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Abstract. Given an algebraic circuit or straight-line program of depth d that computes
multivariate rational function in l arithmetic operations (additions, multiplications, and
divisions), we construct circuits that compute

(1) the first k partial derivatives in a single variable with depth O(log(k)(d + log(k)))
using O(k log(k) log(log k) d) arithmetic operations;

(2) all first partial derivatives in depth O(d) using no more than 4l arithmetic opera-
tions.

Our first result is based on Taylor series expansion and essentially parallelizes the
Leibniz formula. Our second result parallelizes a construction by Baur and Strassen. A
crucial ingredient to the parallel solution is the fact that bounded fan-in computation
graphs can be transformed to those where the fan-out is bounded as well while increasing
the depth by no more than a constant factor.

1. Introduction

Transformations on structured computations of rational multivariate functions are a common-
place tool for sequential and parallel algebraic algorithm design and complexity analysis. One
of the first results is Brent’s (1974) transformation of an expression tree to one of logarithmic
depth. That transformation generically produces parallel code for expression evaluation and has
since then been studied extensively (Miller and Reif 1989), (Kosaraju and Delcher 1988), and
(Cole and Vishkin 1988). Surprisingly, the tree contraction technique introduced by Miller and
Reif can be generalized to reduce the depth of an algebraic computation graph or a straight-line
program (introduced by Strassen (1972) as a model for algebraic computation) to poly-logarithmic
in size and degree (Valiant et al 1984), (Miller et al 1986), and (Kaltofen 1988). Another trans-
formation, inspired by the problem of reducing the inversion of a matrix to the computation of
its determinant, was found by Baur and Strassen (1983) who show that if one is given a mul-
tivariate rational function by a straight-line program, then one can simultaneously compute all
first order partial derivatives with only a constant factor growth in the length of the computation.

*This material is based on work supported in part by the National Science Foundation under
Grant No. CCR-87-05363 and under Grant No. CDA-88-05910 (first author) and by the National
Science Foundation under Grant No. DMS-8803109 (second author). This paper appears in the
Proceedings of the IV International Conference on Computer Algebra in Physical Research, D.
V. Shirkov, V. A. Rostovtsev, and V. P. Gerdt (eds.), World Scientific, Singapore, pp. 133-145
(1991).
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The motivation of this article is to investigate how one might apply derivatives to a straight-line
computation of small depth, such as the ones produced by the parallelization methods mentioned
before, without substantially increasing the depth while keeping the size minimal.

Baur and Strassen’s (loc. cit.) clever construction does not increase the size by more than
a constant factor, but it can produce a straight-line program of depth as large as the number
of instructions in the straight-line program. In this paper we give a modified transformation
that increases the length of the program for all first order partial derivatives of the final func-
tion computed by a factor of no more than 4 compared to the original program. Much more
significantly our construction retains the depth of the original program within a constant factor.
Our construction makes use of another computation graph transformation by Hoover, Klawe, and
Pippenger (1984) who show how a bounded fan-in, unbounded fan-out circuit can be transformed
into one with bounded fan-out as well by increasing both size and depth by a constant factor only.
Their construction essentially adds specially balanced trees of duplication nodes behind nodes of
high fan-out. One key ingredient in our transformation is the observation that the circuit which
accumulates all partial derivatives from a coarse view-point is a mirror image of the circuit for
computing the function itself. Therefore, data flows into dual nodes of high fan-in whose preim-
age counterparts have high fan out. These nodes only need to perform additions, so we can do
these additions in the nodes that in Hoover’s et al. construction were just duplication nodes, and
therefore do not increase the length at all.

Our second result deals with computing the k-th order derivative in a single variable. Our
earlier solution (Kaltofen 1987) made use of the Leibniz formula, which not only increases the
length of the program by a factor of O(k2), but also determines the i-th derivative from the
(i − 1)-st one and therefore multiplies the depth by a factor of O(k log(k)). Our new solution
is based on the simple observation that higher derivatives can be read off from the coefficients
of the power series expansion in the variable to differentiated by (see (Aho et al. 1975)). In our
case, we need to compute Taylor series expansions in a single variable of multivariate rational
functions given by straight-line programs. This problem, however, has been studied thoroughly
(Strassen 1973) and (Kaltofen 1988). Indeed, by pushing the divisions back to a final single one,
we can compute all derivatives in a single variable up to order k by a program whose length has
increased by a factor of order O(k log(k) log(log k)) and whose depth by roughly a factor of order
O(log(k)).

A straight-line program of length l is a sequence of assignment

vi ← v′
i ◦i v′′

i , 1 ≤ i ≤ l,

where vi is a new program variable,

v′
i, v

′′
i ∈ K ∪

n
⋃

j=1

{xj} ∪
i−1
⋃

k=1

{vk},

and the operation ◦i is either +, −, ×, or ÷. In this paper we assume that K is an arbitrary field.
Every vi therefore computes a rational function in K(x1, . . . , xn) and it is not permitted to divide
by a v′′

i that is identically 0. All our transformation necessarily must preserve this condition. The
depth of each variable is defined recursively as

depth(vi) = 1 + max{depth(v′
i),depth(v′′

i )},

where depth of operands v′
i, v

′′
i ∈ K ∪ {x1, . . . , xn} is defined to be zero. The depth of a program

is the maximum of the depths of the variables. The depth is a measure of the time it takes to
evaluate a straight-line program in parallel. Given l processors, each of which evaluates a variable
as soon as the values of their operands are known, the process of evaluating the entire program
takes the depth of the straight-line program many rounds.
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By M(n) we denote the number of arithmetic operations it takes to multiply two univariate
polynomials over K of degree no more than n. By the result in (Cantor and Kaltofen 1987) there
is a straight-line program without divisions of length M(n) = O(n log(n) log(log n)) and depth
O(log(n)) that can compute the coefficients of the product polynomial for this problem.

2. Differential Fields

The results in this paper deal with partial derivatives on multivariate rational functions. If we
have a subfield of the complex numbers as the coefficient field, partial derivatives can be defined
in an analytic setting by considering the functions as multivariate analytic complex functions.
In particular, we obtain the Laurent series representation of such functions, as well as rules on
differentiation such as the chain rule. However, we wish to include coefficient fields of finite
characteristic in our results as well as use derivatives from a purely algebraic point of view with
no analytic interpretation. Therefore, we will appeal to the algebraic theory of differential fields
(Kaplansky 1957). Since we only need the very basics of that theory and since we wish to make
this article somewhat self-contained, we discuss the necessary definitions and lemmas in this
section.

Let R be a commutative ring (with unity). A derivative ∂ on R is a map from R into itself
such that

∀r, s ∈ R: ∂(r + s) = ∂(r) + ∂(s), ∂(rs) = ∂(r)s + r∂(s).

A differential ring is a ring together with a family of derivatives {∂i}i∈I . It is surprising that
most of the properties of function fields with derivatives can be modelled by this definition. We
shall state the ones we need.

Let 1 be the unit in R. Then

∂(1) = ∂(12) = 2 · 1 · ∂(1) = 0.

We define as the ring of constants of R

CR = {c | c ∈ R and ∀i ∈ I: ∂i(c) = 0},

which thus is a subring of R.
Let r ∈ R posses a multiplicative inverse r−1. Then

0 = ∂(rr−1) = ∂(r)r−1 + r∂(r−1), hence ∂(r−1) = −∂(r)r−2.

Therefore, ∂(rn) = nrn−1∂(r) for all such r and all n ∈ Z.

Lemma 2.1. Let the differential ring be an integral domain. Then any derivative ∂ extends

uniquely to the quotient field of R, QF(R).

Proof. The embedding of R into QF(R) requires us to define ∂([r/1]) = [∂(r), 1], where r ∈ R
and [r/s] denotes the equivalence class for the pair r/s. Since for r 6= 0 the class [1/r] is the
multiplicative inverse of [r/1], we must have ∂([1/r]) = −[∂(r)/1] [1/r2]. Hence we must define

∀r, s ∈ R, s 6= 0: ∂([r/s]) = [(∂(r)s− r∂(s))/s2].

One now can show easily that this definition is independent of the choice of representative of
[r/s], and in fact constitutes a derivative on QF(R). ⊠

We now extend derivatives to series rings constructed from R. The first would be the ring of
polynomials over R, R[x]. It turns out that one can give ∂(x) any value in R[x] and then uniquely
extend a derivative on R to one on R[x]. If R is an integral domain, the same holds true for R(x),
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the quotient field of R[x]. In our applications, R will always be a field K, possibly of positive
characteristic.

It is useful to embed K(x) into the field of extended formal power series,

K((x)) :=
⋃

k≥0

1

xk
K[[x]],

where K[[x]] is the domain of formal power series over K. The embedding ι requires the identifi-
cation of polynomial inverses with their power series, that is

ι

(

1

a0 + a1x + · · ·+ adxd

)

= b0 + b1x + b2x
2 + · · ·+ bix

i + · · · , a0 6= 0, b0 =
1

a0
,

where with al = 0 for l > d we have

∀i ≥ 1: bi =
1

a0
(−b0ai − b1ai−1 − · · · − bi−1a1) .

We first discuss how to computed derivatives in K((x)).

Lemma 2.2. For any g ∈ K((x))

∂

(

+∞
∑

i=−k

aix
i

)

= −ka−kg

xk+1
+

+∞
∑

i=−k

(

∂(ai) + (i + 1)ai+1g
)

xi, ai ∈ K, k ≥ 0,

defines a derivative on K((x)) with ∂(x) = g. ⊠

Note that this lemma allows us the transfer of a derivative ∂′ on K(x) to a derivative ∂ on K((x))
by defining ∂(x) = ι(∂′(x)). These derivatives agree on K.

An important special case is that where ∂(x) = 1 and K is a subfield of the constant field, i.e.,
∂(a) = 0 for all a ∈ K. This is because for K = C, the field of complex numbers, this derivative
agrees with the analytically defined one. In fact, one can by purely algebraic means establish the
construction of multivariate MacLaurin series expansions.

Lemma 2.3. Let K(x1, . . . , xn) be endowed with a family of standard partial derivatives ∂x1
,

. . . , ∂xn
such that

∀i: ∂xi
(K) = {0}, ∂xi

(xi) = 1, ∂xi
(xj) = 0 for j 6= i.

Consider the multivariate power series expansion for f/g where f, g ∈ K[x1, . . . , xn], g(0, . . . , 0)
6= 0,

f(x1, . . . , xn)

g(x1, . . . , xn)
=

∑

i1≥0,...,in≥0

bi1,...,in
xi1

1 · · ·xin
n .

Then

∀i1 ≥ 0, . . . , in ≥ 0:

(

∂i1
x1

∂i2
x2
· · · ∂in

xn

f

g

)

(0, . . . , 0) = (i1!) · · · (in!) bi1,...,in
,

where ∂i
xj

is applying ∂xj
a sequence of i times.

Proof. First we note that the family of derivatives is also valid in K((x1, . . . , xn)). Hence by lemma
2.2 we have

∂i1
x1

∂i2
x2
· · · ∂in

xn





∑

i1≥0,...,in≥0

bi1,...,in
xi1

1 · · ·xin
n





= (i1!) · · · (in!)bi1,...,in
+

∑

l1>i1,...,ln>in

l
i
1

1 · · · l
i

n
n bl1,...,lnxl1−i1

1 · · ·xln−in
n ,

where li denotes l(l − 1) · · · (l − i + 1). Plugging in 0 for xj proves the lemma. ⊠

We finally prove the chain rule for rational functions.
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Lemma 2.4. Let the derivatives ∂x1
, . . . , ∂xn

on K[x1, . . . , xn] be as in lemma 2.3. Similary, define

the standard derivatives ∂y1
, . . . , ∂ym

on K[y1, . . . , ym]. Let f ∈ K(y1, . . . , ym) and let g1, . . . , gm ∈
K(x1, . . . , xn). Assume that the denominator of f does not become zero in K(x1, . . . , xn) by setting

yj to gj(x1, . . . , xn) for all 1 ≤ j ≤ m. Then

∂xi

(

f(g1, . . . , gm)
)

=

m
∑

j=1

(∂yj
f)(g1, . . . , gm) ∂xi

(gj)

Note that by the quotient rule in the proof of lemma 2.1 no zero division occurs in any of the

∂yj
(f)(g1, . . . , gm).

Proof. For h ∈ K(x1, . . . , xn) consider

h̄(z1, . . . , zn) = h(X1 + z1, . . . , Xn + zn) ∈
(

K(X1, . . . , Xn)
)

(z1, . . . , zn).

We first note that
(

∂zi
h̄
)

(0, . . . , 0) = (∂xi
h)(X1, . . . , Xn).

Hence by lemma 2.3 we have

h(x1 + z1, . . . , xn + zn) = h(x1, . . . , xn) +

n
∑

i=1

(∂xi
h)zi + · · · .

We now apply this expansion to both f and all gj and obtain

f(y1 + u1, . . . , ym + um) = f(y1, . . . , ym) +
m
∑

j=1

(

∂yj
f
)

uj + · · ·

and for j = 1, . . . , n,

gj(x1 + z1, . . . , xn + zn) = gj(x1, . . . , xn) +

n
∑

i=1

(∂xi
gj) zi + · · · .

Now we substitute gj for yj and
∑n

i=1 (∂xi
gj) zi + · · · for uj in the expansion for f . This substi-

tution is valid because for z1 = · · · = zn = 0 no zero division occurs by assumption. Considering
h = f(g1, . . . , gm) ∈ K[x1, . . . , xn] we need to collect the coefficient of zi in

h(x1 + z1, . . . , xn + z1) = f(g1(x1 + z1, . . . , xn + zn), . . . , gm(x1 + z1, . . . , xn + zn))

to obtain ∂xi
h. By the above substitution this coefficient is

m
∑

j=1

(∂yj
f)(g1, . . . , gm) ∂xi

(gj),

which proves the lemma. ⊠
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3. Higher Order Partial Derivatives in a Single Variable

Given f ∈ K(x1, . . . , xn) by a straight-line program P , at issue is to construct a straight-line
program Q that computes ∂k

x1
(f). Our first solution to this problem used the Leibniz formula for

the higher order product rule (Kaltofen 1987). We briefly explain the approach. Let w ← u ◦ v
be an instruction in P . The new program Q introduces variables u(j), v(j), w(j), 0 ≤ j ≤ k, such
that w(j) computes ∂j

x1
(w). Clearly, we then must have w(0) ← u(0) ◦ v(0) and for j ≥ 1 and

for ◦ = +: w(j) = u(j) + v(j),

for ◦ = ×: w(j) =

j
∑

m=0

(

j

m

)

u(j−m)v(m),

and for ◦ = ÷: w(j) =

(

u(j) −
j
∑

m=1

(

j

m

)

w(j−m)v(m)

)/

v(0).

Therefore, w(j) can be computed from

u(0), . . . , u(j), v(0), . . . , v(j), w(0), . . . , w(j−1)

in O(j) assignments, compiling to a total of O(k2) assignments for w(k).
For k = 1, this approach is the best we know. In particular, the quotient rule given above

only requires 3 additional instructions, leading to a program Q of length no more than 4l, where
l is the length of the original program P . For large k, this approach is, however, not very
efficient. Not only does it experience quadratic growth in size, but also leads a program Q of
depth O(k log(k) d), where d is the depth of the original program P . Our new approach is based
on reading the derivatives off a Taylor series expansion (see lemma 2.3) and reduces both size and
depth of Q. We have the following theorem.

Theorem 3.1. Let f ∈ K(x1, . . . , xn) be given by a straight-line program of length l and depth d.

Then f and all derivatives ∂x1
(f), ∂2

x1
(f), . . . , ∂k

x1
(f), k ≥ 1, can be computed by a straight-line

program Q of length O(M(k) l) and depth O
(

log(k)(d + log(k))
)

.

Proof. Consider the straight-line program Py that computes f(x1 + y, x2, . . . , xn) ∈ K(x1, . . . ,
xn, y). By the algorithm Taylor Series Coefficients (Kaltofen 1988, Section 7) we can transform
Py into a straight-line program Q that computes the coefficients bj(x1, . . . , xn) ∈ K(x1, . . . , xn),
0 ≤ j ≤ k, of the expansion

f(x1 + y, x2, . . . , xn) =
∞
∑

j=0

bj(x1, . . . , xn)yj .

By the argument given in the proof of lemma 2.4 we then get

∂j
x1

(f) = j! bj(x1, . . . , xn).

The program Q essentially keeps for each program variable w the truncated power series coeffi-
cients in y in additional variables. Clearly, if we have the assignment w ← u ◦ v, then we can
compute the coefficients of w from those of u and v. More precisely, let

u =
k
∑

j=0

u(j)yj + O(yk+1), v =
k
∑

j=0

v(j)yj + O(yk+1), and w =
k
∑

j=0

w(j)yj + O(yk+1).
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We will have w(0) ← u(0) ◦ v(0) and for j ≥ 1 and

for ◦ = +: w(j) = u(j) + v(j),

and for ◦ = ×: w(j) =

j
∑

m=0

u(j−m)v(m).

For ◦ = ÷ we are reqired to perform power series inversion





k
∑

j=0

v(j)yj + O(yk+1)





−1

,

which in this case can be done since v(0) = v 6= 0, because the original program P divides by v.
By polynomial multiplication both the case ◦ = × and the case ◦ = ÷ can be done in O(M(k))
instructions (Sieveking 1972), (Kung 1974). However, not for any field K can O(log(k)) depth
for power series inversion be easily accomplished while asymptotically retaining the instruction
count.

We finally show how all but a division in the last instruction can be replaced by additions and
multiplications. The idea is already discussed in (Strassen 1973) and introduces for each variable
w in P two variables w(1) and w(2) such that both will compute polynomials in K[x1, . . . , xn] and
w = w(1)/w(2). Given an instruction w ← u ◦ v we now can compute, e.g.,

for ◦ = +: w(1) = u(1)v(2) + v(1)u(2), w(2) = u(2)v(2).

This transformation does not asymptotically increase either length of depth. Now we apply our
transformation to the new program with one division. By using Newton iteration to resolve the
final truncated power series inversion we will then add O(M(k)) length and O((log k)2) depth
to the program Q, whose preceding O(M(k) l) instructions perform O(l) truncated power series
additions and multiplications at a depth of O(log(k) d). ⊠

4. Multiple First Order Derivatives

Given be a straight-line program of length l and depth d that computes f ∈ K(x1, . . . , xn). In
the previous section we developed an algorithm that allows to compute all

∂k
x1

(f), ∂k
x2

(f), . . . , ∂k
xn

(f)

by a straight-line program of length O
(

nl M(k)
)

and depth O
(

log(k) (d + log(k)
)

. In this section
we treat the case k = 1 more closely. We will show that one can then remove the factor n
from the length while retaining depth O(d). Our construction is based on the result by Baur
and Strassen (1983) who establish a transformation to compute all first order partial derivatives
with an increase in length by only a scalar multiple. However, their transformation is not depth
preserving. By analyzing their construction more closely, we can prove the following theorem.

Theorem 4.1. Let f ∈ K(x1, . . . , xn) be computed by a straight-line program P of length l and

depth d. Then f and all derivatives ∂x1
(f), ∂x2

(f), . . . , ∂xn
(f) can be computed by a straight-line

program Q of length no more than 4 l and depth O(d log(t)), where t is the maximum number of

times any variable is used as an operand in P , i.e., the maximum “fan-out” in the program P .
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Proof. Let vi ← vI1(i) ◦i vI2(i), n + 1 ≤ i ≤ n + l, be the (i− n)-th instruction in the program P .
Here the function I1 retrieves the index of the left operand of right-hand side expression, and the
function I2 the right operand. We set vi := xi for 1 ≤ i ≤ n, hence have a range for the operand
indices of 1 ≤ I1(i), I2(i) < i. If the left or right operands are scalars, no such indexing will be
needed. For i > n the symbol vi stands, strictly speaking, for a program variable in P , or a node
in the computation DAG for f . However, we also use it to identify with it the rational function
in K(x1, . . . , xn) that is computed in this variable. Baur and Strassen’s construction proceeds by
viewing f as a sequence of functions

gi(y1, . . . , yi) ∈ K(y1, . . . , yi), n + l ≥ i ≥ n.

We will have
gi(v1, . . . , vi) = f(x1, . . . , xn) for all n ≤ i ≤ n + l.

The interpretation of gi is the function that gets computed in vl if we cut off the instructions for
vn+1, . . . , vi in the program P and set v1, . . . , vi to the variables y1, . . . , yi whenever the occur in
the truncated program. In particular, we want to have

gn(x1, . . . , xn) = f(x1, . . . , xn).

Now let
hi(yI1(i), yI2(i)) = yI1(i) ◦i yI2(i) ∈ K(y1, . . . , yi−1), n + l ≥ i ≥ n + 1,

denote the rational function that gets formally computed by the (i− n)-th instruction in P . The
functions gi are therefore inductively defined to be related by

gi−1(y1, . . . , yi−1) := gi

(

y1, . . . , yi−1, hi(yI1(i), yI2(i))
)

, (∗)

where initially gn+l(y1, . . . , yn+l) := yn+l. The goal is to compute

∂y1
(gn), ∂y2

(gn), . . . , ∂yn
(gn).

This is done by using the inductive definition of gi and the chain rule (lemma 2.4). We first have

∂yj
(gn+l) = 0 for all 1 ≤ j ≤ n + l − 1, ∂yn+l

(gn+l) = 1.

Now lets assume that at level n + l − i we already compute the derivatives

∂y1
(gi), ∂y2

(gi), . . . , ∂yi
(gi).

From (∗) we get by the chain rule for j1 := I1(i) and j2 := I2(i) that

(∂yk
gi−1)(y1, . . . , yi−1) = (∂yk

gi)(y1, . . . , yi−1, hi(yj1 , yj2)) for 1 ≤ k ≤ i− 1, k 6= j1, k 6= j2

and
(∂yj

gi−1)(y1, . . . , yi−1) = (∂yj
gi)(y1, . . . , yi−1, hi(yj1 , yj2))

+ (∂yi
gi)(y1, . . . , yi−1, hi(yj1 , yj2))(∂yj

hi)(yj1 , yj2)

for j = j1 or j = j2.
The dynamics of these rules are displayed in figure 1. The substitution hi(yj1 , yj2) for yi is

accomplished by connecting the corresponding node to the nodes for yj1 and yj2 and performing
the operation ◦i in the node. Then the derivatives ∂yj

(gi−1) are computed from those of ∂yj
(gi)

plus a value derived from

∂yi
(gi) = (∂yi

gi)(y1, . . . , yi−1, hi(yj1 , yj2))
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... ...

0 0 0 0 0 0 10

×
y1

x3 xnx1 x2

yn+s−1yn+2yn+1yny3y2

gn+s−2

gn+s−1

−

∂yn+2 ∂yn+s−1

= yn× yn+s−1

= yn× yn
y3

yn+s = gn+s

∂yn+s∂yn+1∂yn∂y3∂y2∂y1

÷

+

+

+

Figure 1: Coarse View of the Baur and Strassen Construction

and the derivatives of hi(yj1 , yj2). The latter are solely dependent on the nodes corresponding
to the variables yj1 and yj2 and require constant work. In figure 1, this is indicated by a thick
connection from the line for ∂yi

to ∂yj
. Let us for a moment consider the operation ◦i with the

most costly work, namely division. For

hi(yj1 , yj2) =
yj1

yj2

we have ∂yj1
(hi) =

1

yj2

and ∂yj2
(hi) = −yj1

y2
j2

.

The strategy is to divide ∂yi
(gi) by yj2 , add that into the ∂yj1

line, or multiply it with yj1/yj2 ,
the value computed in the node for yi, and then subtract that from the ∂y2

line. In other words,
if ◦i = ÷ one needs 4 additional operations to go to the next level. There is one more issue that
needs to be settled in the division case. Later substitutions for yj2 must not cause a division by
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a function that is identical zero. This is true because the circuit computing the derivatives will
only divide by quantities that the original program P divides by.

We now discuss how to accomplish the given length and depth measures. For each vi in
P , n + 1 ≤ i ≤ n + l, we will introduce at most 5 instructions in our new program Q, one
from the original program and at most 4 more to eliminate yi. This leads to an upper bound
of 5l for the length of Q, but l of these instructions either add the initial ∂yj

(gn+l) = 0 into

∂yi
(gi) (∂yj

hi)(yj1 , yj2) or multiply ∂yn+l
(gn+l) = 1 into ∂yj

(hn+l)(yj1 , yj2). Since we have any
instruction vi participate in the computation of vn+l, there are at least l trivial instructions that
can be eliminated from such a Q. Note that if we only have subtractions on a line for ∂yj

we
pass the minus sign along to the level for the derivatives of gj−1. On each line for ∂yj

, 1 ≤ j ≤ n,
we might then have to negate the final result, costing us an additional instruction. However,
we did not account for the savings at the starting level of those lines, and therefore we do not
need more than 4 l instructions overall. Lastly, we discuss how to accomplish the stated depth.
First we observe that if we were to treat the lines in figure 1 on which we accumulate the ∂yj

as
single nodes, and if we were to treat the connections from ∂yi

to ∂yj1
and to ∂yj2

as single edges,
then the circuit to compute the derivatives would be a mirror image of the original circuit for
f . Therefore, the depth of this view of the part of Q that implements the chain rules and which
has “superedges” and “supernodes” is d. Now, on each “superedge” we only have a constant
delay. Let tj be the fan-out for vj in P . Then in each supernode corresponding to the line for
∂yj

we have exactly tj − 1 addition and subtraction nodes. Separating the lines that get added
from the ones that get subtracted, we can build with tj − 1 nodes a tree that performs the same
computation but which has O(log(t)) depth (see figure 2). Hence the entire depth of Q can be
made O(log(t)d). ⊠

e6e1 e2

+ +

+

+

−

e1 e4 e5

−

−

+

+

+

e3e2 e5 e3e6 e4

Figure 2: Balancing an Accumulation Tree

One can, at no expense in terms of length, reduce the depth of Q to O(d). This follows
from a construction by Hoover, Klawe, and Pippenger (1984) who show that for bounded fan-in
circuits one can introduce duplication nodes behind the nodes of high fan out in such a way that
both size and depth are preserved within a constant factor. In our case the situation is so special
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that we can accomplish this introduction of duplication nodes without increasing the size of the
circuit.

Theorem 4.2. Let f , P , l, and d be as in theorem 4.1. Then f and all derivatives ∂x1
(f),

∂x2
(f), . . . , ∂xn

(f) can be computed by a straight-line program Q of length no more than 4 l and

depth O(d).

Proof. We apply the transformation of Hoover et al. (loc. cit.) in an implicit way to the circuit
constructed in the proof of theorem 4.1. Consider the lower part of Q that is a mirror image
of P (see figure 1). Furthermore, assume that the subtrees in Q which perform additions on
the ∂yj

lines are again contracted to “supernodes”. We suppose that subtractions are already
separated out, and subtraction nodes on those lines remain untouched. Nonetheless, the depth
of this abstraction of the circuit is still O(d), the extra factor of log(t) in theorem 4.1 coming
from the delay in the supernodes. Now we apply the construction by Hoover et al. to this view
of the lower part of Q, reversing the flow of information. That construction will insert behind
the nodes of high fan-out a binary tree of duplication nodes whose root is that node and whose
leaves are the targets of the arcs leaving that node. Hoover et al. then show that if one optimizes
the structure of that tree with respect to the distance of the target nodes to the output node in
such a way that target nodes from which there are long paths to the output node are close to
the root, one can overall retain depth O(d). Once such duplication trees are in place behind the
supernodes, all we have to do is reverse the flow of information and perform additions in both
supernodes and duplication nodes. ⊠

5. Conclusion

We have given size and depth efficient transformations from straight-line programs to such pro-
grams that compute either a higher order partial derivative in a single variable or all first order
partial derivatives. These transformations are easily performed in polynomial time, but can also
be executed in parallel themselves (for the tree optimization problem needed in the Hoover et al.
fan-out reduction refer to (Teng 1987)). There are known computational limits to the derivation
problem. The first discovered fact is that the formula size can grow exponentially if one allows
exponentiation in the formula (Caviness and Epstein 1978). Even without this extra operator, the
growth can be related to the #P-complete problem of evaluating the permanent. The example
is the function given by the formula

f(y1, . . . , yn, x1,1, . . . , xn,n) =
n
∏

i=1





n
∑

j=1

yjxi,j





of size O(n2), one of whose mixed iterated derivative is

∂y1
· · · ∂yn

(f) = Permanent(
[

xi,j

]

1≤i,j≤n
),

the generic permanent of the matrix in the xi,j (Valiant 1982). This means that if one had a
solution with polynomial growth to transforming a straight-line program to one that computes
iterated derivatives in different variables, then one would have a polynomial-time program for
counting the number of satisfying assignments in a Boolean formula in random polynomial time,
in particular one would have shown that RP = #P. Applying Kronecker substitution to f one
also can show that the k-th derivative in a single variable most likely cannot be computed in time
polynomial in log(k) (Kaltofen 1987).

Following Baur and Strassen (1984) our result on simultaneously computing all first order
partial derivatives was primarily motivated by the question on how to solve linear systems in
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parallel using an optimal number of processors. Given be a straight-line program† with O(n3)
instructions of depth O((log n)2) that computes the determinant

∆(x1,1, . . . , xn,n) = det(A), A =
[

xi,j

]

1≤i,j≤n
.

Then the inverse of A can also be computed by a program of such asymptotic length and depth,
namely

A−1 =
[

(−1)i+j
∂xj,i

(∆)

∆

]

1≤i,j≤n
.

Morgenstern (1985) is one of the first to observe that the Baur and Strassen result generalizes
to straight-line programs that also allow instructions like v ← exp(u), v ← log(u), v ← √u, etc.
At least for fields K of characteristic zero, all our results can also be generalized to such an
extended model of straight-line programs.
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