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DSC is a general purpose tool that allows the distribution of a computation over a network of Unix workstations.
Its control mechanisms automatically start up daemon processes on the participating workstations in order to
communicate data by the standard IP/TCP/UDP protocols. The user’s program distributes either remote
procedure calls or source code of programs and their corresponding input data files by calling a DSC library
function. DSC then automatically finds a suitable workstation and sends the information necessary to execute
the given subtask. If source code, which may be written in either ANSI C or Common Lisp, is distributed, this
includes compilation on the remote workstation to first make an executable object module. In this mode, a
Unix workstation of any architecture type or without prior preparation of problem specific object modules on
its file system can be involved. A call to another library function synchronizes the user’s program execution
by selectively waiting for the completion of a specific or all distributed subtasks. DSC also has an interactive
monitor facility that lets a user watch the progress of a distributed computation. We have tested DSC with a
primality test for large integers and with a factorization algorithm for polynomials over large finite fields and
observed significant speed-ups over executing the best-known methods on a single workstation computation.
These experiments have been carried out not only on our local area network but also on off-site workstations

at the University of Delaware.

1. Introduction

With the advent of large numbers of workstations linked
together by a programmable network it becomes possi-
ble to distribute a large scale computation over many
workstations. DSC is a software system for the dis-
tributed processing of a large computer algebra com-
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putation. The DSC system currently runs on worksta-
tions with the Unix operating system communicating
via the DARPA Internet standard IP/TCP/UDP pro-
tocols. Ours is a heterogeneous approach to problem
solving in the following sense: DSC supports the dis-
tribution of C as well as Lisp code, it has been tested
on several architectures, namely Sun 4, Sparc, and Dec-
Station computers, and it distributes over our local area
network as well as over the Internet to off-site computers
at the University at Delaware.

The system hides processor scheduling and the actual
remote execution of a parallel subtask from the user. In
fact, when a user program supplies the appropriate li-
brary function with a distributable parallel subtask, the
local DSC server daemon process will search a database
for a suitable processor, depending on work load and re-
source availability, and then distribute the parallel sub-
task to the selected processor. It is not assumed that the
program code necessary to execute the parallel subtask
resides on the file system of the selected remote proces-
sor. The DSC system can send the C or Lisp source
code and input data files that constitute the parallel
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Figure 1: Sample configuration; rectangles denote processes.

subtask to the remote processor, whose DSC server dae-
mon process in turn will compile and run the received
program on the input file. The parallel subtask is sup-
posed to produce a corresponding output file, which will
be returned to the sender for the collection of results.
In an alternate mode of operation the executable pro-
gram already resides on each selected workstation, and
only the input file is sent. That mode essentially real-
izes the remote procedure call distribution mechanism.
Note that the parallel subtasks themselves can spawn
further parallel subtasks, which in turn are distributed
by the remote servers.

Before a user starts an application program that dis-
tributes parallel subtasks over the network, the database
of available workstations needs to be initialized and the
server daemons started. This can be done interactively
in an automated fashion using the DSC Controller pro-
gram. The controller also allows the monitoring of a
computation on all used workstations. In particular,
status logs of running or failed parallel subtasks can be
interactively inspected. Processors that cease to func-
tion during the life of a computation are abandoned
without jeopardizing the overall completion. It is even
possible to kill a hanging parallel subtask and restart it
on a different processor.

Figure 1 above depicts a simple scenario of a dis-
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tributed run. A user has started the controller on work-
station 0 and then aided by a controller menu selec-
tion has started servers on workstations 1, 2, and 3.
This user then executes an application program, which
distributes a parallel subtask. The corresponding DSC
library function dscpr_sub is called with both a C lan-
guage source file, partaskl.c, and the file containing
the input data, partaskl.i, both of which have been
created by the user program. The function dscpr_sub
communicates to the local server running on worksta-
tion 0 (also started by the controller), which then lo-
cates a suitable processor, in this case workstation 1,
and sends both files to the corresponding remote server.
The server on workstation 1 compiles the remote copy
of file partaskl.c and executes it. That program then
reads its data from the remote copy of partaskl.i and
writes its output to the remote file partaskl.d. The
file names are deduced from arguments on the com-
mand line issued by the server on workstation 1. In the
meantime, the application program has initiated distri-
bution of another parallel subtask, partask2, for which
the local server selected workstation 2. It then has is-
sued a dsc_next library function call, which causes a
wait until one of the two parallel subtasks has com-
pleted; again it is the local server that will process the
messages coming from the remote servers, diagnose this



situation, and return control and the necessary infor-
mation on which parallel subtask has completed to the
application program. A remote server recognizes com-
pletion of its parallel subtask by repeatedly probing the
status of the executing process. If a parallel subtask
completes without error, the file partaskl.d is copied
back to workstation 0. The files on all remote worksta-
tions are eventually removed by the servers.

The design and implementation of the DSC system
was partially motivated by the success of distributed
computation on the problem of factoring integers (Len-
stra and Manasse 1990), partially by the obvious coarse
grain parallelism in symbolic methods based on homo-
morphic imaging such as Chinese remaindering (Seitz
1990), and partially by our new algorithm for factoring
polynomials in black box representation (Kaltofen and
Trager 1990). The latter method produces for each mul-
tivariate irreducible factor a program that when sup-
plied with values for the variables computes the value
of the polynomial factor. If one wishes to apply a sparse
interpolation algorithm (Kaltofen et al. 1990) to such a
black box factor, one can obtain the values of the poly-
nomial at the necessary interpolation points by distribu-
tion. Of course, one can also distribute the interpolation
of each factor. This was our primary reason for requiring
that the DSC system can distribute source code, which
in the case of the black box polynomial factorization al-
gorithm is computer generated. It turns out that this
requirement is very useful in general, since it alleviates
the user from setting up the parallel subtask code on
every possibly used workstation. Thus, in a distributed
computation, workstations of different hardware archi-
tectures can be freely mixed.

At the moment, however, we exercise DSC on the dis-
tributed implementation of two other algorithms. The
first is our version (Kaltofen et al. 1989) of the Goldwas-
ser-Kilian/Atkin primality test (Atkin and Morain 1990)
with the reduction phase done in C and the certification
phase done in Lisp. The second is a distributed Lisp
implementation of the Cantor-Zassenhaus polynomial
factorization algorithm over finite fields of large char-
acteristic. We describe the details of these solutions in
84, but we like to point out already that the distributed
approach led to a remarkable change of approach in the
Cantor-Zassenhaus algorithm.

Discussion of relation to other efforts: The use of par-
allelism in computer algebra was studied in the Ph.D.
theses of Watt (1986), Ponder (1988), Roch (1989) (see
also Roch et al. (1988)), and Seitz (1990). Implementa-
tion of computer algebra systems in parallel computing
environments were done by Melenk and Neun (1986) for
Reduce on Cray model computers, by Johnson (1988)
for SAC-2 also on Cray’s, by Saunders et al. (1989) for
SAC-2 on Sequent computers using the Linda environ-
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ment, by Collins et al. (1990) also for SAC-2 on the En-
core Multimax, and by Char (1990) for Maple, using the
Linda environment. Seitz (loc. cit.) has implemented a
distributed version of SAC-2 on Sun workstations. We
know of several efforts to provide general purpose dis-
tributed computing environments, among them the sys-
tems by Silverman and Stuart (1989), by Sullivan and
Anderson (1989), and the ISIS project at Cornell Uni-
versity. One innovative feature of DSC is the ability
to distribute source code, thus making the programmer
oblivious to the configuration of the processor network
that is used. Also, a DSC parallel subtask is a first class
object in that it can distribute its computation further.

In §2 we describe the DSC system from a user’s point
of view, while in §3 we discuss some of the intricacies
of the underlying system layers. In §4 we discuss our
two current applications and in §5 we point to future
development plans.

2. User Interface

The utilities described in this section serve as funda-
mental tools, which allow a user to program the activa-
tion of parallel subtasks, wait for their completion, and
optionally manage their execution.

2.1. The C User Library

The C User Library contains 5 functions callable from
a user’s C program. The function dscpr_sub is used to
start a parallel subtask within the DSC environment.
Arguments to this function are 4 strings denoting, re-
spectively, the path to the local files, the types of the
local files to be sent, and the build, e.g., compile, and
exec, e.g., load and run, commands required for the par-
allel subtasks. It is possible to use default build/exec
commands by supplying null strings for the correspond-
ing arguments. It is also possible to bypass compilation
by supplying dsc_c.build as the build command.

The functions dscpr_wait and dscpr_kill are used,
respectively, to wait on and to kill specific subtasks.
In both cases, the index of the subtask in question is
supplied as argument. The latter function is also used
to wait on the completion of all outstanding subtasks
when a value of —1 is supplied for the index. The func-
tion dscpr_next is used to wait for the completion of
the next parallel subtask. Its single argument, a string,
is filled with the name of the solution file correspond-
ing to the completed subtask. Finally, the function
dscdbg_start can be used to track a problem and is
useful when one wishes to debug tasks using interactive
debuggers such as Unix’s dbx.

The use of these functions is illustrated in Figure 3
below.

2.2. The Common Lisp Interface Functions

The Common Lisp Interface contains 5 functions which



are analogues of the C User Library functions, as well
as 2 additional functions. The function dscpr_sleep
is used to suspend execution for a specified number of
seconds. The function dscpr_time can be used by the
user to compute the elapsed time of a parallel subtask.
A fragment of Lisp code using these functions is depicted
in Figure 4.

2.3. Controller Program

The DSC controller program is an interactive program
which can be used to start new applications, monitor the
progress of applications and parallel subtasks, terminate
applications and halt DSC activity on a given node.
Once started, the controller program will display the
menu shown below.

*)kkkk*xx DSC Control Menu *kkkkkx

1: Start new problem

Display Problem Database
Display Node Database
Display Server Statistics
HALT Server on this node
Kill a specific subproblem
Start single remote Server
HALT all configured Servers
Start all configured Servers
Exit this menu

© 00 N O WN

99:
option:

We now describe the possible selections in the order
one would use them in running a program that dis-
tributes parallel subtasks. First we discuss those menu
items associated with managing servers.

Before an application program can commence, a DSC
server must be started on all of the nodes participating
in the application. Option 9 will start all configured
DSC servers. Option 7 can be used to start a DSC
server process on a single remote node. The node in
question must have the DSC package installed and be
configured into the DSC_PATH/dscrp_net.1is file. This
file lists, on separate lines, information for each node
participating in the DSC network. FEach line consists
of a node name, followed by two integers indicating the
Unix nice value for the DSC server and parallel sub-
tasks, respectively. The remaining three fields indicate
which languages are supported by the node in the or-
der C, Lisp, and Mathematica. The conventions are: c
for C language support, 1 for Lisp language support, m
for Mathematica, and x if the corresponding language
is unavailable. An example of this file is as follows:

apollo.cis.udel.edulO|1]c|1llx
gemma.cs.rpi.edulOl1lcl|l]x
turing.cs.rpi.edulOlllcl|llx
vega.cs.rpi.edul0|0lc|1l|m
mays.cs.rpi.edulOl1llclx|m

Note that no information on the hardware architecture
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of each node is given. When compiling the server and
DSC system library code on each individual worksta-
tion, this information is determined and set. Option 5
will halt the DSC server on the local node. All applica-
tions and parallel subtasks executing on the local node
will be terminated. All remote DSC servers that have
parallel subtasks operating on this node will be informed
of the forced termination. Option 8 can be used to ter-
minate all configured DSC servers. This function will
send a message to each server requesting that it shut
down in an orderly fashion, thereby updating the logs
properly.

Option 1 of the main menu allows the user to execute
an application program. The user must interactively
supply a name for use in the DSC database, the source
file name, and the type(s) of the source file. Optionally,
for C source, the user can specify a build instruction
and an execute instruction, while for Lisp source, only
an execute instruction can be given. If not supplied, a
default instruction is used. Figure 2 shows how to use
this option.

The control program also allows the user to inspect
the progress of an application program and its paral-
lel subtasks. Option 2 of the main menu will generate
a display of the parallel subtask database. This will
include the main application program and the parallel
subtasks that have been spawned in the current DSC
environment. Figure 2 is an example of the parallel
subtask database. Notice that the main Lisp program,
prefixed as canzass and running on turing, has dis-
tributed Lisp object code to vega and gemma. This is
indicated by both 1lisp: 1 and obj: 1 being set. The
shell script dsc_lisp.obj was used in the exec argu-
ment of the call to dscpr_sub. Neither parallel subtask
has spawned children. All processes run on Sun work-
stations, as CPU 3 indicates.

DSC also allows for the monitoring of servers on the
local node as well as remote nodes. Option 3 will display
the node database. This includes the status of each re-
mote configured node and its current load. Option 4 will
display the load statistics for the local node. Option 6
can be used to terminate a single parallel subtask. The
user is asked to supply the index of the parallel subtask
to be terminated. This index is found in the parallel
subtask database.

3. System Layers

In the previous section we described how one can employ
the user interface for the distribution and monitoring of
parallel subtasks. However, this is only one segment of
what can roughly be viewed as a hierarchical organiza-
tion. Conceptually, the system itself is organized in a
multi-layered fashion, each layer drawing from its pre-
decessor. The bottom layer consists of the interprocess



option: 1
Enter New Problem name:

Cantor-Zassenhaus

Enter Source File Name (no extention): /students/ugrads/diaza/dsc/canzass
Enter file type (c/1/lc/lo/i/ci/1i/1lci/loi) [c]: 1i
do you have special execute instructions ? no

file: /students/ugrads/diaza/dsc/canzass

build cmd: dsc_lisp.build

exec cmd: dsc_lisp.int /students/ugrads/diaza/dsc/canzass.lsp /students
/ugrads/diaza/dsc/canzass.d /students/ugrads/diaza/dsc/canzass.i

option: 2
problem name: Cantor-Zassenhaus

problem PID: 22313 node: turing.cs.rpi.edu index O CPU 3
parent  PID: 22272 naddr: 128.213.1.1 index -1
source name: /students/ugrads/diaza/dsc/canzass

c: 0 lisp: 1 obj: O input:1

build command: dsc_lisp.build

exec command:

dsc_lisp.int /students/ugrads/diaza/dsc/canzass.lsp /students

/ugrads/diaza/dsc/parcant_obj.d /students/ugrads/diaza/dsc/canzass.i

blocked sock: -1 block condition -1

completion 0 status: 00000000 build: 1

peer link -1 child list: -1 # subprob: 2
problem name: DSC572al

problem PID: -1 node: vega.cs.rpi.edu  index 1 CPU 3
parent  PID: 22313 naddr: 128.213.1.1 index O
source name: canl

c: 0 lisp: 1 obj: 1 input:1

build command: dsc_lisp.build

exec command: dsc_lisp.obj canl.o canl.d canl.i

blocked sock: -1 block condition -1

completion 0 status: 00000000 build: 0

peer link -1 child list: -1 # subprob: 0
problem name: DSC572a2

problem PID: -1 node: gemma.cs.rpi.edu index 2 CPU 3
parent  PID: 22313 naddr: 128.213.1.1 index O
source name: can2

c: 0 lisp: 1 obj: 1 input:1

build command: dsc_lisp.build

exec command: dsc_lisp.obj can2.o0 can2.d can2.i

blocked sock: -1 block condition -1

completion 0 status: 00000000 build: 0

peer link -1 child list: -1 # subprob: 0

Figure 2: Interactive queries to controller.

communication using DARPA Internet standard proto-
cols IP/TCP/UDP. Built on this layer lies the first DSC
level which includes the internal DSC routines, the dae-
mons, and the C library functions. The second layer
consists of the Lisp/C interface, the controller program,
and C user programs that use only the four basic C li-
brary functions. The third layer draws on the Lisp/C
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interface. This layer contains the Lisp library and ba-
sic Lisp functions that use only the six basic functions
supplied by the interface. At the topmost layer lies the
implementation of high level Lisp functions which uti-
lize the support routines contained in the Lisp library.
Examples of such routines are string and integer ma-
nipulation functions and functions for managing the ab-



stract data type Bag of Incomplete Futures (BIF) (cf.
(Seitz 1990)) which will be discussed later in this sec-
tion.

3.1. Interprocess Communication

DSC uses the User Datagram Protocol for most of
its communication and Transmission Control Protocol
stream sockets for more sensitive information. The DSC
server executes on each participating node in the net-
work. The function of this daemon program is to mon-
itor a single UDP datagram address for new external
stimuli from other servers. As messages arrive into this
datagram socket, they are read and processed. If the re-
quest comes from the control program, the server forks
a subprocess to begin the execution of the main task.
At some point the main task will ask the server to start
parallel subtasks, using the dscpr_sub call. This call is-
sues a start message using a datagram causing the DSC
server to send messages to an available server allowing it
to initiate the execution of the specified parallel subtask
and establishes TCP stream sockets for all of the paral-
lel subtask’s file transfer. The node selection is based on
which nodes have started servers, what languages they
support, and on the number of parallel subtasks exe-
cuting on that node. If all of the available nodes have
reached the parallel subtask node capacity limit, the
parallel subtask will be put on a queue for later distribu-
tion. At this point the server checks the viability of the
activated processor. If at any time these processors are
declared non-functional the problem will be restarted
elsewhere. Once the parallel subtask is complete the
server responsible for its execution will forward the re-
sult to the originating server and delete the log files,
source files, and executable files found in the DSC_PATH.
Finally, once the main task ends the executable files in
DSC_PATH and the log file in the users working directory
are also deleted.

3.2. The Lisp/C Interface and Library

We use the standard KCL Lisp to Unix C interface,
i.e., the Clines function. This function makes its C
code argument callable from the KCL environment. The
C code contains modified copies of the DSC C user li-
brary functions (see §2.1). There is also a set of Lisp
utility functions that encode the string arguments of the
Lisp user library functions (see §2.2) to the integer ar-
guments in the interface functions supplied to Clines.
Furthermore, there are functions to ease string manipu-
lation, file copying, and the functions implementing the
BIF data type. A Bag of Incomplete Futures consists
of a list of unordered parallel subtasks. These parallel
subtask can then be spawned by using the dsc_bif func-
tion which allows for the specification of the percentage
of successful parallel subtask completions needed for a
successful main task completion.
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4. Current Experiments

4.1. The GKA Primality Test: First Stage

As our first example, we describe a distributed imple-
mentation of the first stage of the Goldwasser-Kilian /
Atkin (GKA) primality test. Our implementation, writ-
ten in C, uses a high-precision integer arithmetic pack-
age (HIPREC) developed locally by Hitz (1988). De-
tailed descriptions of the GKA test appear in (Atkin
and Morain 1990) and (Kaltofen et al. 1989).

The input to the first stage is a number p which we
suspect to be prime, together with a list of fundamental
field discriminants d; < 0. This list must be searched
in an attempt to find a descent from p to a smaller
probable prime. Thus, via a series of such descents, the
first stage of the test constructs a sequence of probable
primes p = pg > p1 > p2 > --- > p, such that p,
prime = p,_; prime = --- = po prime. For large p,
a descent can be difficult and costly to find, as nearly
all of the discriminant list may need to be searched. It
is therefore advantageous to allow several distributed
subtasks to contribute to the search.

The idea is to conduct the search for a descent in
parallel by partitioning the discriminant list into N sub-
lists, where N is the number of parallel subtasks, and
providing each parallel subtask with its own sublist as
input. DSC is then used to run the parallel subtasks
(each of which has the same code) simultaneously on
different workstations, and to wait on the first subtask
that reports a descent. This “first descent” strategy is
especially effective when p is large and we cannot ex-
pect to find more than one or two descents. If, on the
other hand, p has, say, fewer than 100 digits, the sub-
tasks may collectively report several descents, allowing
us the luxury of invoking a “steepest descent” strategy.
Listed in Figure 3 are code segments from a simplified
version of our program illustrating this strategy. Our
current version implements both strategies and allows
for backtracking. Also, we now avoid sending C source
files to remote nodes and the subsequent builds.

4.2. The Cantor-Zassenhaus Factorization Algo-
rithm

Our next example shows how DSC can give insight
to a new approach to the Cantor-Zassenhaus (1981) al-
gorithm for factoring a polynomial over a finite field.
We suppose f(x) € GF(p)[z] is a squarefree polynomial
which factors as f(z) = q1(x)g2(x) - - - ¢ (x) where the ¢;
are distinct irreducible elements of degree d of GF(p)[z].
Given a random “trial” polynomial ¢(x), it is likely that
gcd(f(nc),t(a:)(pd_l)/2 — 1) will be non-trivial, thereby
causing a “split” of f(x).

For our current DSC experiment, we further restrict
ourselves to the case where the g; are all linear, and for
1 <4 < n, we send the i-th parallel subtask f(x), p, and



/* include functions from HIPREC package ...

(omitted) */

#define SOURCE_FILE "gkabest.c" /* contains code for subtasks */
main ( argc, argv) int argc; char x*argv;
{int y,1i,delta, some_descent_occurred=TRUE;

/* various string, FILE, and HIPREC declaratiomns ...
/* get initial p to be proven prime from input file ...

(omitted) */
(omitted) */

while (some_descent_occurred && (gt(p,billion)) ) {
zero(q); zero(biggest_k); zero(current_k);

some_descent_occurred = FALSE;

writefiles (NUMPROBS,p); /* create ".i" input files for subtasks */

for (y=0; y<NUMPROBS; y++) {

/* create subtask C source files; note that they will go
into current working directory at run time */

sprintf( fid, "gkasub%d", y); /* build source file name */

strcpy( fidc, fid); strcpy( fidd, fid);

strcat( fidc, ".c"); strcat( fidd, ".d");

sprintf( build, "cc -o /var/tmp/gkasubld %s", y, fidc);

sprintf ( exec, "/var/tmp/gkasubld %s", y, fidd);

/* copy SOURCE_FILE to file named in fidc ...

/* start the subtask */
dscpr_sub( fid, "ci",

(omitted) */

build, exec) } /* end for */

/* wait on all subtasks to complete */

i = dscpr_wait(-1);

/* loop to read reported descents from all data files
and determine q corresponding to steepest descent from p

(omitted) */
if (some_descent_occurred) {

/* write k,q,delta to certificate file ...

(omitted) */

hp_copy(p,q); /* p = q */ } } /* end while */

exit(0); }

Figure 3: Code for distributed primality test.

trial polynomial ¢;(x) = x + i. Each subtask then com-
putes the appropriate gcd and reports the split f = g;h;
accomplished by ¢;, if any. Once enough parallel sub-
tasks have reported, it is possible to use, one-by-one, the
reported splits to ascertain the complete factorization of
f by factor refinement (Bach et al. 1990). A fragment
of the Lisp code for the distributed Cantor-Zassenhaus
algorithm appears in Figure 4.

4.3. Timings

Figure 5 shows the elapsed times of repeated runs of
the GKA first stage on three prime inputs of length 22
and 43 digits, executed with the indicated numbers of
parallel subtasks. Several runs are timed for the same
prime input, since the algorithm is non-deterministic in
the sense that different first possible descent found may
be reported back by those workstations that complete
the search first. The case of 22 digits is too small to
exhibit a benefit when using distribution. The first dis-
criminant to cause a descent from our 43 digit prime
does not occur until after 109 discriminants in our orig-
inal list. Thus, with 1 workstation, we see running
times in excess of 30 minutes for the seven descents,
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with more than 20 minutes required for just the first
descent. Notice that a remarkable improvement occurs
with just 4 workstations, as now this same discrimi-
nant occurs as only the 28th on some parallel subtask’s
list. However, corresponding improvements do not oc-
cur for 8 and 16 workstations, where distribution over-
head seemingly dominates the cost of inspecting shorter
lists. Figure 8 contains overhead costs per descent asso-
ciated with the GKA test for varying numbers of sub-
tasks. These timings were obtained by creating and
distributing the appropriate number of GKA input files,
executing null programs at each of the involved nodes,
and waiting on the first program to complete.

An interesting phenomenon occurs in the data for our
201 digit runs: 16 workstations require more time to un-
cover a descent than do 8 workstations. This appears
to be caused by the particular assignment of sublists to
workstations. The data for 2 and 4 subtasks indicates
that the DecStations discovered the descent about twice
as fast as did the Sun Sparcs. In each case, the discrim-
inant that yielded the descent was —763, which appears
80th on our original list. When this list is then par-



)

Interface header follows here ...

(omitted)

(load "dsc_lisp.interface") ;; Load DSC Lisp/C interface
(load "dsc_lisp.library.o") ;; Load library
;; Load auxiliary applications functions

(load "cantor.split.o")
;; Driver program
(defun cantorz (poly modulo)

;53 "poly" is to be factored, "modulo" is the prime modulus
(let ((r (list poly)) ;; initial value of refinement

(name "can")
(n 15)

)

)

. additional

;;; Create "canl.i","can2.i",...
;55 string functions from DSC Lisp library ...
"Ca.rll . ill , "Can2 . i" s

For tout =

29

;5 prefix for file names
n is the number of subtasks
llletll

forms omitted

,"can<n>.i" file names using
(omitted)
. "can<n>.i"

;55 write poly, modulo and trial-poly to tout:

(print tmp tout)
(print poly tout)
(print modulo tout)

;55 Loop to distribute follows below:
(loop for i from 1 to n by 1 do
;; Use string functions to construct fid and exec (omitted).

Distribute:

P

(dscpr_sub fid "loi" "dsc_lisp.build" exec)

) ; End loop
555 Wait on all
(dscpr_wait -1)

;55 Loop to construct file names for and open ".d" files
;35 for all subtasks, read reported factorizatioms,

;55 and perform a factor refinement ...

(omitted)

)) ; End let/cantorz
Figure 4: Code for distributed polynomial factorization.
# parallel subtasks
Digits 1 2 4 8 16

22 0:52(2) 0:54(5) 0:36(3) 1:22(5) 1:18( 2)
0:45(2) 0:54(5) 0:44(3) 1:00(3) 2:17( 3)

0:50(2) 0:54(5) 0:46(3) 1:08(3) 1:12( 3)

0:52(2) 0:54(5) 0:47(3) 0:51(3) 3:08( 5)

43 31:37(7)* 7:43(6) 1:27(5) 3:07(9) 7:09( 7)
31:08(7)* 7:21(7) 2:40(8) 3:31(6) 7:47( 9)

33:39(7)* 7:20(7) 2:39(8) 2:25(7) 6:03(11)

7:34(7) 2:46(8) 2:55(8) 4:13( 5)

Figure 5: Timings for GKA (first stage, first descent strategy).
Times shown are elapsed minutes:seconds (# of descents).
* First descent with 110th discriminant on list.

titioned into 8 sublists and distributed, —763 appears
10th on the sublist examined by a Sparc, which takes
under 9 minutes to discover it each time. Of course,
with 16 subtasks, —763 will appear 5th on some sublist,
but, unfortunately, this sublist was given to a particu-
larly slow Sparc. As a result, the race to find a descent

330

was won by a DecStation, which needed about 13 min-
utes to discover —4883 as its 83rd discriminant. Inter-
estingly, —4883 appears 1335th on the original list, so
once again a deeply buried discriminant emerges after
sufficiently many halvings of the original list. In con-
trast to 201 digit data, the data for the 401 digit shows



# parallel subtasks
Digits 2 4 8 16 32 64
201 39:07%P  14:11°P 8:42 13:06 7:03
38:53%P  14:085P 8:39 13:06 7:09
19:520e¢ g:p5dec g:39 13:15 7:02
19:47%€c¢  g:p5dec 8:37 13:01 7:43
401~ 9:15 5:12 4:36 3:05
Figure 6: Timings for GKA, one descent only.
Times shown are elapsed minutes:seconds
* Times shown for 401-digit number are elapsed hours:minutes
5P Denotes only Sparcstations used.
dec Denotes only Decstations used.
# parallel subtasks
Digits 4 8 16 32
22 0:31(2) 0:50(3) 0:54(2) 2:02(2)
0:30(2) 0:42(2) 0:59(2) 1:48(2)
43 4:18(6) 5:12(6) 5:07(5) 5:38(4)
5:46(6) 4:40(6) 4:59(5) 8:30(5)

Figure 7: Timings for GKA (first stage, steepest descent strategy).
Times shown are elapsed minutes:seconds (# of descents).

# parallel subtasks

2 4 8 16 32
0:06 0:06 0:11 0:21 0:43
0:06 0:06 0:10 0:17 0:35
0:05 0:07 0:10 0:18 0:41
0:05 0:07 0:10 0:21 0:35

Figure 8: Timings for DSC overhead.
Times shown are elapsed minutes:seconds

Digits Divide-and-Conquer Distribute-and-Refine

26 0:53 0:13

36 3:14 1:43

46 9:18 2:41

56 17:23 6:56

66 24:10 8:46

76 35:47 11:30

Figure 9: Timings for Cantor-Zassenhaus factorization.
Times shown are elapsed hours:minutes.

steadily decreasing runtimes as the number of proces-
sors increases. Ideally, for very large primes, the goal is
to have as many processors as there are discriminants,
so that each processor need only examine one discrimi-
nant.

Figure 7 contains running times associated with the
steepest descent strategy (50% completion) as outlined
in §4.1. Observe that this strategy generally produces
shorter first stage certificates but not necessarily faster
running times.
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Finally, our timings for the Cantor-Zassenhaus factor-
izations are shown in Figure 9. The traditional “divide-
and-conquer” approach used a single processor, while
the new “distribute-and-refine” approach outlined in
84.1 used 12 to 15 processors. The input to each was a
d digit prime p, and a polynomial of degree d — 1 over
GF(p) which we computed as a product of d — 1 ran-
dom linear factors. The results show the new approach
performing up to four times faster than its traditional
counterpart.



5. Future Directions

The DSC system is designed to provide a general-
purpose platform for distributing a symbolic computa-
tion. DSC implements the message passing paradigm
for coarse grain parallel MIMD computation rather than
a shared memory parallel computer. Such an approach
has only become feasible with the introduction of im-
plicit representation models for symbolic objects such
as the black box representation for multivariate rational
functions, that are extremely concise and yield a small
packet size for distribution. Since DSC is still evolving,
the system lacks features that we envision to be present
in its final version.

There is a fairly substantial list of test problems
whose computational solution can be speeded using a
distributed approach. In particular, the problem of
black box sparse multivariate polynomial interpolation
and the problem of black box multivariate polynomial
factorization is planned to be implemented with DSC.

Finally, we intend to provide a higher level to the
user interface. For one, we hope to provide an interface
between DSC and a standard computer algebra system
such as Maple or Mathematica. Furthermore, several
high level data types controlling the distribution and
completion strategies of “bags” of parallel subtasks will
be implemented and tested. It is also not unthinkable
that DSC could eventually inspect sequential Lisp ex-
pressions for parallelizing breakup, such as in sufficiently
compute-intensive mapcar constructs.
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