′, c′] of the same

discriminant d, in which case two forms [a, b, c] and [a′, b′, c′] are said to be equivalent. The class number

h(d) =: h is defined to be the number of such defined equivalence classes of positive definite reduced primitive

quadratic forms of discriminant d. A unique reduced form for each equivalence class can be selected with

−a < b ≤ a < c or 0 ≤ b ≤ a = c.

These conditions imply that |b| ≤
√

|d|/3, and hence the class number h is always finite.

Now let τ be a root of the quadratic equation az2 + bz+ c = 0 corresponding to a quadratic form [a, b, c]

of discriminant d. We define the discriminant of τ to be disc(τ) = d = b2−4ac. Put K = Q(τ) = Q(
√
d) and

let dK be the field discriminant of K, and put O = Z[aτ ]. Then O is a Z-module of the form Z
[

−b+
√

d
2

]

, and

we call it an imaginary quadratic order of discriminant d. If OK = Z
[

dK+
√

dK

2

]

denotes the ring of integers

of K, then OK = Z
[

−b+
√

d
2

]

= Z + fOK for some integer f ≥ 1 called the conductor of O. OK is called

the maximal order of K. The form discriminant d and the field discriminant dK are related by the identify

d = dKf
2. Note that dK has no odd or even square factors except possibly 4. Put D = d if d ≡ 1 (mod 4)

and d/4 if d ≡ 0 (mod 4).

Now to each quadratic form [a, b, c] of discriminant d = b2−4ac < 0, we associate an ideal
(

a, −b+
√

d
2

)

in

O. Two ideals A and B in O are said to be equivalent if there exist principal ideals (λ1) and (λ2) such that

A(λ1) = B(λ2). The equivalence classes of ideals in O are in 1-1 correspondence with the equivalence classes

of quadratic forms [a, b, c] of discriminant d. The ideal classes of O form a group, called the ideal class group,

Pic(O), and the class number h therefore coincides with the order of this group.

Gauss’ class number problem (find an effective algorithm for determining all imaginary quadratic orders

with a given class number) has recently been solved by Goldfeld [G], and Gross and Zagier [G-Z2], indepen-

dently. In particular, a complete list of imaginary quadratic orders of small class numbers are now at our

disposal.
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x
1/2−1/2

y

i

ρρ2

Figure 1: i =
√
−1, ρ = (−1 +

√
−3)/2.

(A.1.2) Singular moduli of the elliptic modular j-invariant. Let Γ = PSL2(Z) denote the

modular group:

PSL2(Z) ∼=
{(

a b
c d

)

|a, b, c, d ∈ Z, ad− bc = 1

}

/± I2

where I2 denotes the 2 × 2 identity matrix. Denote by H the upper half complex plane:

H = {z = x+ iy ∈ C | y > 0} .

The modular group Γ acts on H by a linear fractional transformation:

(

a b
c d

)

(z) =
az + b

cz + d
.

A fundamental domain, F , of Γ in H, is defined to be a subset of H such that every orbit of Γ has one element

in F , and two elements of F are in the same orbit if and only if they lie on the boundary of F . Then F is

given by the following set

F = {z = x+ iy ∈ H | |z| ≥ 1, |x| ≤ 1

2
} .

(Note that for any imaginary quadratic order O ⊂ K = Q(
√
d) with discriminant d, the class number h is

equal to the number of roots of quadratic equations in O∩F , corresponding to the positive definite primitive

reduced quadratic forms of discriminant d.)

We now introduce the elliptic modular j-invariant. For each complex number z with non-negative imag-

inary part, let q = e2πiz and let

E4(z) = 1 + 240

∞
∑

n=1

σ3(n)qn, σ3(n) =
∑

t|n

t>0

t3 .

Furthermore, let

η(z) = q
1
24

∞
∏

n=1

(1 − qn) = q
1
24

(

1 +

∞
∑

n=1

(−1)n
(

q
n(3n−1)

2 + q
n(3n+1)

2

)

)

.
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The j-invariant j(z) is defined as

j(z) =

(

E4(z)

η(z)8

)3

.

Put H∗/Γ = H/Γ ∪ P1(Q). Then the map

j : H∗/Γ −→ P1(C)

gives a complex analytic isomorphism of compact Riemann surfaces of genus zero, which we may call the

uniformizer of level one. j(z) satisfies the following properties:

(a) j(
√
d) ∈ R+ for d < −1; j(

√
−1) = j(i) = 1728, j

(

±1+
√

d
2

)

∈ R− for d < −3

and j
(

±1+
√
−3

2

)

= 0.

(b) j(x+ iy) and j(−x+ iy) are complex conjugates for any ±x+ iy ∈ F ∩O where O is an imaginary

quadratic order.

(c) j(z) has the q-expansion:

j(q) = 1
q + 744 + 196884q + 21493760q2 + 864299970q3 + · · ·

= 1
q +

∞
∑

n=0

anq
n with an ∈ Z for all n.

The values j(τ) for imaginary quadratic numbers τ ∈ O∩F , where O is an imaginary quadratic order of

discriminant d, are known as singular moduli of level one. Let A1, · · · ,Ah be the ideal classes of the imagi-

nary quadratic order O ⊂ K = Q(
√
d) of discriminant d < 0 and class number h. Then j(A1), · · · , j(Ah) are

all algebraic integers and any one of them is called a class invariant of O ⊂ K = Q(
√
d). The class equation

(or polynomial) of O is defined to be the polynomial

Hd(x) = (x− j(A1))(x− j(A2)) · · · (x− j(Ah)).

One of the most remarkable properties of singular moduli is culminated in the following theorem due to

Weber, which we formulate in a most suitable form for our discussion (cf. Weber [W], Deuring [D2] or Cohn

[C]).

(A1.3) Theorem. Let O ⊂ K = Q(
√
d), d < 0 be an imaginary quadratic order of discriminant

d = dkf
2 and class number h. For each reduced positive primitive definite quadratic form [ak, bk, ck] of

discriminant d, let τk = (−bk + d)/2ak be the root of the quadratic equation akz
2 + bkz + ck = 0, belonging

to F for k = 1, · · · , h. Then the class equation of O ⊂ K = Q(
√
d) defined by:

Hd(x) =

h
∏

k=1

(x− j(τk))
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is an integral irreducible polynomial of degree h.

Let L denote the field defined by Hd(x) over Q, and let N be its normal closure over Q. Then N is a ring

class field of O ⊂ K = Q(
√
d) whose Galois group over Q is canonically isomorphic to the generalized dihedral

group, that is, the semi-direct product Pic(O)oC2 where Pic(O) is the ideal class group of O ⊂ K = Q(
√
d).

If f = 1, N is the Hilbert class field of K, that is, N is the maximal unramified abelian extension of K.

(A1.4) Corollary. Under the situation of Theorem (A1.3), assume, furthermore, that h is odd

prime. Then N is the Hilbert class field of K and the Galois group Gal(Hd/Q) = Gal(N/Q) is the dihedral

group Dh.

N = Q(
√
d, j(τk))

2 / | \ h
L = Q(j(τk)) |

h
. . . 2h K = Q(

√
d)

| / 2
Q

Figure 2

In the subsequent discussions, we call Hd(x) the “genuine” class equation of O ⊂ K = Q(
√
d).

A2 A Theorem of Gross-Zagier on the “genuine” class equation. Let K = Q(
√
d), d < 0,

and let OK be the maximal order of K. For the genuine class equation Hd(x) of OK , the growth of the

coefficients is rather severe. However, the constant term Hd(0) and the discriminant, ∆(Hd), are highly

divisible numbers. Moreover, their prime factors do not exceed −d, and all prime factors of ∆(Hd) except

−d appear in even powers. These facts have been noticed by Deuring [D1] and Gross-Zagier [G-Z1]. Let (—)

denote the Legendre symbol. Deuring [D1] has shown that primes ` dividing ∆(Hd) are those which do not

split completely in K = Q(
√
d), i.e.,

(

d
`

)

6= 1. Deuring [D1] also has considered the difference j(z) − j(z ′)

for z, z′ ∈ F belonging to two distinct quadratic fields of discriminants d and d′, which are relatively prime.

He has shown that no primes ` dividing the norm (over Q) of the difference j(z)− j(z ′) can split completely

in K = Q(
√
d) or in K ′ = Q(

√
d′), i.e.,

(

d
`

)

6= 1 and
(

d′

`

)

6= 1. Deuring’s argument, however, does not

give the exact upper bounds for prime factors appearing in Hd(0) and ∆(Hd). Recently, Gross and Zagier

[G-Z1] have obtained the closed formulae for ∆(Hd) and for the absolute value of the norm of the difference

j(z) − j(z′) describing exactly which primes occur as factors.

(A2.1) Theorem. (Gross-Zagier [G-Z1]). Let d1 and d2 be two fundamental discriminants. Assume

that d1 and d2 are relatively prime. For primes ` with
(

d1d2

`

)

6= −1, denote by ε a strongly multiplicative
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function defined by

ε(`) =

{ (

d1

`

)

if (d1, `) = 1
(

d2

`

)

if (d2, `) = 1

where (—) is the Legendre symbol. Then if n =
r
∏

i = 1
`ni

i with

(

d1d2

`i

)

6= −1 for all i, we set ε(n) =
r
∏

i = 1
ε(`i)

ni .

For a positive integer n, let F be the function defined by

F (n) =































`kr1r2···rt if n = `2k−1`2n1
1 · · · `2ns

s qr1−1
1 · · · qrt−1

t

where ε(`) = ε(`i) = −1, ε(qi) = 1
with k, ri > 1 and ni > 0 ;

1 if n = `2k1−1
1 · · · `2ks−1

s t
where ε(`i) = −1 with ki ≥ 1, s ≥ 3
and t ∈ N .

(a) Put

J(d1, d2) =





h1
∏

s = 1

h2
∏

t = 1
(j(As) − j(Bt))





4/w(d1)w(d2)

where {A1, · · · ,Ah1
} (resp. {B1, · · · ,Bh2

, }) is a set of ideal class representatives of OK1
⊂ K1 = Q(

√
d1)

(resp. OK2
⊂ K2 = Q(

√
d2)) and let w(d1) (resp. w(d2)) denote the number of roots of unity in the ring

OK1
(resp. OK2

). Then

J(d1, d2)
2 = ±

∏

x2<d1d2

x2≡d1d2 (mod 4)

F

(

d1d2 − x2

4

)

Consequently, if ` is a prime dividing J(d1, d2)
2, then ` is of the form d1d2−x2

4 ≤ d1d2

4 with
(

d1

`

)

6= 1 and
(

d2

`

)

6= 1 .

(b) Let Hd(x) be the genuine class equation of OK ⊂ K = Q(
√
d), d < 0 . If ` is a prime dividing the

constant term Hd(0) of Hd, then
(

d
`

)

6= 1 and ` is a divisor of J(d,−3)2. Furthermore, ` ≤ 3|d|/4.

(c) Let Hd(x) be the genuine class equation of OK ⊂ K = Q(
√
d), d < 0 . If ` is a prime dividing the

discriminant ∆(Hd) of Hd, then
(

d
`

)

6= 1 and ` ≤ |d|.

When −d is a prime and the class number h of OK ⊂ K = Q(
√
d) is odd prime, we have more precise

information on the discriminant ∆(Hd) and the constant term Hd(0) of Hd.

(A2.2) Corollary. Let OK ⊂ K = Q(
√
d), d < 0, −d is a prime ≡ 3 (mod 4) be the maximal order

ofK with the class number h an odd prime. LetQk(x, y) = akx
2+bkxy+cky

2, ak > 1, k = 1, 2, · · · , (h−1)/2

be the reduced positive definite primitive quadratic forms of discriminant d. Let Hd(x) be the genuine class

equation of OK ⊂ K = Q(
√
d). Then the following assertions hold.

(a) The discriminant of Hd(x) is given by the formula

∆(Hd) = I2(−d)(h−1)/2
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where I is the index of the order Z[j] in the ring of integers of Q(j) :

I = I1 · · · Ih−1
2

where

Ik =
−d− 1
∏

n = 1
F (−d− n)rk(n)

with

rk(n) =
1

2
# {(x, y) ∈ Z × Z | Qk(x, y) = n} .

In particular, the largest prime dividing ∆(Hd) does not exceed −d, and all its prime factors except −d

have even exponents.

(b) Let τ1, τ2 ∈ F be imaginary quadratic integers belonging to two distinct imaginary quadratic fields

of discriminant d1 and d2, respectively, where −d1 and −d2 are primes ≡ 3 (mod 4). Then

|Norm(j(τ1) − j(τ2)| =











∏

x2<d1d2

x2≡d1d2 (mod 4)

F

(

d1d2 − x2

4

)











w(d1)w(d2)/4

In particular, taking τ1 = 1+
√

d
2 , d < −4 and τ2 = 1+

√
−3

2 the constant term Hd(0) of Hd is given up to

sign by

Hd(0) = ± | Norm

(

j

(

1 +
√
d

2

))

| = ±









∏

x2<−3d
x odd

F

(−3d− x2

4

)









3

.

In particular, |Hd(0)| is a cube power.

(A2.3) Remarks (a) For the maximal imaginary quadratic order OK ⊂ K = Q(
√
d) with discrim-

inant d and class number h an odd prime, we have

sign (Norm

(

j

(

1 +
√
d

2

))

= (−1)t

where t is the number of quadratic forms [ak, ak, ck], 0 < ak < ck with discriminant d. In particular, if

d = −p with p a prime, then sign of Norm
(

j
(

1+
√

d
2

))

is always negative, and hence Hd(0) = (−1)h ×

Norm
(

j
(

1+
√

d
2

))

is a positive number. This can be explained as follows. The principal ideal class of

OK ⊂ K = Q(
√
d) corresponds to the singular modulus j

(

1+
√

d
2

)

, which is always negative (cf. A1.2)(a)).

All other ideal classes appear in pairs and correspond to singular moduli j(x + iy) and j(−x + iy) where

± x + iy ∈ F ∩ OK . Now singular moduli j(x + iy) and j(−x + iy) are conjugates for all values

± x + iy ∈ F ∩ OK except for those on the imaginary axis or on the boundary of F . Singular moduli are

positive on the imaginary axis, and on the lower boundary of F , and they take negative real values on the
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line ± 1
2 + i(

√
3,∞). Hence the sign of Norm

(

j
(

1+
√

d
2

))

is −1 to the power the number of roots on the line

1
2 + i(

√
3,∞), which is the number t.

(b) Two proofs, one algebraic and the other analytic, have been given for Theorem (A2.1) in [G-Z1].

The algebraic proof has been, however, given only for the case of prime discriminants. Dorman [Do1] has

generalized the algebraic proof to relatively prime composite discriminants d1 and d2. Also see [Do2].

(A2.4) The height of Hd(x). We define the height of Hd(x) as the absolutely largest coefficient of

Hd(x), denoted ||Hd||. It is observed that ||Hd|| = |Hd(0)|, and we can give the estimate for log ||Hd||. For

instance, from Corollary (A2.2)(b), it can be derived immediately that if −d ≡ 3 (mod 4) with |d| prime,

then

log ||Hd|| = 3
∑

x2 < −3d
x odd

logF

(−3d− x2

4

)

.

A3 The constructions of the “genuine” class equations: A method of Kaltofen-Yui, and a

method of Zagier.

We now describe the construction of the genuine class equations of the maximal imaginary quadratic

orders OK ⊂ K = Q(
√
d) . The actual constructions are carried out for selected values of d < 0.

(A3.1) A method of Kaltofen-Yui. This method for computing Hd(x) is rather a straightforward

one. We simply evaluate singular moduli at imaginary quadratic integers in F corresponding to the ideal

classes of OK . The procedure for OK with odd prime class number cases is illustrated below in the cases

that d = dK ≡ 1 (mod 4). The remaining case can be done similarly.

Step 1. Determine the quadratic forms [a, b, c], a > 0, GCD(a, b, c) = 1 and b2 − 4ac = d < 0

representing the ideal classes of OK . Calculate the roots τ of the quadratic equations az2 + bz + c = 0

belonging to F .

(In fact, the quadratic forms are given by [1, 1, (1−d)/4], [ak, ±bk, ck] with |bk| ≤ ak < ck, bk −4akck =

d, 1 ≤ k ≤ (h− 1)/2.) Therefore, roots τ are (−1 +
√
d)/2, (±bk +

√
d)/2ak for k = 1, · · · , (h− 1)/2.)

Step 2. Evaluate singular moduli j(τ) at (h + 1)/2 inequivalent imaginary quadratic numbers τ =

(−1 +
√
d)/2, (−bk +

√
d)/2ak, k = 1, · · · , (h− 1)/2.

(Since j(x + iy) and j(−x + iy) are complex conjugates for ±x + iy ∈ F ∩ OK it suffices to evaluate

singular moduli over the (h+ 1)/2 values of τ .)

Step 3. Form Hd(x):

Hd(x) =

{

x− j

(

−1 +
√
d

2

)} (h− 1)/2
∏

k = 1

{

x− j

(

−bk +
√
d

2ak

)}{

x− j

(

bk +
√
d

2ak

)}

.
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(A3.2) Remark. Some comments might be in order concerning the actual calculations. The evalu-

ation of each singular modulus j(τ) was done to high floating point precision. We observed that the Taylor

series of j evaluated at q converged extremely slowly. Therefore we evaluated the Taylor series of E4 and

η separately at q, then raised the value η(q) to the eighth power, divided E4(q) by this result, and finally

raised the quotient to the third power (cf. (A1.2)). This process yields j(q) to high precision fairly quickly.

In each case there were two parameters to choose: The floating point precision and the order of the

Taylor expansions. We decided to choose the same order for both E4 and η. The constant coefficient of each

polynomial turned out to be the one of largest size. Therefore we chose the floating point precision typically

20 digits more than the number of digits in that coefficient. In all cases we then could read off the correct

corresponding integer from its approximation. A fact, which was already observed by Weber [W], Dering

[D1] and recently been made very explicit by Gross and Zagier [G-Z1] (cf. Corollary (A2.2)(b)) asserts that

the constant coefficient Hd(0) must be a perfect cube. Verifying this condition proved to be a valuable test

to see whether the order of the Taylor approximation was high enough. If not, we increased the order by an

increment of 5 and tried again. A further confirmation for the correctness of all coefficients is to factor both

Hd(0) and the discriminant ∆(Hd) of Hd, whose prime factors are again predicted by a theorem of Gross

and Zagier (cf. Corollary (A2.2)).

(A3.3) A method of Zagier (for h ≤ 9). This approach was suggested to us by D. Zagier. The

idea is to use the formula of Gross and Zagier on the difference of two singular moduli, j(τ1) − j(τ2) where

τ1 and τ2 belong to two distinct maximal imaginary quadratic orders (cf. (A2.2)(b)).

We know that there are altogether 13 imaginary quadratic orders with class number 1, of which 9 are

maximal (i.e., f = 1), and that their singular moduli are integral. The results are tabulated as follows:

d −163 −67 −43 −27 −19 -11
f 1 1 1 3 1 1

class invariant −640, 3203 −5 · 2803 −9603 −3 · 1603 −963 −323

d -7 -3 -4 -8 12 -16 -28
f 1 1 1 1 2 2 2

class invariant −153 0 123 203 2 · 303 663 2553

Now take the maximal imaginary quadratic order OK ⊂ K = Q(
√
d) of discriminant d and class number

h. Write the genuine class equation Hd(x) in the form

Hd(x) = xh +Ah−1x
h−1 + · · · +A1x+A0 ∈ Z[x] .

Our task is to determine the h unknowns A0, A1, · · · , Ah−1 explicitly. Note that Gross-Zagier theorem is

applicable only for maximal orders.
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Step 1. Evaluate the absolute value of

Norm

(

j

(

1 +
√
d

2

)

− j

(

1 +
√
d′

2

))

where d′ runs 9 values representing maximal imaginary quadratic orders of class number 1 (cf. the table

above).

Apply the Gross and Zagier formula (Theorem (A2.1)) to get a system of 9 linear equations corresponding

to d′ = −3,−4,−8,−7, · · · ,−163 :

Hd(0) = B1, Hd(12
3) = B2, Hd(20

3) = B3, · · · , Hd(−640, 3203) = B9 .

Step 2. Solve the system of 9 linear equations in h unknowns.

This linear system is solvable at most for h(d) = h ≤ 9.

A4 The construction of the “genuine” class equations via the modular equations.

This method was employed by Weber [W] and Hanna [H], and by others. However, the scope of this

approach is extremely limited as the modular equations are known explicitly only up to order 19. Here we

need to introduce the modular equations of order n ≥ 1.

(A4.1) The modular equations of order n and singular moduli. Choose a positive integer n > 1

and fix it once and for all. Denote by GL+
2 (Z) the set of 2 × 2 matrices with entries in Z and positive

determinant. If α =

(

a b
c d

)

∈ GL+
2 (Z), we say that α is primitive if GCD(a, b, c, d) = 1. For a positive

integer n > 1, let ∆∗
n denote the subset of GL+

2 (Z) consisting of primitive matrices with determinant n.

Then SL2(Z) acts on ∆∗
n, and the left coset representatives of ∆∗

n modulo SL2(Z) are given by the set, A,

of the ψ(n) =

∏

p|n (1 + 1
p ) matrices, that is,

A =

{(

a b
0 d

)

|a, b, d ∈ Z, ad = n, 0 ≤ b ≤ d− 1

}

.

For α =

(

a b
0 d

)

∈ A and for τ ∈ F , imaginary quadratic, we write j ◦ α for

(j ◦ α)(τ) = j

(

aτ + b

d

)

.

Now we define the polynomial

Φn(x, j) =
∏

α∈A

(x− j ◦ α) =
∏

ad=n
0≤b≤d−1

(

x− j

(

aτ+b

d

))

.

This is called the modular equation of order n. It is a symmetric polynomial over C in x and j of degree

ψ(n). Furthermore, Φn(x, j) has coefficients in Z. It is rather difficult to compute Φn(x, j) explicitly. Explicit
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forms are known only up to prime order n ≤ 19. For example, we have

Φ1(x, y) = x− y,

Φ2(x, y) = x3 + y3 − x2y2 + 243 · 31(x2 + xy2) − 243453(x2 + y2)

+ 34534027yx+ 283756(x+ y) − 2123959 .

For n = 5 see Smith [Sm], and for n = 7 see Hermann [He] and Kaltofen and Yui [KY1]. For n = 11 see

Kaltofen and Yui [KY2].

Φn(x, y) = 0 defines a singular affine curve over Z. Its resolution defines a curve of genus zero for

n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 18 and 25.

The polynomial Φn(x, y), when restricted to the diagonal, is subject to the Kronecker congruence:

Φn(x, x) = ±
∏

d

Hd(x)
r′(d)

where the quantities in the right-hand side are defined as follows. The product is taken over all d ∈ Z, d < 0,

such that y2 − dx2 = 4n has a solution (x, y) ∈ Z × Z with x > 0. Denoting by r(d) the number of such

solutions, the multiplicity r′(d) is given by

r′(d) =







r(d) if d < −4
r(d)/2 if d = −4
r(d)/3 if d = −6 .

Hd(x) is the genuine class equation for the imaginary quadratic order O ⊂ K = Q(
√
d) of discriminant d

and degree h. Comparing the degrees of both sides, we have the Kronecker-Hurwitz class number relation:

deg Φn(x, x) =
∑

d

r′(d)h(d) .

How do we make use of modular equations to construct genuine class equations Hd(x)? The theoretical

basis is given by the following theorem of Weber (see Weber [W, §114-119]), and Cohn [C, §11]).

(A4.2) Theorem. Let O ⊂ K = Q(
√
d), d < 0 be an imaginary quadratic order with discriminant

d and conductor f . Then the genuine class equation Hd(x) of O is the GCD (in the ring Q[x] or Z[x]) of

those diagonal forms of modular equations Φn(x, x) for which n = Norm(λ) for λ primitive in O.

More precisely, we have

H−3 = GCD(Φ3,Φ7), H−4 = GCD(Φ2,Φ5)

and for d = dKf
2, setting τ = (1 +

√
dK)/2 if dK ≡ 1 (mod 4), 1 +

√
dK/2 if dK ≡ 1 (mod 4) and d′ =

Norm(f τ),

Hd =

{

GCD(Φ|d|,Φd, ) f odd
GCD(Φ|d/r|,Φd, ) f even

(Here Φn := Φn(x, x). )

Now we can describe the method for the construction of genuine class equations Hd(x) for imaginary

quadratic orders O ⊂ K = Q(
√
d), using the above theorem. Since it is rather difficult to compute modular
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equations, the scope of this method is rather limited, though it might be of some interest from a theoretical

point of view.

Step 1. Compute the modular equations Φ|d|(x, y) and Φd, (x, y) if f is even, and Φ|d/4|(x, y) and

Φd, (x, y) if f is odd.

Step 2. Factor the diagonal forms of the modular equations determined in Step 1.

Step 3. Determine the greatest common factor of these diagonal forms.

(A4.3) Illustrations. For small values of n, the factors of the diagonal form of the modular equation

of order n : Φn(x, x) can be determined. We list them in the table below.

n Φn(x, x) deg Φn Hd(x)

2 H−4H−8H
2
−7 (4)

H−4(x) = x− 2633

H−8(x) = x− 2653

H−7(x) = x+ 3353

3 H−3H−12H−8H
2
−11 (6)

H−3(x) = x
H−11(x) = x+ 215

H−12(x) = x− 243353

4 H−16H
2
−7H

2
−12H

2
−15 (9)

H−15(x) = x2 + 3352283x
−3653113

H−16(x) = x− 2333113

5 H−20H
2
−4H

2
−11H

2
−16H

2
−19 (10)

H−19(x) = x+ 21533

H−20(x) = x2 − 275379x
−21253113

6 H−24H
2
−8H

2
−15H

2
−20H

2
23 (18)

H−23(x) = x3 + 2 · 5313967x2

−56329683x+ 591873

H−24(x) = x2 − 27331399x
+21236173

7 H−7H−28H
2
−3H

2
−12H

2
−19H

2
−24H

2
−27 (14)

H−27(x) = x+ 2153 · 53

H−28(x) = x− 3353173

8 H−32H
2
−7H

2
−16H

2
−23H

2
−28H

2
−31 (20)

H−31(x) = x3 + 3453 · 9199x2

−2 · 3729 · 462629x
+39113173233

10
H−24H−37H−36H−39H−40

×H2
−4H

2
−15

(18)

H−39(x) = x4

+223311 · 29 · 9623x3

−2 · 3 · 71646393491x2

+312206746392899x
3151736673

11
H−11H−44H

2
−7H

2
−8H

2
−19

×H2
−28H

2
−35H

2
−40H

2
−43

(22)

H−35(x) = x2 + 2193252x
− 23053

H−43(x) = x+ 2183353

H−44(x) = x3 − 241709 · 4105x2

+ 283 · 11424049x
− 212113173293

A5. The construction of the “genuine” class equations: Illustrations H−719(x).

We illustrate our construction of the genuine class equation for the maximal imaginary quadratic order
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OK ⊂ K = Q(
√
−719) by a method of Kaltofen and Yui. OK has discriminant d = −719 and class number

h(−719) = 31. The reduced primitive positive definite quadratic forms representing the ideal classes of OK

are given as follows.

[a,b,c] τ(roots of az2 + bz + c = 0 belonging to F ∩OK)

[1, 1, 180] −1+
√
−719

2

[2,±1, 90] ± 1+
√
−719
4

[3,±1, 60] ± 1+
√
−719
6

[4,±1, 45] ± 1+
√
−719
8

[5,±1, 36] ± 1+
√
−719

10

[6,±1, 30] ± 1+
√
−719

12

[9,±1, 20] ± 1+
√
−719

18

[10,±1, 18] ± 1+
√
−719

20

[12,±1, 15] ± 1+
√
−719

24

[7,±3, 26] ± 3+
√
−719

14

[13,±3, 14] ± 3+
√
−719

26

[6,±5, 31] ± 5+
√
−719

12

[8,±7, 24] ± 7+
√
−719

16

[12,±7, 16] ± 7+
√
−719

24

[10,±9, 20] ± 9+
√
−719

20

[14,±11, 15] ± 11+
√
−719

28

The discriminant of H−719(x) is

∆(H−719) = −111080176741960023480412584324247214531926714471138

× 73132791248998979410196109781276813166139581575217352

× 1794219340197381993222338229362332223932251262692227122

× 30722313163371634716349163531235924383184098419184214

× 4311843916449144638467164792048785031650914523855710

× 563125691257165931259916601460710619864186471265912

× 66146778683869167016709471915.
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The constant term of H−719(x) is

H−719(0) = (111317823641247253271289217321792197 · 233 · 383 · 449 · 467 · 509)3.

One can see that all primes ` dividing ∆(H−719) and Hd(0) are subject to the condition that
(−719

`

)

6= 1,

and that if `|H−719(0), then ` ≤ 3 · 719/4 and if `|∆(H−719), then ` ≤ 719.
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PART B

THE CONSTRUCTION OF THE “REDUCED” CLASS EQUATIONS
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B1 The “reduced” class equations.

Let Hd(x) be the “genuine” (level one) class equation of an imaginary quadratic order O ⊂ K = Q(
√
d)

with class number h(d) =: h. We now describe a procedure for constructing a monic integral irreducible

polynomial, hd(x), of degree h with very small coefficients, which defines the same ring class field as Hd(x)

over Q. The theoretical basis of this construction is due to Weber [W]. Watson carried out these constructions

for selected imaginary quadratic orders O ⊂ K = Q(
√
d) with class numbers ≤ 19 in his series of papers

[W1,W2,W3,W4].

We review here the Weber-Watson theory, which we modify slightly to suit our purposes. Our choice of

the class invariants differs slightly from those of Weber [W].

(B1.1) The Weber functions. Let q = e2πiz with Im z > 0 and |q| < 1. Put

f(z) = q−1/48

∞
∏

m=1

(1 + qm−1/2),

f1(z) = q−1/48

∞
∏

m=1

(1 − qm−1/2),

and

f2(z) =
√

2 q1/24
∞
∏

m=1

(1 + qm).

These functions are known as the “Weber” functions. They are expressed in terms of the eta function η(z)

(cf. (A1.2)) as follows:

f(z) =
e−πi/24η((z + 1)/2)

η(z)
,

f1(z) =
η(z/2)

η(z)
and f2(z) =

√
2
η(2z)

η(z)
.

The function f2 induces a complex analytic isomorphism

f2 : H ∗ /Γ0(2) −→ P1(C)

of compact Riemann surfaces of genus zero where Γ0(2) =

{(

a b
c d

)

∈ Γ|c ≡ 0 (mod 2)

}

is a subgroup of

Γ of index 3. These functions are interconnected by the relations

f8(z) = f8
1 (z) + f8

2 (z) ,

f(z)f1(z)f2(z) =
√

2 ,

f(z)f2
(

1+z
2

)

= eπi/24
√

2 ,

and

f1(z)f2

(z

2

)

=
√

2 .
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The elliptic modular j-invariant j(z) is expressed as rational functions of f 24(z),−f24
1 (z) and −f24

2 (z),

respectively. Indeed, we have

j(z) =
{f24(z) − 16}3

f24(z)
=

{f24(z) + 16}3

f24
1 (z)

=
{f24

2 (z) + 16}3

f24
2 (z)

.

These identities imply that f 24(z),−f24
1 (z),−f24

2 (z) are the roots of the cubic equation

(x− 16)3 − xj(z) = 0 .

Equivalently, if we put

γ2(z) = j1/3(z) = 3
√

j(z) ,

then f8(z), −f8
1 (z) and −f8

2 (z) are the roots of the equation

x3 − γ2(z)x− 16 = 0

Put

D =

{

d/4 if d ≡ 0 (mod 4)
d if d ≡ 1 (mod 4)

and assume that D is a square-free.

(B1.2) Theorem (cf. Weber [W, §19]; Watson [W4]). Let O ⊂ K = Q(
√
d), d < 0, d ≡

1 (mod 8) and 3 - d, be an imaginary quadratic order of discriminant d and class number h. Let {A1, · · · ,Ah}

be a complete set of representatives of the ideal classes of O, and let

Hd(x) =
h
∏

k=1

(x− j(Ak))

be the genuine class equation of O. Put

Hd(x) := xhHd((x− 16)3/x).

Then the following assertions hold true.

(a) Hd(x) =

h
∏

k=1

{

(x− 16)3 − xj(Ak)
}

, and it is a monic integral polynomial of degree 3h over Q.

(b) Hd(x) has a monic irreducible integral polynomial, hd(x), of degree h as its factor. Moreover, hd(x)

is the minimal polynomial of 212f−24(
√
d) = −f24

2

(

1+
√

d
2

)

∈ R with the constant term hd(0) = −1.

(c) The quotient Hd(x)/hd(x) is a monic integral irreducible polynomial of degree 2h over Q.

(d) If hd(x) =
h
∏

k = 1
(x− αk) ∈ C[x], then for suitable choice of h 24th roots of αk, k = 1, · · · , h, the

polynomial

hd(x) := xh
h
∏

k = 1

(

1

x
− 24

√
αk

)
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is a monic irreducible polynomial of degree h over Q, which is the minimal polynomial of f(
√
d)/

√
2 or its

reciprocal. Furthermore, the constant term hd(0) is equal to −1. Therefore, every root of hd(x) is a unit.

(e) hd(x) defines the same ring class field as Hd(x) over Q.

Consequently, Gal(hd/Q) is the generalized dihedral group, that is, the semi-direct product Pic(O)oC2.

In particular, if h is odd prime, then Gal(hd/Q) ∼= Dh .

Proof. (a) We have

Hd(x) =
h
∏

k=1

{(x− 16)3 − xj(Ak)} .

Note that the equation (x− 16)3 − xj(z) = 0 has three distinct roots f 24(τ),−f24
1 (τ) and −f24

2 (τ). It then

follows that Hd(x) has the roots f24(Ak), −f24
1 (Ak), −f24

2 (Ak), k = 1, · · · , h. Hd(x) is obviously a monic

integral polynomial, since Hd(x) is. It has degree 3h over Q.

(b) We note that the principal ideal class, say A1, of O is represented by the quadratic form [1,−1, (1−

d)/4] whose root in F ∩O is 1+
√

d
2 . Now one of the Weber’s formula

f(z)f2

(

1 + z

2

)

= eπi/24
√

2

with z = 1+
√

d
2 yields the identity

f(
√
d)f2

(

1 +
√
d

2

)

= eπi/24
√

2 .

This implies that 212f−24(
√
d) = −f24

2 (A1) is a root of Hd(x). Now the fact that f(
√
d)/

√
2 is a class

invariant of O, implies that a complete set of conjugates of 212f−24(
√
d) = −f24

2

(

1+
√

d
2

)

consists of exactly

h algebraic integers chosen from the pool of algebraic integers

{f24(Ak),−f24
1 (Ak),−f24

2 (Ak) ; k = 1, · · · , h}

in such a way that each member of the ideal class of O can occur once and only once. In other words, if

f24(Ai) occurs as a conjugate, neither −f 24
1 (Ai) nor −f24

2 (Ai) with the same ideal Ai can be conjugates.

Let hd(x) be the minimal polynomial of 212f−24(
√
d). Then hd(x) is a monic integral irreducible polynomial

of degree h over Q.

If h is odd, j
(

1+
√

d
2

)

is the only real root of Hd(x). Since j
(

1+
√

d
2

)

∈ R− and since j
(

1+
√

d
2

)

< 82, the

function (x−16)3

x is monotonic. Accordingly, (x − 16)3 − xj
(

1+
√

d
2

)

= 0 has only one real root. Evaluating

all three roots f24(τ), −f24
1 (τ) and −f24

2 (τ) at τ = 1+
√

d
2 , we can conclude that −f24

2

(

1+
√

d
2

)

is the only

real root of the equation (x − 16)3 − xj
(

1+
√

d
2

)

= 0. Therefore, −f24
2

(

1+
√

d
2

)

= 212f−24(
√
d) is the only

real root of Hd(x). If h is even, Hd(x) may have even numbers of real roots, one of which is 212f−24(
√
d).

To prove the assertion on the constant term hd(0), we study the quotient Hd(x)/hd(x). In the given

situation, there always exist quadratic forms [2,±1, (1 − d)/8] besides [1,−1, (1 − d)/4]. The quadratic
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equation corresponding to the former quadratic form has roots ±1+
√

d
4 , and 1+

√
d

4 is just half of the root of the

quadratic equation corresponding to the latter form. Then from the formula of Weber: f1(z)f2
(

z
2

)

=
√

2, it

follows that Hd(x) always possesses pairs of roots

x1 = −241(τ) and x2 = −f24
2 (τ/2)

with the relation x1x2 = 212. This means that Hd(x) has pairs of roots, each pair connected with the above

relation. Therefore, the quotient Hd(x)/hd(x) has the form

Hd(x)/hd(x) =
h
∏

k = 1
{(x− x1,k)(x− x2,k)}

=
h
∏

k = 1

{

x2 − (x1,k + x2,k)x+ 212
}

.

The constant term of Hd(x)/hd(x) is 212h. From the definition of Hd(x), we see immediately that the

constant term of Hd(x) is Hd(0) = −163h = −212h. Therefore, we have hd(0) = −1.

(c) We have only to show the irreducibility of Hd(x)/hd(x). We have the identities

f24
(

1+
√

d
2

)

f24
1

(

1+
√

d
2

)

f24
2

(

1+
√

d
2

)

= 212 ,

f24
1

(

1+
√

d
2

)

f24
2

(

1+
√

d
4

)

= 212 ,

and

f24(
√
d)f24

2

(

1 +
√
d

2

)

= −212 .

From these, we obtain the identity

(∗) 212f−24(
√
d) = −f−24

(

1 +
√
d

2

)

f24
2

(

1 +
√
d

4

)

.

We know that 212f−24(
√
d) = −f24

2

(

1+
√

d
2

)

, which is the only real root of Hd(x), is a class invariant of O ⊂

K, so that its minimal polynomial hd(x) is irreducible of degree h over Q. Therefore, all roots of Hd(x)/hd(x)

are imaginary whose product is equal to 212. One of such pairs is f24
1

(

1+
√

d
2

)

and f24
2

(

1+
√

d
4

)

. Then the

relation(*) implies that the Galois group Gal(hd/K) act transitively on the set of roots of Hd(x)/hd(x). As

the Gal(hd/K)-orbit of f24
2

(

1+
√

d
4

)

has length h, Hd(x)/hd(x) must be irreducible of degree 2h over Q.

(d) This follows from the fact that f(
√
d)/

√
2 is a class invariant of O. In fact, xhhd

(

1
x

)

has h roots

which are conjugates of f24(
√
d)/212. This guarantees that for a suitable choice of the 24th roots of reciprocal

roots of hd(x), the resulting polynomial hd(x) is integral and irreducible of degree h and Q. The assertion

on hd(0) follows from (b).

(e) From the construction, Hd(x) and hd(x) have the same splitting field over Q, which is the ring class

field of O.
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For the cases d ≡ 5 (mod 8), we have the following results.

(B1.3) Theorem. Let O ⊂ K = Q(
√
d), d < 0, d ≡ 5 (mod 3) and 3 - d be an imaginary quadratic

order of discriminant d and class number h. Then f(
√
d) is a class invariant of O, and its minimal polynomial,

which is of degree 3h over Q, is the “reduced” class equation hd(x) of O.

Furthermore, the constant term is equal to (−2)h.

We consider the case d ≡ 0 (mod 8), d < 0. Put D = d/4 and let O = Z[
√
D] be the imaginary quadratic

order of discriminant d and class number h. The results differ depending on D is even or odd.

(B1.4) Theorem. Let O = Z[
√
D], D < 0, D = d

4 ≡ 2 or 6 (mod 8) and 3 - D be an imaginary

quadratic order of discriminant d and class number h. Then f1(
√
D)2/

√
2 is a class invariant of O, and its

minimal polynomial, which is of degree h over Q, is the “reduced” class equation hd(x) of O.

Furthermore, the constant term hd(0) is equal to ±1.

(B1.5) Theorem. Let O = Z[
√
D], d < 0, D = d

4 ≡ 3 (mod 8) and 3 - D be an imaginary

quadratic order of discriminant d and class number h. Then f(
√
D)4 is a class invariant of O, and its

minimal polynomial, which is of degree h over Q, is the “reduced” class equation hd(x) of O.

Furthermore, the constant term hd(0) is equal to ±2h.

(B1.6) Theorem. Let O = Z[
√
d], D < 0, D = d

4 ≡ 7 (mod 8) and 3 - D be an imaginary quadratic

order of discriminant d and class number h. Then f(
√
D)2/

√
2 is a class invariant of O, and its minimal

polynomial, which is of degree h over Q, is the “reduced” class equation hd(x) of O.

Furthermore, the constant term hd(0) is equal to (−1)h.

(B1.7) The cases when 3|d. (cf. Schertz [S].) Let O be an imaginary quadratic order in K = Q(
√
d),

d < −3 with 3|d. Write O = [1, τ ] where

τ =

{
√
d/2 if d ≡ 0 (mod 4)

3+
√

d
2 if d ≡ 1 (mod 4)

Then K(j1/3(τ)) is the ring class field of the imaginary quadratic order O′ = [1, 3τ ], and it is an algebraic

extension of degree 3 of the ring class field of O. Furthermore, Q(j1/3(τ) = Q(j(3τ)).

Consequently, the minimal polynomial of the class invariant j1/3(τ) has degree 3h rather than h over Q.

In other words, there is no algebraic relation of degree h over Z among the singular moduli of imaginary

quadratic orders with discriminants divisible by 3, and the smallest algebraic relation is of degree 3h.

B2 The method of Weber-Watson on the construction of the “reduced” class equations.

B2.1 A method of Weber-Watson. We describe the Weber-Watson construction of the “reduced”

class equations for an imaginary quadratic orders O ⊂ K = Q(
√
d), d ≡ 1 (mod 8) and 3 - d with class

number h. For each reduced positive definite primitive quadratic form [ak, bk, cd] of discriminant d, let
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τk = (−bk +
√
d)/2ak be the root of the quadratic equation akz

2 + bkz + ck = 0, belonging to F , for

k = 1, · · · , h.

Step 1. Let f(z), f1(z) and f2(z) be the Weber functions. Evaluate

f24(τk), −f24
1 (τk), −f24

2 (τk)

at h imaginary quadratic numbers τk = (−bk +
√
d)/2ak for k = 1, · · · , h corresponding to Pic(O).

(Step 2 - Step 6 are the reduction processes.)

Step 2. From the set of 3h numbers constructed in Step 1, discard 2h pairs of numbers whose products

are equal to 212. Construct an equation of degree h, one of whose roots is f 24
2

(

1+
√

d
2

)

. Denote by
h
∏

k = 1
(x−

αk) = 0 the equation thus obtained.

Step 3. Compute the cube roots 3
√
αk for k = 1, · · · , h. From the set of 3h numbers, select the “proper”

h cube roots in such a way that one of the cube roots is f 8
2

(

1+
√

d
2

)

. The “proper” selection of h cube roots is

tested by the condition that
h
∑

k = 1

3
√
αk becomes a rational integer. There are 3(h−1)/2 sums to be tested.

Denote by
h
∏

r = 1
(x− 3

√
αr) = 0 the equation with integer coefficients thus produced.

Step 4. Compute the square roots of 3
√
αr for r = 1, · · · , h. From the set of 2h numbers, make the

“correct” selection of h sixth roots in such a way that one of the roots is f 4
2

(

1+
√

d
2

)

. The “correct” selection

is tested by the condition that the sum
h
∑

s = 1

6
√
αs becomes a rational integer. There are 2(h−1)/2 sums to

be tested. Denote by
h
∏

s = 1
(x− 6

√
αs) = 0 the equation with integer coefficients thus obtained.

Step 5. Repeat the same procedure as in Step 4 to get the “correct” h twelfth roots 12
√
αs in such a

way that one of the roots is f 2
2

(

1+
√

d
2

)

. The resulting equation must have integer coefficients of degree h.

There are 2(h−1)/2 sums to be tested. Denote by
h
∏

t = 1
(x− 12

√
αt) = 0 the equation thus obtained.

Step 6. Repeat the same procedure as in Step 5 to get the “correct” h twenty-fourth roots 24
√
αt in

such as way that one of the roots is f2

(

a+
√

d
2

)

. To get the equation of degree h with integer coefficients,

there are 2(h−1)/2 sums to be tested.

The equation thus produced is nothing but hd(x) = 0 or its reciprocal xhhd(1/x) = 0.

The correct selection processes in Step 3 - Step 6 require exponential computational time.

(B2.2) A refinement of the method of Weber-Watson.

Step 1. Construct the genuine class equation Hd(x) for an imaginary quadratic order O ⊂ K =

Q(
√
d), d ≡ 1 (mod 8) and 3 - d with class number h.
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Step 2. Make the change of variable x → (x − 16)3/x in Hd(x). Factor out the integral irreducible

polynomial of degree h from xhHd((x− 16)3/x), and call it h∗d(x).

Step 3. Repeat the same Steps 3-6 of (B2.1) for h∗d(x).

The difference from the method of Weber-Watson is that we replace the first two steps by the construction

of the genuine class equations. However, by doing this, we don’t gain any computational time.

B3 The construction of the “reduced” class equations by integer lattice reduction.

Let O ⊂ K = Q(
√
d), d < 0 be an imaginary quadratic order of discriminant d = dkf

2, 3 - d and class

number h. Let f(z), f1(z) and f2(z) be the Weber functions. They are modular functions of higher level.

Consider the values f(τ), f1(τ) and f2(τ) at imaginary quadratic arguments τ belonging to an imaginary

quadratic order O. Then under certain circumstances, these values do lie in the field Q(τ, j(τ)). When that

happens, f(τ), f1(τ) and f2(τ) are also called class invariants of O.

Here we describe an algorithm for the construction of “reduced” class equations of imaginary quadratic

orders O ⊂ K = Q(
√
d), d = dkf

2 < 0 with 3 - d. Put

D =

{

d/4 if d ≡ 0 (mod 4)
d if d ≡ 1 (mod 4)

Our algorithm of constructing the “reduced” class equations is generic in the sense that it works for arbitrary

imaginary quadratic order with D square-free, if a real class invariant of O is provided.

(B3.1) The Class Invariants. The class invariants for imaginary quadratic orders O ⊂ K =

Q(
√
d), d = dKf

2 < 0 with 3 - d are listed as follows. (D = d/4 if d ≡ 0 (mod 4), d if d ≡ 1 (mod 4)).

D or d the class invariant of O

d ≡ 1 (mod 8) f(
√
d)/

√
2

d ≡ 5 (mod 8) f(
√
d

D ≡ 2 (mod 8) f1(
√
D)2/

√
2

D ≡ 3 (mod 8) f(
√
D)4

D ≡ 6 (mod 8) f1(
√
D)2/

√
2

D ≡ 7 (mod 8) f(
√
D)2/

√
2

Our class invariants differ slightly from those of Weber [W, §127].

The following theorem will govern the algorithm for constructing the reduced class equations.

(B3.2) Theorem. Let O ⊂ K = Q(
√
d), d < 0 be an imaginary quadratic order with discriminant

d, 3 - d and class number h. Let hd(x) := xh + ah−1x
h−1 + · · · + a0 ∈ Z[x] be the reduced class equation of

O. Let ||hd|| denote the Euclidean norm of hd:

||hd|| :=
√

1 + a2
h−1 + · · · + a2

0.
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For any real number α, let {α} denote the closest integer to α. Let ζ be a real root of hd(x), and let C be a

real constant such that

C ≥ 2(h+1)2 ||hd||2h+1
2

|ζ|h − 1

|ζ| − 1
.

Consider the h+ 2 dimensional lattice spanned by the columns of

L =



















1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
C {Cζ} {Cζ2} · · · {Cζh}



















.

Then the only short vector in this lattice, that is, a vector of Euclidean length within a factor of 2h/2 of the

shortest vector in the lattice, is the vector

L×











a0

...
ah−1

1











Proof. See [Sc], [K-L-L], [K1], and [Ka].

(B3.3) The algorithm. We now can describe our algorithm. We first approximate a real root ζ of

hd(x) to sufficiently high floating point precision using the class invariant of O in the table in (B3.1). We

obtain the values of the Weber functions f, f1 and f2 by their relations to the η function given in (B1.1). We

approximate the η function by its Taylor series in q given in (A1.2). Notice that we use a Horner evaluation

scheme for the truncated series (see the Macsyma code listed below). One also must choose a floating point

precision, in Macsyma, the variable FPPREC. We chose this precision typically 50 + h log10(Cζ).

The lattice reduction algorithm of [L-L-L] can now produce a short vector for the lattice L in the above

theorem (B3.2). This vector will contain as its first h+ 1 components the coefficients of hd(x). However, it

turns out that the estimate for C is likely to be much too large among the multipliers that still guarantee

that the reduction algorithm produces the correct answer. Therefore, we chose C individually and tried. If

the discriminant of the candidate polynomial exhibited the factorization pattern predicted, in particular, if

it splits into primes no larger than −d, we knew that the short vector corresponded to the polynomial hd(x).

Otherwise we increased C and tried again. In the code listed below, C is chosen 10LLLPREC , and for our

large cases we incremented LLLPREC by 25 for each new attempt.

Finally, the lattice reduction algorithm itself needs mention. We used a version where the µi,j are kept

as pairs of integral numerators Ki,j and denominators dj (cf. [L-L-L], 1.29). This replaces the numerator

and denominator reduction by the greatest common divisor in the rational number arithmetic by exact

integer division. Furthermore, we used special formulae to compute the initial quantities ki,j and dj , i.e.,
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the Gram-Schmidt orthonormalization, of the lattice L in the above theorem (B3.2) (cf. [K-McG] and [K1]).

We also experimented with selected other improvement, such as modular number arithmetic [K1]. We also

experimented with selected other improvement, such as modular number arithmetic [K2], but none of these

significantly improved the performance of the algorithm.

Following is a table of discriminants, together with the needed LLLPREC and the total time it took on

our Symbolics 3670 to compute hd(x). For all computations used a Taylor approximation of η to order 126.

Actually, the time for the computation of an approximation of ζ for larger class numbers is insignificant

compared to the time for the lattice reduction. We also list the number of times the lattice reduction

algorithm swaps two basis vectors (Step (2) of Fig. 1 in [L-L-L]), which is a good machine-independent

measure of the complexity of our method.

D or d h d(mod 8) D(mod 8) LLLPREC # Swaps CPU-TIME
-221 16 3 100 2135 1830 secs.
-194 20 6 100 2804 2210 secs.
-209 20 7 100 2847 2450 secs.
-326 22 2 100 3141 2940 secs.
-647 23 1 100 3267 2760 secs.
-419 9 5 100 4186 5320 secs.
-887 29 1 100 4224 4940 secs.
-719 31 1 100 4681 5860 secs.

-1487 37 1 150 8326 26700 secs.
-1151 41 1 150 9575 32100 secs.
-1847 43 1 175 11674 56600 secs.

Here D = d if d ≡ 1 (mod 4) and d/4 if d ≡ 0 (mod 4).

(B3.4) Algorithm (continued). Following is the listing of the Macsyma functions used to compute

the equation. These functions require a callable lattice reduction algorithm.

/* -*- Mode: MACSYMA -*- */

eta(z):=block([q,q2,q3,q4,q5,q6,q7,q8,q9,q11,q13,q15,q17,eta],
q: bfloat(exp(rectform(2*%pi*%i*z))),
/* Horner evaluation of 1+sum((-1)^n*(q^(n(3*n-1)/2)+q^(n(3*n+1)/2)),n).

This is currently done to order O(q^127). */
q2: rectform(q^2), q3: rectform(q2*q), q4: rectform(q2*q2),
q5: rectform(q3*q2), q6: rectform(q3*q3), q7: rectform(q5*q2),
q8: rectform(q4*q4), q9: rectform(q4*q5), q11: rectform(q5*q6),
q13: rectform(q6*q7), q15: rectform(q7*q8), q17: rectform(q8*q9),
eta: rectform(q8*(rectform(q17*(-q9-1)+1)+1)),
eta: rectform(q11*rectform(q6*rectform(q13*rectform(q7*rectform(q15*

eta-1)-1)+1)+1)),
eta: rectform(q4*rectform(q9*rectform(q5*rectform(

eta - 1) - 1) + 1)),
eta: rectform(q5*rectform(q3*rectform(q7*rectform(

eta + 1) - 1) - 1) + 1),
eta: rectform(q*rectform(q*rectform(q3*rectform(q2*

eta + 1) - 1) - 1) + 1),
rectform(eta*q^(1/24)))$

/* The Weber functions. */
f0(z):=block(

/* Weber’s f(z) */
t1: bfloat(rectform(exp(-%pi*%i/24))),
t2: eta((z+1)/2),
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t3: eta(z),
realpart(rectform(t1*t2/t3)))$

f1(z):=rectform(eta(z/2)/eta(z))$

f2(z):=rectform(bfloat(sqrt(2))*eta(2*z)/eta(z))$

quadforms(m):=block(
/* Compute all primitive reduced quadratic forms of Q(sqrt m), m < 0,

squarefree. Quadforms returns a list [[a1,b1,c1],...,[ah,bh,ch]]
where ai*x^2+bi*x*y+ci*y^2 are the reduced forms and h is the
class number. */

[a, b, c, ac, d, f],
if remainder(-m,4)=3 then d: m else d: 4*m,
f: [],
for b: 0 thru sqrt(-d/3) do

if remainder(b^2-d,4)=0 then
(ac: (b^2-d)/4,
for a: max(1, b) thru sqrt(ac) do

(if remainder(ac, a)=0 then
(c: quotient(ac, a),
f: endcons([a,b,c], f),
if b # 0 and b < a and a < c then f: endcons([a,-b,c],f))

) ),
return(f))$

rootlatt(r, d, rp):=block([lat, lcol, redlat, f, i],
/* Find the minimal polynomial for the bfloat root r of degree d using

LLL; */
/* rp is the multiplier to be used in the last row for LLL to converge

to the root. */
/* This function only sets up the lattice. */
lat: ident(d+1),
lcol: zeromatrix(1,d+1),
for i: 0 thru d do lcol[1,i+1]: entier(rp*r^i),
lat: addrow(lat, lcol),
return(lat))$

watson(d):=block([h, /* classnumber of Q[sqrt(d)] */
rr, /* real root of the Watson equation */
L, /* lattice for rr */
f, i, delta],

/* This function (currently) needs the following global settings: */
/* FPPREC: The floating point precision in the real root

computation */
/* LLLPREC: The multiplier used in the lattice construction */
h: length(quadforms(d)),
if verbose then print("Classnumber of ",d," is ",h),
/* Computation of the singular moduli, the real roots of the reduced

equ’s. */
if remainder(d,8) = -7 then rr: bfloat(f0(sqrt(d))/sqrt(2)),
if remainder(d,8) = -6 then rr: bfloat(f1(sqrt(d))^2/sqrt(2)),
if remainder(d,8) = -2 then rr: bfloat(f1(sqrt(d))^2/sqrt(2)),
if remainder(d,8) = -1 then rr: bfloat(f0(sqrt(d))^2/sqrt(2)),
if remainder(d,8) = -3 then (rr: bfloat(f0(sqrt(d))), h: 3*h),
if remainder(d,8) = -5 then rr: bfloat(f0(sqrt(d))^4),
/* All other cases are not maximal orders */
if verbose then print("Real root found:",rr),
L: rootlatt(rr,h,10^LLLPREC),
if verbose then print("Lattice: ",L),
if verbose then print("Starting lattice reduction"),
/* Call the lattice reduction algorithm (coded in Lisp) */
LL: latticereduction(L,true), /* second argument true indicates to use

special Gram-Schmidt code */
if verbose then print("Done lattice reduction"),
if verbose then print("Reduced Lattice",LL),
f: 0, for i: 1 thru h+1 do f: f+LL[i,1]*x^(i-1),
delta: poly_discriminant(f,x),
/* Test whether discriminant of field divides discriminant of equation */
if remainder(delta, d) # 0 then
print("Failed to find classequation, increase order for eta, FPPREC,

or LLLPREC")
else if verbose then print("Discriminant ",factor(delta)),
return(f))$
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B4 Analysis of the “reduced” class equations.

Let O ⊂ K = Q(
√
d), d = dKf

2 < 0, 3 - d be an imaginary quadratic order of discriminant d with class

number h. As we have seen in Theorem (A2.1)(1), the constant term and the discriminant of the level one

class equation Hd(x) are highly divisible numbers. In fact, if ` is a prime dividing Hd(0), then
(

d
`

)

6= 1 and

` ≤ 3|d|
4 , and if ` is a prime dividing the discriminant ∆(Hd), then

(

d
`

)

6= 1 and ` ≤ |d|.

We have the corresponding results for the constant term and the discriminant of the higher level class

equation hd(x).

(B4.1) Theorem. Let O ⊂ K = Q(
√
d), d < 0, d ≡ 1 (mod 8) and 3 - d be an imaginary quadratic

order with discriminant d and with class number h. Let hd(x) denote the “reduced” class equation of O

constructed in (B1.1). Then,

(a) hd(0) = (−1)h

(b) If ` is a prime dividing the discriminant ∆(hd) of hd, then
(

d
`

)

6= 1 and ` ≤ |d|.

Furthermore,

∆(hd) = i2(−d)h−1
2

where i is the index of the order Z[f2] in the ring of integers of Q(f2(τ)), τ ∈ O where f2(z) is the Weber

function defined in (B1.1), and i divides the index I of Theorem (A2.1)(1), and hence ∆(hd)|∆(Hd).

(B4.2) Example. Let Hd(x) be the genuine class equation of O. By a theorem of Gross-Zagier,

Hd(0) and the discriminant ∆(Hd) factor very highly with prime factors smaller than or equal to −d. It

remains to clarify why the reduced equation hd(x) loses almost all the factors appearing in Hd(0) and ∆(Hd).

For example, consider the genuine and reduced class equations of the maximal imaginary quadratic order

OK ⊂ K = Q(
√
−271). OK has class number h(−271) = h = 11. As our computations show, H−271(x) has

H−271(0) = (31123229247 · 71 · 113 · 131 · 173 · 191 · 197)3

and
∆(H−271) = −37321311019702348293843304720592271107312978

×101810761096113612781311013741494173418141918

×197219942276239625162574263426922715.

While the reduced class equation h−271(x) has

h−271(0) = −1

and

∆(h−271) = −361321922715 .

(B4.3) The discriminants of the reduced class equations. Let d1 and d2 be fundamental dis-

criminants of quadratic forms. Let g(z) denote one of the class invariants defined in (B3.1). Suppose that
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τ1, τ2 ∈ F belong to two distinct imaginary quadratic fields of discriminants d1 and d2, respectively. Then

the absolute value of the norm of difference g(τ1) − g(τ2), i.e.,

|Norm(g(τ1) − g(τ2))|

is a highly divisible number, and its prime factors ` satisfy the conditions

(

d1

`

)

6= 1 and

(

d2

`

)

6= 1,

and |Norm(g(τ1) − g(τ2))| divides |Norm(j(τ1) − j(τ2)|.

It is expected that there is a Gross-Zagier type formula for the discriminants ∆(hd) of the reduced class

equations hd(x).

On the height ||hd|| of the reduced class equation hd(x), we have the following results.

(B4.4) Proposition. Let O ⊂ K = Q(
√
d), d < 0, dKf

2 and 3 - d be an imaginary quadratic

order with class number h. Let D = d/4 if d ≡ 0 (mod 4) and d if d ≡ 1 (mod 4). Let hd(x) be the

reduced class equation of O and let ht(hd) = log ||hd|| be its height. If hd(x) =
∏

(x − αi) ∈ C[x], let

M =
∏

i max (1, |αi|). Then M ≥ 1.

(a) Assume that d ≡ 1 (mod 8). Then hd(x) is of degree h with the constant term (−1)h, and

ht(hd) ≤ h log 2 + log h+ logM.

(b) Assume that d ≡ 5 (mod 8). Then hd(x) is of degree 3h with the constant term (−2)h, and

ht(hd) ≤ (3h) log 2 + log(3h) + logM

(c) Assume that D = d
4 ≡ 2, 6 or 7 (mod 8). Then hd(x) is of degree h with the constant term ±1, and

ht(hd) ≤ h log 2 + log h+ logM.

(d) Assume that D = d
4 ≡ 3 (mod 8). Then hd(x) is of degree h with the constant term ±2h, and

ht(hd) ≤ h log 2 + log h+ logM .

Proof. If hd(x) is of degree h, write

hd(x) = xh + ah−1x
h−1 + · · · + a1x+ a0 ∈ Z[x] .

Then

||hd|| ≤
√

1 + a2
h−1 + · · · + a2

1 + a2
0 ≤ 1 +

h− 1
∑

i = 0
|ai| .
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Furthermore, for each i,

|ai| ≤
(

h− 1
i

)

M +

(

h− 1
i− 1

)

≤
(

h
i

)

M < 2hM .

(a) In this case, a0 = (−1)h and

||hd|| ≤ 2 +
h− 1
∑

i = 1
|ai| ≤ 2 + (h− 1)2hM < 2hM .

(b) In this case hd(x) is of degree 3h .

Write

hd(x) = x3h + a3h−1x
3h−1 + · · · + a1x+ (−2)h ∈ Z[x] .

Then

||hd|| ≤ 1 + 2h +
3h− 1
∑

i = 1
|ai| ≤ 1 + 2h + (3h− 1)23hM

≤ 3h · 23hM .

(c) In this case, a0 = (−1)h and

||hd|| ≤ 2 +
h− 1
∑

i = 1
|ai| ≤ 2 + (h− 1)2hM < h2hM .

(d) In this case, a0 = ±2h and

||hd|| ≤ 1 + 2h +
h− 1
∑

i = 1
|ai| ≤ 1 + 2h + (h− 1)2hM

≤ h 2hM .
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B5 Tables of the “reduced” class equations.

We tabulate selected examples of the “reduced” class equations.

Table 1: The reduced class equation for d ≡ 1 (mod 8)

d h hd(X) ∆(hd)

−647 23 X23 − 20X22 + 3X21 + 37X20 + 46X19 − 2X18 −
151X17 − 384X16 − 610X15 − 849X14 − 995X13 −
955X12 − 798X11 − 596X10 − 378X9 − 202X8 −
75X7 + 21X5 + 19X4 + 13X3 + 3X2 − 2X − 1

−522116194374 ×
1992439264711

−887 29 X29−32X28−98X27−95X26+265X25+6X24−13X23−
247X22 + 268X21 − 349X20 + 413X19 − 405X18 +
574X17 − 839X16 + 866X15 − 953X14 + 951X13 −
820X12 + 758X11 − 628X10 + 447X9 − 336X8 +
217X7 − 115X6 + 70X5 − 29X4 + 7X3 − 7X2 −X − 1

516176238292318 ×
89297610322112 ×
43925632691288714

−719 31 X31 − 26X30 + 53X29 + 68X28 − 168X27 − 176X26 +
161X25 + 172X24 − 175X23 − 440X22 − 341X21 −
169X20−293X19−255X18−57X17−9X16−114X15−
157X14 − 21X13 + 68X12 + 59X11 + 20X10 + 37X9 +
29X8+36X7+24X6+20X5−X4−11X3−11X2−4X−1

−1141710192232 ×
412432712738794 ×
972127213942712 ×
5232619271915

−1487 37 X37 − 110X36 +7X35 − 1660X34 +2145X33 − 3216X32 +
5894X31 − 5958X30 + 1958X29 − 3622X28 +
1289X27 + 149X26 − 2612X25 + 2051X24 + 922X23 −
450X22 − 3003X21 + 575X20 + 597X19 − 2300X18 +
67X17 + 870X16 + 192X15 − 1075X14 + 151X13 +
180X12 − 400X11 − 335X10 + 72X9 + 31X8 − 97X7 −
97X6 − 26X5 − 38X4 − 42X3 − 24X2 − 6X − 1

54213101910298418 ×
532594614892 ×
157419122574 ×
331233724632 ×
5232619410392 ×
1163212912148718

−1151 41 X41 − 64X40 + 242X39 − 128X38 + 67X37 − 1356X36 −
1996X35 + 1602X34 + 1673X33 + 4366X32 − 273X31 −
6530X30 − 197X29 + 10X28 + 1681X27 + 716X26 −
2057X25 + 885X24 + 2067X23 + 291X22 − 1309X21 −
210X20−327X19+197X18+144X17−100X16−33X15+
207X14 +33X13 −229X12 +128X11 −26X10 +49X9 +
32X8−50X7−59X6+65X5+3X4−20X3−2X2+5X−1

132817161912234 ×
314414616712732 ×
974127213721914 ×
251228123672 ×
379243125714 ×
7512827210512 ×
115120

−1847 43 X43−196X42−13X41−4673X40+5250X39−20238X38+
13122X37 − 38978X36 + 9561X35 − 42114X34 +
5753X33−25633X32−3134X31−7110X30−11340X29−
12064X28 − 303X27 − 4565X26 + 570X25 + 443X24 +
5283X23 − 1129X22 − 1067X21 − 268X20 + 1033X19 −
732X18 + 606X17 + 1854X16 − 1112X15 − 900X14 +
142X13−725X12−768X11+440X10+375X9−185X8−
42X7 + 17X6 − 172X5 − 170X4 − 44X3 + 2X2 −X − 1

−5601710198318 ×
4324710538614 ×
73483210921276 ×
149425744014 ×
409249926594 ×
8232883210632 ×
1171213992 ×
1459215232184721

Table 2: The reduced class equation for d ≡ 5 (mod 8)

d h hd(X) ∆(hd)

−179 5 X15 − 20X13 − 62X12 − 76X11 − 32X10 + 16X9 + 8X8 −
64X7 − 160X6 − 176X5 − 96X4 − 16X3 + 32X2 − 32

−2941127921797

−587 7 X21 − 24X20 + 12X19 − 186X18 − 236X17 − 192X16 −
652X15 − 1464X14 − 528X13 − 1272X12 − 1952X11 +
384X10 + 688X9 − 896X8 + 2112X7 + 2208X6 −
960X5 + 960X3 − 1664X2 + 256X − 128

2198516132234412 ×
972139226323312 ×
58710
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−419 9 X27−18X26+54X25−58X24−16X23−192X22+608X21−
752X20 + 800X19 − 1376X18 + 2592X17 − 2752X16 +
3680X15−5696X14 +5568X13−7616X12 +8192X11−
9728X10 +11008X9 −8960X8 +13312X7 −10240X6 +
8704X5 − 9216X4 + 3328X3 − 4608X2 + 1536X − 512

−2318116174196 ×
31289212721632 ×
2112223241913

Table 3: The reduced class equation for d = 4D with D ≡ 2 (mod 8)

D h hd(X) ∆(hd)

−62 8 X8−2X7−13X6−30X5−36X4−30X3−13X2−2X+1 −22054313

−86 10 X10 − 8X9 + 2X8 − 18X7 + 9X6 − 4X5 − 9X4 − 18X3 −
2X2 − 8X − 1

249134434

−134 14 X14 − 12X13 − 34X12 − 66X11 − 37X10 − 76X9 − 3X8 −
126X7 +3X6−76X5 +37X4−66X3 +34X2−12X−1

28574292414676

−206 20 X20 − 30X19 − 13X18 + 118X17 + 204X16 − 794X15 +
141X14 + 1238X13 − 753X12 − 948X11 + 1656X10 −
948X9 − 753X8 + 1238X7 + 141X6 − 794X5 +
204X4 + 118X3 − 13X2 − 30X + 1

−216213122984741039

−326 22 X22−88X21 +674X20−1970X19 +2377X18−1348X17 +
913X16 − 3458X15 + 2578X14 − 4108X13 + 233X12 −
6504X11 − 233X10 − 4108X9 − 2578X8 − 3458X7 −
913X6−1348X5−2377X4−1970X3−674X2−88X−1

221778178614734 ×
834894137416310

Table 4: The reduced class equation for d = 4D with D ≡ 3 (mod 8)

D h hd(X) ∆(hd)

−53 6 X6 − 46X5 + 48X4 − 600X3 − 192X2 − 736X − 64 25456533

−221 16 X16 − 2380X15 − 51556X14 − 274960X13 − 12528X12 −
10574592X11 + 5908352X10 − 21593600X9 −
30432768X8 + 86374400X7 + 94533632X6 +
676773888X5 − 3207168X4 + 281559040X3 −
211173376X2 + 38993920X + 65536

240472011413121716 ×
2983146141134 ×
14921814
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Table 5: The reduced class equation for d = 4D with D ≡ 6 (mod 8)

D h hd(X) ∆(hd)

−26 6 X6 − 2X5 − 2X4 + 2X2 − 2X − 1 212133

−146 16 X16 − 22X15 + 99X14 − 190X13 + 177X12 − 88X11 −
34X10 + 228X9 − 374X8 + 228X7 − 34X6 − 88X5 +
177X4 − 190X3 + 99X2 − 22X + 1

−2111174234738

−194 20 X20 − 26X19 − 23X18 − 190X17 − 36X16 − 190X15 +
103X14 − 230X13 − 81X12 − 132X11 + 584X10 −
132X9 − 81X8 − 230X7 + 103X6 − 190X5 − 36X4 −
190X3 − 23X2 − 26X + 1

−21811784144749710

Table 6: The reduced class equation for d = 4D with D ≡ 7 (mod 8)

D h hd(X) ∆(hd)

−193 4 X4 − 26X3 − 22X2 − 26X + 1(*) −212321932

−41 8 X8 − 5X7 + 7X6 − 12X5 + 14X4 − 12X3 + 7X2 − 5X + 1 −216414

−89 12 X12 − 5X11 − 21X10 − 50X9 − 65X8 − 81X7 − 70X6 −
81X5 − 65X4 − 50X3 − 21X2 − 5X + 1

−262896

−209 20 X20 − 34X19 + 93X18 − 124X17 + 292X16 − 420X15 −
69X14 − 710X13 − 1289X12 − 752X11 − 2168X10 −
752X9 − 1289X8 − 710X7 − 69X6 − 420X5 + 292X4 −
124X3 + 93X2 − 34X + 1

216611141741910 ×
234974

∗This polynomial has appeared in D. Shanks: Dihedral quartic approximations and series for π, J. Number Theory 14, No.
3, (1982), pp. 397–423.
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