
Acta Informatica vol. 28, nr. 7, pp. 693–701 (1991)

ON FAST MULTIPLICATION OF

POLYNOMIALS OVER ARBITRARY ALGEBRAS

David G. Cantor and Erich Kaltofen*

1. Introduction. In this paper we generalize the well-known Schönhage-Strassen
algorithm for multiplying large integers to an algorithm for multiplying polynomi-
als with coefficients from an arbitrary, not necessarily commutative, not necessarily
associative, algebra A. Our main result is an algorithm to multiply polynomials
of degree < n in O(n log n) algebra multiplications and O(n log n loglog n) algebra
additions/subtractions (we count a subtraction as an addition). The constant im-
plied by the “O” does not depend upon the algebra A. The parallel complexity of
our algorithm, i.e., the depth of the corresponding arithmetic circuit, is O(log n).

When division by 2 is possible, then the Schönhage-Strassen [13] integer multipli-
cation algorithm can be easily reformulated as a polynomial multiplication proce-
dure (c.f. [11]). Schönhage [12] investigated the polynomial multiplication problem
for arbitrary fields of characteristic 2, in which the standard 2k-point Discrete Fast
Fourier Transform algorithm (DFT) cannot be used because it requires division
by 2.

The fields over which the DFT is used do not necessarily contain the primitive
roots of unity necessary for the computation of the Discrete Fast Fourier Transform
and, to use it, such roots must be adjoined to the ground field. It is this which
increases the complexity from O(n log n) to O(n log n loglog n). Schönhage’s algo-
rithm for fields of characteristic 2 uses a 3k-point Fourier transform. When division
by 3 is possible, he obtains again an algorithm of complexity O(n log n loglog n).
His approach does not appear to generalize to sk transforms, even when s = 5.

Here, we exhibit an alternate method that works for order sk for any integer
s ≥ 2. By applying this method for two relatively prime values of s, we obtain a
method not requiring division. As a result our method is valid for any algebra A:
Specifically the algebra A must be an Abelian group under “+” and have a binary
operation “·” satisfying the distributive law

(u + v) · (x + y) = u · x + u · y + v · x + v · y

for all u, v, x, y in A. In this generality, multiplication of two polynomials
∑m

i=0 aix
i

and
∑n

j=0 bjx
j means the computation of all of the terms of the product, i.e.,

computation of all terms of the form ck =
∑

i aibk−i.
Thus our method may be used for multiplying “string polynomials” [8], 4.6.1,

exercises 17 and 18, or for multiplying matrix polynomials.

Key words and phrases. multiplication, fast, polynomials, algorithm.

*The authors would like to acknowledge the partial support of NSA Grant MDA-904-88-H-2031

and NSF Grant Nr. CCR-87-05363.

Typeset by AMS-TEX

1

2 DAVID G. CANTOR AND ERICH KALTOFEN*

Over special rings the complexity may be smaller: For finite fields see [5] and
[10]. If one allows the total operation count to be asymptotically worse, then an
O(n) non-scalar multiplicative complexity can be achieved differently, e.g., by using
the method of [3] recursively; see also [4] and [14]. The algorithm in [3] also enables
polynomial evaluation. We also refer to [7] for achieving O(n log n) multiplicative
complexity over a ring, but asymptotically worse additive complexity.

Our model of computation is that of a straight line program for obtaining the
coefficients of the product from the coefficients of the input [1], although the as-
ymptotic complexity remains the same if the model is an algebraic random access
machine [6]. Non-scalar multiplications are those in which both factors depend
upon the coefficients of the input.

Our method is a special case of a bilinear algorithm [14]. Suppose first that we

wish to multiply two polynomials of degree n − 1, say,
∑n−1

i=0 aix
i and

∑n−1
j=0 bjx

j ,

each with integral coefficients, to obtain their product
∑2n−2

i=0 cix
i. We shall, in

effect, describe two sequences of matrices A0, A1, . . . Ar, and B0, B1, . . . , Bs. Let a

denote the vector (a0, a1, . . . , an−1), let b denote the vector (b0, b1, . . . , bn−1) and
let c denote the vector (c0, c1, . . . , c2n−2). We will compute the vectors A0A1 · · ·Ar·
a and A0A1 · · ·Arb, and take the term-by-term product of these two vectors to
obtain a vector d. Then the product B0B1 · · ·Bsd will be a certain integer multiple
N1c of c. We will do this twice, the second time computing N2c, where N1 and
N2 are relatively prime integers. The Euclidean algorithm shows that there exist
two integers M1 and M2 such that M1N1 + M2N2 = 1. Thus we may obtain
c = M1(N1c)+M2(N2c). The matrices Ai and Bi will be sparse, consisting entirely
of 0’s, 1’s and −1’s, and multiplying by them can be done entirely using additions
and subtractions. The multiplications by M1 and M2 may be treated as repeated
additions. The only multiplications absolutely necessary are those to compute d.
Combining all of the above shows that there exist matrices U and V with integral
coefficients such that

c = V ((Ua) · (Uc)),

where “·” denotes term-by-term multiplication. It is easy to verify that such a
bilinear algorithm which is valid over the ring of integers is a formal identity relating
the coefficients ai, bi, and ci and that, as such, it is valid over any algebra A as
described above.

2. The Discrete Fast Fourier Transform. Throughout this paper s will denote
a positive integer ≥ 2. We will use the Discrete Fast Fourier Transform (DFT) of
order n = sr. Suppose that D is an integral domain containing a primitive nth root
of unity ωn. The DFT of order n takes as input a sequence {a0, a1, . . . , an−1} of n
elements from D and and a primitive nth root of unity ωn, also from D. Its output
is the sequence {A0, A1, . . . , An−1} where Aj = f(ωj

n), with f(x) =
∑n−1

i=0 aix
i.

ON FAST MULTIPLICATION OF POLYNOMIALS OVER ARBITRARY ALGEBRAS 3

Recall the algorithm by noting that if r ≥ 2 then

f(x) =

n−1
∑

i=0

aix
i

=
s−1
∑

i=0

sr−1−1
∑

j=0

asj+ix
sj+i

=
s−1
∑

i=0

xi
sr−1−1
∑

j=0

asj+i(x
s)j

=

s−1
∑

i=0

xifi(x
s),

where

fi(x) =

sr−1−1
∑

j=0

asj+ix
j .

Thus, to evaluate f(x) at all of the roots of unity of order sr, one first evaluates each
of the fi(x) at all of the roots of unity of order sr−1. Then one evaluates the f(ω),
where ω is an nth root of unity, as a polynomial of degree < s, with coefficients the
(already evaluated) fi(ω

s), using Horner’s method. This yields

Lemma 2.1. The DFT of order n = sr can be performed as a straight-line algo-
rithm using ≤ r(s − 1)n additions/subtractions, and ≤ r(s − 1)n multiplications.
All multiplications are by powers of ωn.

Proof. When r = 1, simply use Horner’s method to evaluate f(x) at each of the
sth roots of unity. This amounts to s evaluations of a polynomial of degree ≤
s− 1 and requires ≤ s(s− 1) multiplications and additions/subtractions, with each
multiplication being by a power of ωs. When r ≥ 2, one uses the above method,
recursively. The evaluation of each of the s polynomials fi(x) at all roots of unity of
order sr−1 can be done using s DFT’s, each of order sr−1, hence, inductively, with
≤ s(r−1)(s−1)n/s = (r−1)(s−1)n additions and multiplications, with the latter
being by powers of ωn/s. Then n evaluations of f(x), as a polynomial of degree ≤
s−1, using Horner’s method, requires ≤ (s−1)n additions and multiplications, with
the latter being by powers of ωn. Combining these numbers yields the Lemma. �

We now consider the problem of finding the product
∑2n−2

i=0 cix
i of the polyno-

mials
∑n−1

i=0 aix
i and

∑n−1
i=0 bix

i with coefficients in D, and where n = sr. Suppose
that {A0, A1, . . . , An−1}, and, respectively, {B0, B1, . . . , Bn−1} are the DFT’s of
the sequences {a0, a1, . . . , an−1} and, respectively, {b0, b1, . . . , bn−1}, both with
respect to the same root of unity ωn. Put Di = AiBi for 0 ≤ i < n and let
{d0, d1, . . . , dn−1} be the DFT of the sequence {D0, D1, . . . , Dn−1} with respect to

4 DAVID G. CANTOR AND ERICH KALTOFEN*

the root of unity 1/ωn. Then, if 0 ≤ h < n, we have

dh =
n−1
∑

i=0

Diω
−hi
n

=

n−1
∑

i=0

AiBiω
−hi
n

=

n−1
∑

i=0

n−1
∑

j=0

ajω
ij
n

n−1
∑

k=0

bkωik
n ω−hi

n

=
n−1
∑

j=0

n−1
∑

k=0

ajbk

n−1
∑

i=0

ωi(j+k−h)
n

= n
∑

j+k≡h (mod n)

ajbk

= n(ch + cn+h),

(where c2n−1 is defined to be 0) since, in the next to last sum, either j + k = h or
j + k = h + n.

Suppose that ω = ωns is a primitive (ns)th root of unity in the integral domain
D. Then ωn = ωs is a primitive nth root of unity and ωs = ωn is a primitive
sth root of unity. Let {A′

0, A
′
1, . . . , A′

n−1} and, respectively, {B′
0, B

′
1, . . . , B′

n−1}
be the DFT’s of the sequences {a0, a1ω, a2ω

2, . . . , an−1ω
n−1} and, respectively,

{b0, b1ω, b1ω
2, . . . , bn−1ω

n−1} both with respect to the root of unity ωn. Put Ei =
A′

iB
′
i for 0 ≤ i < n and, similarly to the above, let {e0, e1ω, e2ω

2, . . . , en−1ω
n−1}

be the DFT of the sequence {E0, E1, . . . , En−1} with respect to the root of unity
1/ωn. Then computing as before we obtain

ehωh = n
∑

j+k≡h (mod n)

ajω
jbkωk.

Since in the above sum, as before, either j + k = h or j + k = n + h, we obtain

eh = n(ch + ωscn+h).

Combining the latter two equations, we find that

(1 − ωs)nch = eh − ωsdh, (1 − ωs)ncn+h = dh − eh.

Define

τs =

{

p if s is a power of a prime p,

1 if s is not a prime-power.

In [9], page 73 (see also [2]), it is shown that

∏

1≤i<s
(i,s)=1

(1 − ωi
s) = τs,

ON FAST MULTIPLICATION OF POLYNOMIALS OVER ARBITRARY ALGEBRAS 5

where the product is restricted to those i which are relatively prime to s. It follows
that

τs/(1 − ωs) =
∏

2≤i<s
(i,s)=1

(1 − ωi
s),

and that, if d ∈ D, then dτs/(1 − ωs) can be computed using φ(s) − 1 addi-
tions/subtractions and φ(s) − 1 multiplications, the latter all being by powers of
ωs.

Summarizing, we have proved

Lemma 2.2. If
(

n−1
∑

i=0

aix
i

) (

n−1
∑

i=0

bix
i

)

=
2n−2
∑

i=0

cix
i,

we can compute the elements τsnci by (1) performing the DFT of order n 6 times,
(2) 2nφ(s) additions/subtractions, (3) n(2φ(s)+1) multiplications by roots of unity
which are powers of ωns, and (4) 2n other multiplications (of polynomials in ωns).

Let q be a positive integer ≥ r + 1. We now estimate the complexity of calcu-
lating the DFT of polynomials in the integral domain D = Z[ωsq], of cyclotomic
integers, where ω = ωsq is a primitive (sq)th root of unity in an algebraic closure of
Z. The roots of unity used in the above multiplication method all lie in D. In what

follows, we put ωns = ωsq−r−1

, ωn = ωs
ns, and ωs = ωn

ns; then ωns is a primitive
nsth root of unity, ωn is a primitive nth root of unity, and ωs is a primitive sth root

of unity. Recall that the cyclotomic polynomial Φsq (z) = Φs(z
sq−1

). We use as a
basis for the ring of cyclotomic integers the powers 1, ω, ω2, . . . , ωφ(sq)−1 and sup-
pose that the input coefficients ai and bi are polynomials with integral coefficients
in ω of degree < φ(sq) = sq−1φ(s). We may replace ω by an indeterminate X and
calculate the DFT in the ring Z[X]/Φsq (X). Since Φsq (X) divides Xsq

− 1, we
may first perform the calculations in the ring Z[X]/(Xsq

− 1) and then reduce the
answer (mod Φsq (X)). Computing in the ring Z[X]/(Xsq

− 1) amounts to com-
puting with polynomials in X of degree < sq. Addition of two such polynomials
requires ≤ sq integer additions/subtractions. Multiplication by a power of ωsq , or
equivalently, in this ring, by a power of X, requires no computation, for multiply-
ing a polynomial by X and reducing it (mod Xsq

− 1) amounts to a cyclic shift
of its coefficients. Finally, after the DFT is completed, the n = sr polynomials
in the result must be reduced (mod Φsq (X)). That is, we must divide each such
polynomial by Φsq (X) and keep the remainder. Now, Φsq (X) is monic and has
integral coefficients. If µs denotes the sum of the absolute values of the coeffi-
cients of Φs(X), then the reduction of a polynomial of degree < sq mod Φsq (X)
requires ≤ (sq −φ(sq))µs additions/subtractions and no multiplications. Note that
the division with remainder algorithm performs sq − φ(sq) subtractions of scalar
multiples of Φsq (X)X l, 0 ≤ l ≤ sq − φ(sq)− 1, each of which can be carried out in
µs additions/subtractions. E.g., for an integral coefficient t of Φsq (X), we compute
d1 − td2, d1, d2 ∈ D, by subtracting d2 t times from d1. Estimating crudely, we
obtain

Lemma 2.3. Performing the DFT of order n = sr in the ring D = Z[ωn],where
q ≥ r + 1, requires no more than (r(s − 1)µs)s

q+r additions/subtractions and no
multiplications.

6 DAVID G. CANTOR AND ERICH KALTOFEN*

We now consider the complexity of multiplying two polynomials of degree <
n with coefficients restricted to the ring Z[ωsq], calculating as above. This can
be obtained by combining Lemmas 2.2 and 2.3. Note that we need not count
multiplications by powers of ωsq . Thus we obtain:

Lemma 2.4. Suppose that
∑n−1

i=0 aix
i
∑n−1

i=0 bix
i =

∑2n−2
i=0 cix

i where the ai are
elements of the ring D of cyclotomic integers Z[ωsq], represented in the standard
basis consisting of powers of ωsq , and that n = sr with r < q. Then, we can
compute the elements τsnci in ≤ 6rsµss

q+r integer additions/subtractions and ≤ 2n
multiplications of elements of D.

3. Polynomial multiplication. We first consider the problem of multiplying cy-
clotomic integers. Suppose M = sQ, that ωM is a primitive M th root of unity and
that we wish to multiply two cyclotomic integers, i.e., elements of the ring Z[ωM],

say A =
∑φ(M)−1

i=0 aiω
i
M and B =

∑φ(M)−1
i=0 biω

i
M . If Q ≤ 2 we shall simply mul-

tiply them, in the ordinary way, as polynomials in ωM , reducing (mod ΦM (ωM)).
Otherwise let H ≥ 0 be the unique integer such that 2H + 2 ≤ Q ≤ 2H+1 + 1. Put
q = bQ/2c + 1, and r = dQ/2e − 1. Then q + r = Q, q − r is 1 or 2, r is ≥ 1 and
2H−1 + 2 ≤ q ≤ 2H + 1. Put m = sq and n = sr. Note that if Q is even, we have
m = s2n, while if Q is odd, we have m = sn. In both cases mn = M . We shall
reduce the desired multiplication to 2n multiplications in the smaller cyclotomic
ring Z[ωm].

We can write

A =

φ(M)−1
∑

i=0

aiω
i
M

=

n−1
∑

j=0

φ(M)/n−1
∑

i=0

ain+jω
in+j
M

=

n−1
∑

j=0





φ(m)−1
∑

i=0

ain+jω
i
m



ωj
M ,

where ωm = ωn
M is a primitive mth root of unity. Similarly, we can write

B =

n−1
∑

j=0





φ(m)−1
∑

i=0

bin+jω
i
m



ωj
M .

Now put

a(x) =
n−1
∑

j=0





φ(m)−1
∑

i=0

ain+jω
i
m



xj

and

b(x) =
n−1
∑

j=0





φ(m)−1
∑

i=0

bin+jω
i
m



xj .

so that a(ωM) = A and b(ωM) = B.

ON FAST MULTIPLICATION OF POLYNOMIALS OVER ARBITRARY ALGEBRAS 7

If we form the product

c(x) = a(x)b(x)

=

2n−2
∑

j=0





φ(m)−1
∑

i=0

cijω
i
m



xj ,

then C = c(ωM) is the desired product; i.e., C = AB. However, we shall need
to express C in the same form as A and B, i.e., as a polynomial in ωM of degree
< φ(M). Now,

C =
2n−2
∑

j=0





φ(m)−1
∑

i=0

cijω
i
m



ωj
M

=
n−1
∑

j=0

φ(m)−1
∑

i=0

(

cijω
ni+j
M + ci,j+nωni+j+n

M

)

=

n−1
∑

j=0

φ(m)
∑

i=0

(cij + ci−1,j+n)ωni+j
M ,

where we define cij to be 0 if i < 0, i ≥ φ(m) or j ≥ 2n − 1. If we carry out
the indicated additions, then we will express C as a polynomial in ωM of degree
< φ(M) + n. Thus n reductions modulo the polynomial ΦM (ωM) will leave C in
the required form.

All of this works equally well if we compute KQ times a(x)b(x) instead of
a(x)b(x), for any KQ ∈ Z. Of course, we will obtain KQC instead of C, but
all else remains the same. Summarizing, we have

Lemma 3.1. We can compute KQ times the product of two cyclotomic integers in
Z[ωM] by computing KQ times the product of two polynomials of degree < n over
Z[ωm] and ≤ M + nµs additional additions/subtractions.

We now show, inductively, that the method of the previous section, used recur-
sively, enables us to choose KQ = τH+1

s sQ−2 when Q ≥ 3.
Indeed, if Q = 3, then H = 0, q = 2, n = s, and the 2n products necessary

for the above computation are computed directly (using ordinary polynomial mul-
tiplication) and we obtain KQ = τss = τH+1

s sQ−2. When Q > 3, then, recursively,
using Lemma 2.4, we obtain KQ = τss

rKq = τss
rτh+1

s sq−2, where h = H −1 is the
unique integer satisfying 2h + 2 ≤ q ≤ 2h+1 + 1. This shows that KQ = τH+1

s sQ−2.
Now denote by αQ the number of addition/subtractions and by βQ the number

of multiplications required for the above computation.

Lemma 3.2. We have

αQ ≤ sQ2H((6s + 2)µs(H + 1) + 2α2/s
2) and βQ ≤ sQ2Hβ2.

Proof. From Lemmas 2.4 and 3.1 we find that

αQ ≤ 6rsµss
Q + 2srαq + sQ + srµs

≤ (r(6s + 2)µs + 2αq/s
q)sQ

≤ (2H(6s + 2)µs + 2αq/s
q)sQ.

8 DAVID G. CANTOR AND ERICH KALTOFEN*

When Q = 3, then H = 0, q = 2, r = 1, n = s, and the desired result for α3 follows
from Lemmas 2.4 and 3.1, namely,

α3 ≤ 6sµss
3 + 2sα2 + s3 + sµs ≤ s3((6s + 2)µs + 2α2/s

2).

If Q > 3 then H > 1 and we have, inductively,

αQ/sQ ≤ 2H(6s + 2)µs + 2αq/s
q

≤ 2H(6s + 2)µs + 2 · 2h((6s + 2)µs(h + 1) + 2α2/s
2)

≤ 2H((6s + 2)µs(H + 1) + 2α2/s
2).

Similarly, from Lemmas 2.4 and 3.1, we find that βQ ≤ 2srβq and by induction we
obtain the desired result. �

Now, to multiply two polynomials with integral coefficients, a(x) =
∑n−1

i=0 aix
i

and b(x) =
∑n−1

i=0 bix
i, each of degree < n, we simply choose Q so that that

φ(sQ) ≥ 2n and multiply the cyclotomic integers a(ωm) and b(ωm). The coefficients
of the product c expressed as a polynomial of degree < φ(sQ) will be the coefficients
of the desired product polynomial.

From what we have proven above, we can compute an integer multiple Na(x)b(x)
using O(n log n loglog n) addition/subtraction steps and O(n log n) multiplications.
The multiplier N may be chosen to be a positive power of s, or a power of the unique
prime p dividing s if s is a prime power, and may be chosen to be O(n log n) (indeed,
if s is not a prime, then it may be chosen O(n)).

Now, as described at the beginning of this paper, this method remains valid when
the polynomials have coefficients in A. We can therefore, as described earlier, choose
two different, relatively prime, integers s1 and s2, and compute N1a(x)b(x) using s1

and N2a(x)b(x) using s2. Then N1 and N2 will be relatively prime and there will be
integers M1 and M2 such that M1N1 + M2N2 = 1. Using the Euclidean algorithm,
or otherwise, we can choose |M1| ≤ N2 and |M2| ≤ N1. We must compute the
sum M1(N1a(x)b(x)) + M2(N2a(x)b(x)). By repeated doubling any coefficient of
M1(N1a(x)b(x)) may be computed in O(log M1) = O(log n) additions/subtractions.
Thus, the entire sum may be computed in O(n log n) additions/subtractions. This
completes the proof of our main theorem:

Theorem. There exists a bilinear algorithm which computes the product of two
polynomials of degree < n with coefficients in A using O(n log n loglog n) addi-
tion/subtractions and O(n log n) multiplications. The algorithm is bilinear and the
constant implied by the O does not depend upon A.

Acknowledgement: We like to thank the referees for several comments that have
improved this paper; one referee brought to our attention the references [4], [5],
and [7].

References

1. Aho, A., Hopcroft, J., Ullman, J.: The design and analysis of computer algorithms. Reading

(Mass.): Addison-Wesley 1974.

2. Apostol, T. M.: Resultants of cyclotomic polynomials. Proc. Amer. Math. Soc. 24, 457–462
(1970).

3. Cantor, D. G.: On arithmetical algorithms over finite fields, J. Combinatorial Theory, Series

A 50, 285–300 (1989).

ON FAST MULTIPLICATION OF POLYNOMIALS OVER ARBITRARY ALGEBRAS 9

4. Chudnovsky, D. V., Chudnovsky, G. V.: Algebraic complexities and algebraic curves over finite

fields. J. Complexity 4, 285–316 (1988).

5. Grigoriev, D. Yu.: Multiplicative complexity of a pair of bilinear forms and of the polynomial

multiplication. Proc. 7th MFCS, Springer Lect. Notes Comput. Sci. 64, 250–256 (1978).

6. Kaltofen, E.: Greatest common divisors of polynomials given by straight-line programs. J.

ACM 35, 231–264 (1988).

7. Kaminski, M.: An algorithm for polynomial multiplication that does not depend on the ring

of constants. J. Algorithms 9, 137–147 (1988).

8. Knuth, D. E.: The art of computer programming, vol. 2, ed. 2. Reading (Mass.): Addison-

Wesley 1981.

9. Lang, S.: Algebraic number theory. Reading (Mass.): Addison-Wesley 1970.

10. Lempel, A., Seroussi, G., Winograd, S.: On the complexity of multiplication in finite fields.

Theoret. Comput. Sci. 22, 285–296 (1983).

11. Nussbaumer, H. J.: Fast polynomial transform algorithms for digital convolutions. IEEE Trans.

ASSP 28, 205–215 (1980).

12. Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2.

Acta Inf. 7, 395–398 (1977).

13. Schönhage, A, Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292
(1971).

14. Winograd, S.: Arithmetic complexity of computations. CBMS-NSF Regional Conference Series
in Applied Math. 33, Philadelphia, PA: SIAM 1980.

David G. Cantor,

Department of Mathematics,

University of California,

Los Angeles, CA 90024-1555

Erich Kaltofen,

Department of Computer Science,

Rensselaer Polytechnic Institute,

Troy, NY 12180-3590

