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Algorithms are developed that adopt a novel implicit representation for multi-
variate polynomials and rational functions with rational coefficients, that of black
boxes for their evaluation. We show that within this representation the polynomial
greatest common divisor and factorization problems, as well as the problem of ex-
tracting the numerator and denominator of a rational function, can all be solved
in random polynomial-time. Since we can convert black boxes efficiently to sparse
format, problems with sparse solutions, e.g., sparse polynomial factorization and
sparse multivariate rational function interpolation, are also in random polynomial
time. Moreover, the black box representation is one of the most space efficient
implicit representations that we know. Therefore, the output programs can be
easily distributed over a network of processors for further manipulation, such as
sparse interpolation.

1. Introduction

We introduce algorithms that manipulate multivariate polynomials and rational functions
that are given by “black boxes”: a black box is an object which takes as input a value
for each variable, and then produces the value of the polynomial or rational function it
represents at the specified point (see Figure 1).

The algorithms’ outputs are procedures which will evaluate the answer polynomi-

als at arbitrary points (supplied as the input). These procedures make oracle calls to
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Ply---sPn €K f(plv--~7p’rz,)EK

flze, .. xn) € Koy, ..., 2]
K a field of characteristic 0

Figure 1: Black box representation of a polynomial.

the black boxes given as the input to the algorithm to evaluate them at certain points
dependent on the inputs to the procedure. One result is that we can construct an evalu-
ation procedure for the greatest common divisor of a set of polynomials given their black
box representations. A main result is the construction of an evaluation program for all
irreducible factors of a black box polynomial (see Figure 2).

Precomputed data including e, ..., e,.
Program makes “oracle calls”:
ai,...,0n f(ala“';an) h1<p17"'apn)
h2(p17"'apn)
flz1,. . m0)
bi1,...,by, flbr,...,b,)
P1s---,pn EK
flxy, ... xy)
: he(pi, ...
ClyeresCn - fler,. . en) r(P1: s Pn)
flae,...,zy)
flay, .o xn) =hi(@r, .o xn) - (@, .o )T
h; € K[z1,...,z,)] irreducible.

Figure 2: The program for evaluating the irreducible factors
of a black box polynomial.

Finally, from a black box for a multivariate rational function we construct an evalu-
ation box for both its reduced numerator and denominator. All three algorithms normal-
ize the constructed polynomials in a deterministic fashion, that is querying the resulting
boxes repeatedly will evaluate one and the same associate (scalar multiple) of the goal
polynomial. Moreover, for rational coefficients the constructions of the new evaluation
boxes are accomplished in polynomial-time with respect to total degree and coefficient
size of the given polynomials. The algorithms presented are Monte-Carlo: that is their
output—the constructed evaluation programs—procedures are correct with controllably
high probability.

Previous results on manipulating implicitly represented multivariate polynomials and
rational functions consider straight-line programs as the representation model (Baur and
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Strassen 1983), (Valiant 1982), (von zur Gathen 1985), (Kaltofen 1986b, 1987, and 1989).
The polynomial factorization result for straight-line programs, for instance, performs
transformations on each individual assignment in the input program, and cannot be gen-
eralized to the black box representation in a straightforward fashion. We employ a new
idea for this problem by introducing an extra variable for two different purposes. When
setting that variable to 0, the factors map to precomputed fixed univariate factors. We
thus can not only identify the bivariate factors independently of the evaluation that is
requested, but also normalize them with respect to scalar multiplication. The other pur-
pose of this second variable is that by setting it to 1 we obtain the values of the factors
at a given point.

It is, of course, crucial that the program for the irreducible factors evaluates a fixed
associate for each multivariate factor. Moreover, the program is with controllably high
probability correct, that is it then will always return the correct evaluations of the factors,
independently of the input values an adversary may have chosen for the variables. We
also impose this requirement on the construction of a program for the numerator and
denominator of a rational function.

The solution for numerator and denominator separation found for the straight-line
model (Kaltofen 1988) requires stepping through each instruction. Our innovation first
uses a mixed radix Padé approximation (see, for instance (von zur Gathen 1986)), that
replaces the Taylor series approximation by interpolation. Second, it again makes use of
the idea of a multipurpose second variable. However, for that problem the construction of
the evaluation procedure for numerators and denominators is substantially more complex.
The reason is that one has to deal with zero points of the denominator. Our assumption is
that the black box for the rational function indicates in its output if one tries to evaluate
at a root of the denominator, and produces a value at all other points. We remark that
if the program for evaluating the numerator and denominator is constructed correctly by
our algorithm, that with high probability, it will find the values of both the numerator
and the denominator polynomials at all values for the variables, even those that are zeros
for the denominator.

Our constructed programs with oracle calls to the input black boxes are in many
ways superior to the straight-line program model. From a theoretical point of view,
these programs can be rapidly converted to sparse format using any of the new sparse
polynomial interpolation algorithms (Ben-Or and Tiwari 1988), (Zippel 1990), (Kaltofen
and Lakshman 1988), and (Grigoryev et al. 1988). Our black box factorizer thus has,
for example, resurrected interpolation as a means of factoring polynomials. That method
was last mentioned in the first edition of Knuth’s book (1981), but gave way to Hensel
lifting for reason of exponential combinatorial blow-up in the identification problem of
the factor images. Having overcome this problem here, we can use sparse interpolation
to an added advantage, namely we can distribute the interpolation process over a series
of processors using Ben-Or’s and Tiwari’s (1988) algorithm. Since the polynomials are
given by black boxes, the amount of data that needs to be sent to the individual proces-
sors is very small, which makes such a distributed computation scheme quite practical.
From a theoretical point of view, we also obtain a randomized NC reduction (Cook 1985)
for computing the sparse factors of multivariate polynomials to the problem of factoring
univariate polynomials over the coefficient field, resolving an open problem in (von zur Ga-
then and Kaltofen 1985). Over the rational numbers we get, for example, a randomized
NC algorithm for computing all sparse factors of a multivariate polynomial that have
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fixed degree.

We can also apply sparse interpolation to the program that we obtain for the nu-
merator and denominator of a black box rational function. Furthermore, if we are given
correct upper bounds for the number of non-zero monomials in the numerator and denom-
inator, then by a deterministic zero test (Zippel 1990) we can verify the computed sparse
numerator and denominator. Therefore we have a Las Vegas randomized polynomial-time
solution to the sparse rational interpolation problem, that is one that always returns the
correct answer and has expected polynomial-time complexity.

Before discussing our results, let us mention a linear algebra setting in which black
box representation also can be successfully applied. We are given the coefficient matrix
A of a linear system in terms of a black box that will multiply this matrix with a chosen
vector y (see Figure 3). For simplicity, assume that A € K™*" is non-singular. Wiede-
mann (1986) presents a Las Vegas randomized algorithm that will solve Az = b for z,
where z,b € K"*! that requires an expected number of O(n) applications of the black box
for A and O(n?) additional arithmetic operations in K. For the singular case, Wiedemann
shows how to compute a random vector in the solution manifold in the same expected
number of steps. Furthermore, Wiedemann gives a Las Vegas randomized algorithm that
computes the determinant of A in O(n) expected number applications of the black box
for A and an additional O(n?log(n)) arithmetic steps in K.

Yy c Kn><1 Ay c Knxl

A c KnX’I’L
K a field of cardinality > 50n2 log(n)

Figure 3: Black box representation of a matrix.

It is again important to realize that Wiedemann’s results generalize sparse matrix
representation. Clearly, for sparse matrices, the product Ay may only take O(n) arith-
metic steps in K. In that case the methods improve on any O(n?) algorithms for system
solving. However, the algorithms also apply to dense matrices with special structure, such
as Toeplitz, Vandermonde, or resultant matrices. In (Canny et al. 1989), e.g., we present
an efficient algorithm to multiply a Macaulay (1916) resultant matrix and a vector, and
thus obtain by Wiedemann’s algorithms the most efficient solution known for computing
the Macaulay resultant itself. The black box representation of a matrix that allows its
multiplication with a given vector is of course a ubiquitous concept in numerical sparse
linear system solving, such as in the Lanczos and conjugate gradient methods for solving
positive definite sparse linear systems (see (Golub and van Loan 1987)). Wiedemann’s
algorithms are distinguished from these methods in that they are algebraic and compute
an exact answer in contrast to a numerical approximation of the solution.

Notation: We use the symbols := and =: to define new mathematical objects (the
new quantities being on the side of the colon), and we use the symbols <« and — as
assignment operators in program code. Furthermore, deg(f) always denotes the total
degree of the multivariate polynomial f.
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2. Factorization of Polynomials in Black Box Representation

We now present the algorithm that takes a black box for a multivariate polynomial and
produces a program that will evaluate all individual irreducible factors at arbitrary values
for the variables.

Algorithm Black Box Polynomial Factorization

Input: A black box that evaluates f(z1,...,2,) € K|z1,...,2,], where K is a field
of characteristic zero. We also assume that we have an effective polynomial
factorization algorithm for K[y] (see Figure 1). Furthermore, a failure probability
€ < 1 is input.

Output: Assume that

T

fan,an) =[] iz, wn)®, e > 1,
i=1

is the factorization of f into irreducibles. First we output integers €i,..., €,
such that with probability no less than 1 — ¢, e; = €; for all 1 <7 < 7.

We also output a program (see Figure 2) that makes oracle calls to the black
box for f and has with probability at least 1 — e the following property. The
program accepts as input n arbitrary elements pq,...,p, in K. It returns the
values

hl(pla - 7pn>7 hg(pl, . 7pn); ey hr(pl» . 7pn) c K.
Notice that the h; are determined only up to a multiple in K. The constructed
program once and for all chooses an associate for each factor h; and, for repeated
invocations with different arguments, returns the value of that associate. Notice
also that the failure probability applies to the construction and not to the execu-
tion of the program. That is, with probability at least 1 — € the output program
is correct; a correct program always produces the true values of the factors.

Step 1: Pick random field elements
a27"'7an7b1)"'?bnaclaC?n"'vcn

from a sufficiently large finite subset R C K. We will give the cardinality of this set in
relation to deg(f) and € in the statement of theorem 1 below.
By standard interpolation compute

fo(X1,X9) == f(X1 + a1 X+ b1, a0 X1 + Xo + bo,
az X1+ c3Xo +b3,..., 0, X1 + cn Xo + by).

The interpolation algorithm needs to know deg(f). Either deg(f) or an upper bound is
also supplied as input, or it can be probabilistically guessed beforehand as follows (see also
(Kaltofen 1988)). First, we will interpolate f1(X7) := f2(X1,0). With high probability,
depending on the cardinality of R, we have deg(f) = deg(f1). To find deg(f1) we compute

a succession of polynomials fl(d) for d =1,2,3,... until fl(d) = f1, where fl(d) (X1) is the
interpolate at X7 = 0,1,...,d of f1(X1). We test whether fl(d) = f1 by evaluation at
a random A € R: if fl(d) (A) = f1(A) then we declare f; = fl(d), and deg(f1) = d. As
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discussed in (Freeman et al 1986, procedure StraightDegree), the fl(d) can be computed
incrementally by using a divided difference table.*

The probability that this method determines deg( f) correctly depends on the relation
of deg(f) to the cardinality of the set R, from which the random elements are taken.
Since the algorithm chooses the set R, say integers of no more than [ bits, where [ is
appropriately selected, some upper bound for deg(f) must be known to the algorithm
beforehand. This is unavoidable since the black-box could compute a polynomial in
which all [-bit integer translation points are ‘unlucky’. For example, for all such integers,
the projected polynomial fo might be the zero polynomial, hence unusable. In any case,
the failure probability is proportional to deg(f)/2!, which means that the degree of f
would have to be very large in order for the guessing procedure to be unreliable. Hence
this problem of having to be given information about the magnitude of deg(f) is more a
theoretical than a practical issue.

Step 2: Factor f2(X1, X2) over K[X1, X5 into irreducibles,

(X1, X3) =: ng,i(Xth)éC € > 1.
i1

Notice that this bivariate factorization problem is reducible to a univariate one, in polyno-
mially many field operations (Kaltofen 1985a). Moreover, by virtue of the effective Hilbert
irreducibility theorem (Kaltofen 1985b and 1989), for a set R of cardinality 24°8(/ e /€
the factor degree patterns of f and fy agree with probability no less than 1 — €, that is,
d = deg(f), r =7, and for all 1 < i < r, e; = &. Let us suppose that all this is true.
Otherwise an incorrect output program will be produced.

Step 3: Assign

ng‘(Xl) = gg7i(X1,0) for all ISZST

Check whether GCD(g¢1,;,91,5) = 1 for all 1 < i < j < r, and whether deg(g2,;) =
deg(gy, i) for all 1 < i <. If not, return “failure”. In that case we know that the random
points were unlucky by zeroing one of several possible polynomials whose zeroes are to
be avoided.

*An even simpler method of guessing deg(f1) has been proposed by R. Liebling. Consider
the following difference operator on K[X]:

Aolfa] == f1, Aipa[fi](X1) = Ai[AA](X1 + 1) — Ay [f1](X1) for all @ > 0.
For a random A € R we compute
Ao[f11(A), Ar[f11(A), Az[f1](A), ...
until we get Agy1[f1](A) = 0. Notice that a new A;1[f1](A) can be found by keeping the
values of Aj[f1](A +i — j) with 0 < j < i, and updating this fringe of a triangular difference

table by the iteration: For j < 1,...,i+ 1 Do:

AjlAlA+i+1=5) = Ajalfil(A+i+2-5) = Aja[Al(A+i+1-7).

306



Computing with Black Boxes 307

We now have, with high probability,
fi(X1) = f(X1 +b1,02X1 +bay oo yan X1+ by) = H91,i(X1)e’} (1)
i=1

where each g; ; is an image of an h;. We first map from multi- to bivariate polynomials
in step 2 and then from bi- to univariate polynomials in step 3 because of a lack of
a univariate Hilbert irreducibility theorem for K. By that we mean a theorem that
establishes the existence of a set of substitutions for the variables that map all irreducible
factors of f to univariate irreducible polynomials. For general fields K such a theorem
does not exist; e.g., if K is algebraically closed, f; will always factor into linear factors
over K, even if f is irreducible. However, many other fields, such as finite algebraic
extensions of Q, yield a univariate Hilbert irreducibility theorem. Nonetheless, we know
of no computationally effective versions, so for theoretical reasons we still must apply the
bivariate counterpart. However, in practice it is unlikely that f violates the conclusion of
such a theorem, which is that the factor degree pattern of f; with high probability agrees
with that of f. Therefore, in practice, for such fields it is not unreasonable to map f
directly to f1 and then factor f; over K[X1].

We will use ¢1,; to uniquely enumerate the factors of f. Our associate choices (see
the output specifications above) will satisfy

hi(X1 +b1,a9 X1 +bg,a3Xq +bs,. .. an X1 +by) = g1.4(X1).

Step 4: This step constructs the program for evaluation of the h; at p1,...,p, as de-
scribed in the output specifications. First, the information computed so far is ‘hardwired’
into that program. Then the following steps A, B, and C, are appended to the program.

Step A: By standard interpolation using the determined deg(f) compute

F(X1,Y) = f(X1 4+ b1,Y(p2 — as(p1 — b1) — b2) + a2 Xy + b,
. 7Y(pn - an(pl - bl) - bn) + anXl + bn)

Notice that

f(p1 —b1,1) = f(p1,...,pn) and  f(X1,0) = f1(X1).

Step B: This step computes the factorization
F(x1,Y) =[] (X, )" with §i(X1,0) = g14(X1) forall 1 <i <.
i=1

Note that since the polynomials g; ; are not necessarily irreducible, neither might be the
gi- One way to obtain the factorization would be to factor f(X;,Y) over K[Xy,Y] into
irreducible factors, evaluate these factors at ¥ = 0, and then check which of the g1 ; the
corresponding univariate images divide. Finally, we can compute the product of those
irreducible factors of f whose univariate images divide a given g1,; and adjust by a scalar
multiplier to obtain g;. However, this would require the bivariate factorization of f, and
there is a much more efficient solution, namely by Hensel lifting the factorization (1)

to one for f. We will not describe the lifting algorithm in detail, but instead refer to
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(Musser 1976) and (von zur Gathen and Kaltofen 1985). The latter article explains that
one can in our setting lift with the multiplicities e;.
By Hensel lifting (1) obtain a factorization

[T7:(X1,7) = f(X1,Y) (mod Y1), deg,(g:) < d.
1=1

For all 1 < i < r test, whether g; divides f. If at least one test fails, return “program
incorrect”. In that case we have discovered that the factor degree patterns of f and fo
must disagree.

Step C: Fori <« 1,...,r Do:
Return g;(p1 — b1,1) as the value h;(p1,...,pn), the value of the i-th irreducible
factor. [

The following two theorems discuss the complexity of this algorithm. As mentioned
at the end of step 1, any failure estimates are dependent on the degree of f, which is not
supplied as an input parameter and cannot be synthetically produced from the black box
alone. Therefore, the failure probability can only be guaranteed if the set R in step 1 was
selected of at least the stated cardinality.

Theorem 1. The Black Box Polynomial Factorization algorithm can construct its output
program in polynomially many arithmetic steps as a function of n and deg(f) and an
additional single polynomial factorization in K[X1]. It requires O(deg(f)?) oracle calls to
the black box for f. If the cardinality of the set R in step 1 is chosen

card(R) > 6deg(f) 2deg(f)/e,

then the algorithm succeeds with probability no less than 1 — e and the resulting program
will always correctly evaluate all irreducible factors of f. That program in turn can be
executed in polynomially many arithmetic steps and O(deg(f)?) calls to the black box
for f. For K = Q(9), where 9 is an algebraic number given by its minimal polynomial
©(z) € Q[z], that is, K is isomorphic to Q[z]/(¢(z)), the timings in terms of bit complexity
are polynomial in n, deg(f), and the additional parameters: log(1/¢), and the coefficient
sizes of f and ; this under the provision that the set R is chosen as the first card(R)
positive integers. Furthermore, all evaluations of the black box for f within the algorithm
are on input values of polynomial size as a function of the stated parameters.

Proof. The statements on the run time of both the algorithm and the returned program
are easily verified. First, we need to interpolate the bivariate polynomials fo and f,
both of degree at most deg(f) (if unlucky elements are chosen in step 1, the degrees
might be less). Clearly, each bivariate interpolation requires O(deg(f)?) values of f. The
algorithm then needs to factor fs, which can be accomplished for K = Q[z]/(¢(2)) in
binary polynomial time in deg(f2) and the coefficient size of fo (Landau 1985). Notice
that one needs to make an appropriate definition for the coefficient size of f in order to
guarantee that the coefficient size of fs stays polynomially bounded. One such choice
is the combined coefficient size of f as defined in Kaltofen (1989), §4, page 393. The
dominating additional work of the output program is step B, which essentially is a uni-
to bivariate lifting problem that certainly can be accomplished in O(deg(f)*) arithmetic
operations.
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It remains to analyze the failure probabilities. An incorrect program is output if and
only if the factor degree patterns of f and fo disagree. This happens when deg(fs) <
deg(f), or when some h; maps to a reducible polynomial in K[X7, X5], or when two
of the h;’s map to associated irreducible polynomials in K[X7, Xs]. By theorem 5.2 in
(Kaltofen 1989) (or as explained in the proof of theorem 6.1 (ibid.)), this happens with
probability less than

(deg(f) + 4 deg(f) 29 + deg(f)?)/card(R).

Furthermore, if we use the procedure described in step 1 for guessing the degree of f, we
may pick a value A that leads to an agreement f1(A) = fl(d) (A) for d < deg(f) with prob-
ability no more than deg(f)?/card(R). Thus, by choosing card(R) > 6deg(f) 2% /e
we can guarantee that the output program is correct (including that step B will never
report an error) with probability no less than 1 — e.

Finally, we need to estimate the probability that step 3 reports failure. Such circum-
stances correspond to failure in step F of the Factorization algorithm in (Kaltofen 1989),
and is treated in the fourth case of failure in the proof of theorem 6.1 (ibid.). It is shown
that the probability of these events can be bounded from above by deg(f)?/card(R),
which for the given cardinality of R certainly lies below e. X

Theorem 1 has several applications to computing the sparse factorization of a mul-
tivariate polynomial given by a black box. For instance, we get the following theorem of
theoretical interest, which establishes that several sparse factorization questions as belong-
ing to the complexity class randomized NC for parallel computation (see (Cook 1985));
it also solves an open problem in (von zur Gathen and Kaltofen 1985).

Theorem 2. For K = Q(¥¥) as in theorem 1, we have a Monte Carlo N'C-reduction from
the problem of computing all sparse factors with no more than t terms to the problem of
factoring univariate polynomials over Q. This reduction is of polynomial binary operation
count and poly-logarithmic depth in terms of n, deg(f), t, and the coefficient size of f and
w. It requires that the black box calls account for polynomially many Boolean operations
and poly-logarithmic depth. In particular, under this assumption for K = Q the problem
of computing all sparse factors of a fixed degree with no more than t terms is in the
complexity class Monte Carlo NC.

Proof. Constructing and evaluating the output program of the Black Box Polynomial
Factorization algorithm is basically interpolating bivariate images of the input black box
and bivariate factorization. Bivariate factorization over K = Q[z]/((z)) is NC reducible
to univariate factorization over QQ by the reduction from bivariate to univariate factoriza-
tion over K in (Kaltofen 1985a) and the reduction from factoring univariate polynomials
over algebraic number fields to factoring univariate polynomials over the rationals in
(Trager 1976). From the program for all factors we can deduce the sparse factors in
Monte Carlo NC by the algorithm of Ben-Or and Tiwari (1988). Note that although the
Ben-Or and Tiwari algorithm is deterministic, we must check which of the sparse inter-
polating polynomials with ¢ or fewer non-zero monomials are correct because the Ben-Or
and Tiwari algorithm can yield an incorrect sparse interpolating polynomial for a dense
factor. The verification can be done in a Monte Carlo fashion by evaluating both the
program for the factor and the computed sparse candidate polynomial at a random point
and by comparing the resulting algebraic numbers.
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We finally discuss the statement on factors of fixed degree. In step 2 one can in
parallel compute those bivariate integral factors that have fixed degree by lifting univariate
factors modulo a prime number first to integral factors and then to bivariate factors as in
the standard Berlekamp-Hensel method (Kaltofen 1982). The modular univariate factors
can be found in parallel by a variation of the Berlekamp algorithm (Gathen 1984). Finally,
both the true bivariate factors as well as the true univariate integral factors are recoverable
within the complexity A'C because there are only a polynomial number of lifted factor
combinations to be tested, since the degree of the product candidate polynomial is fixed.
X

We shall conclude this section with a different interpretation of our idea, which
was actually conceived after the method had been discovered. One can view steps B and
step C in the algorithm to fit the homotopy continuation paradigm for numerically solving
a system of equations (see, for instance, (Drexler 1977), (Garcia and Zangwill 1979), (Li,
Sauer, and Yorke 1988), and (Zulehner 1988)). Assume that one wants to solve the

system of equations F(#) = 0. One parameterizes the indeterminates with a single new
variable Y and considers the system

HX(Y)) = (1-Y)AX(Y)) + YF(X(Y)),

where X (0) is a solution to the specially selected system G(Z) = 0 and X (1) is sought
as a solution of H(X(1)) = 0. In order to obtain X (1) one continously deforms X (0) by
letting the parameter Y go from 0 to 1. Note that in the numerical homotopy methods,
the standard parameterization described for the variables is simply X (Y) = Z, that is the
systems G and F stay invariant during the deformation.

In our case the problem G (Z) = 0 is the problem of factoring f1, and the problem
ﬁ(f) = 0 is the problem of finding the corresponding factorization of f(X;,1). The
former problem does not depend on the input pq,...,p,, whereas the latter does. The
Hensel lifting method referred to in step B exactly corresponds to deforming the solution
of G(Z) = 0 to one for H(X(Y)), although it should be noted that our deformation
deforms with a discrete valuation. Since degy (f) is finite, this deformation terminates
with the exact solution, and evaluation at Y = 1 is possible.

3. Black Box GCDs and Separation of Numerators from Denominators

We now discuss two more results concerning the construction of evaluation programs from
black boxes. The first is the construction of a program for the evaluation of the greatest
common divisor of multivariate polynomials, the second takes a black box for a multivari-
ate rational function and will individually evaluate its numerator and denominator. As in
the factorization algorithm, the resulting programs are, with high probability, universally
correct: they will return the correct values for all inputs. This requirement makes the
construction more difficult. In both the GCD and the separation result we will employ
the same idea that we already used in the factorization algorithm above.

We first discuss the computation of GCDs and shall give only a brief explanation. As-

sume that for ¢ = 1,...,7, 7 > 2, the non-zero polynomials f;(z1,...,z,) € Klz1,..., 2]
are given by a black box. For field elements p1,...,p, we wish to have g(p1,...,pn),
where g = GCD(f1, ..., f.) and we again fix the associate. First we choose random field
elements

A2y vvyQpyboy o by Coy e Cp
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Now with high probability for the univariate image of the GCD,
g1(X) :=g(X,a2X + ba,...,a,X +b,) € K[X],

we have deg(g1) = deg(g), that is we can normalize g such that g; is monic. Furthermore,
with high probability (see (Kaltofen 1988, Theorem 6.2)), we have

T

g1 = GCD(fl(X, asX +bo,...,a, X + bn), Zcifi(Xa asX +bo,...,a, X + bn))

i=2
By polynomial interpolation we now compute the two bivariate polynomials

T

f(XY)=> afi(X)Y) and [(X,Y),

=2

where the  operator is for any h € K[zy,...,z,] the projection

MX,Y) :=h(X,Y (p2 — agp1 — b2) + a2 X +ba, ..., Y (pp — anp1 — bp) + an X + by,).

Next, we compute g(X,Y) as the GCD(fo(X,Y), f1(X,Y)), where g is normalized by
making the leading coefficient ldcfx(g) = 1. We actually get g and the normalization
amounts to a scalar division if g; does not drop in degree compared with the degree of g,
that with high probability. Finally, we return as g(p1,...,p,) the value g(pi,1).

Even though this is more or less the same idea as the one in the factorization algo-
rithm, the transcendental Y is used for a somewhat different reason here. The problem
is that one cannot guarantee that the GCD of the polynomials fo(X,1) and f;(X,1) is
an image of g, and our algorithm is to produce a black box which is correct with high
probability; correct means that it evaluates the GCD at all points. It is therefore in-
triguing to compare the result with the polynomial GCD algorithm for the straight-line
representation (Kaltofen 1988, §6). In fact, a similar problem arises for the solution pre-
sented there, but in a somewhat more implicit way. Although the resulting straight-line
program for the GCD is derived by a univariate polynomial remainder sequence (see step
R in the cited algorithm), that program will contain divisions. Therefore, it cannot be
evaluated at all points in the straight-forward manner. One has to first remove the divi-
sions by Strassen’s algorithm (see Theorem 7.1 in (Kaltofen 1988)). That again leads a
consequent increase in the complexity for computing the values everywhere.

As the last Black Box result in this article we come to the problem of computing the
values of the numerator and the denominator of a rational function. A certain subproblem,
that of a mixed radix Padé approximation, will be used in both the algorithm constructing
the resulting program and in the program itself. For clarity, we shall present the algorithm
for this subproblem below the main algorithm.

Algorithm Black Box Numerator and Denominator

Input: A black box that evaluates f(z1,...,2n)/9(x1,...,2n) € K(x1,...,2zy), where
K is a field of characteristic 0, f,g € Klz1,...,z,] with GCD(f,g) = 1. The
black box returns oo if one evaluates at a root of g. Furthermore a failure

probability € < 1 is input. Without the knowledge of a bound e > deg(g), this
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algorithm might with positive probability loop forever. If this is not desired, a
degree bound € is also required as input.

Output: A program (see Figure 4) that makes oracle calls to the black box for f/g
and has with probability at least 1 — e the following property. The program
accepts n field elements p1,...,p,. It returns the values of

f(plu"'7pn) and g(plavpn)

As in the Black Box Polynomial Factorization algorithm, certain associates for
f and g are chosen once and for all and the values of these associates will be
returned.

Notice that the program will be able to return the value of f(pi,...,pn)
even if g(p1,...,pn) = 0. This apparent paradox—the black box for f/g does not
supply any information on f when probed at p1, ..., p,—is resolved by deducing
the value of f(p1,...,pn) from values at other points that are not zeros of g.

Precomputed data including deg(f), deg(g).
Program makes “oracle calls”:

A1y ..y 0n -(b(al,...,an) f(p1,-.-,0n)

P10 €K d(x1,. .. T0)
vt on -¢(Cl7--~7cn) 9(1’17...,Pn)
d(x1,. .., xy)
d(x1,...,xn) = %,ﬁg € Klzy,...,2,],GCD(f,g) = 1.

Figure 4: The program for evaluating the numerator and denominator
of a black box rational function.

Step 1: This step introduces a random projection of f and g into K[X] that with high
probability preserves their relative primality and the degree of g.

From a sufficiently large finite set R C K randomly select a;,b;, 2 < i < n. In place of z;
we will evaluate at a; X + b; for 2 < ¢ < n, such that for

fl(X) = f(X, CLQX —|—b2, PN .,anX + bn)

and
g1(X) = g(X,a2X + ba,...,anX + by)

we have GCD(f1,¢1) = 1 over K[X] and deg(g1) = deg(g): depending on the cardinality
of R this is true with high probability. Notice that the degree condition on g; implies
that g1 # 0.
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Step 2: This step probabilistically computes the degrees of f and g. In order to prevent

an infinite loop in the case that g; = 0 we assume that one is given an additional bound

€ > deg(g).

For § — 0,1,2,... Do:
Call the algorithm Special Padé Approximation below with the degree bounds d =
e = 0 and the linear substitutes as X + bo,...,a, X + b,. Denote the two obtained
polynomials by fl(é),ggé) € K[X]. If both polynomials are 0, then either the projec-
tion sent g into the zero polynomial or § < deg(g) together with additional conditions
on g; (see the output specifications of the Special Padé Approximation Algorithm
below). Iffl(é) = g%‘s) = 0 increment ¢ by one and continue the For loop, unless § = e,
in which case return to step 1. In this exceptional case g; = 0, provided that € is a
true bound for deg(g). Therefore a new random projection must be tried.

If 955) # 0, pick another random element A € R and compare (f/g)(A,a2A +
ba,...,anA+by,) computed by the input black box with the value of fl(é)(A)/gié) (A).
If both values are the same and are not co then declare deg(f) to be deg(fl((s)) —d
and deg(g) to be deg(g@) — e, and go to step 3. If both values are co, pick a new

distinct random A and repeat the comparison. Otherwise continue the For loop with
the next §.

Step 3: This step constructs the program described in the output specifications. It will
permanently use the random elements chosen in step 1 and the degrees computed in
step 2. The idea is to compute

F(X)Y) = f(X,a0X +ba + Y (p2 —aop1 — b1),...,an X + by + Y (pp, — anp1 — by))
and
§(X.Y) =g(X,a2X + b+ Y(p2 —aop1 —b1),...,a,. X + by + Y (pp, — anp1 — bn)).

For Y = 0 we already have computed these polynomials in step 2. Here we compute

fi(X) :== f(X,i;) and g;(X) := g(X,i;) for sufficiently many distinct integral values i;,

that we can interpolate with respect to Y. However, in order to use the special Padé

approximation for the computation of fj and g; these two images must be relatively

prime. Therefore, certain values for i; have to be discarded.

Step A: j — 0.

For I «— 1,2,... Do:
Call the algorithm Special Padé Approximation below with the degree bounds d, e
and the linear substitutions a; X + b; + I(p; — a;p1 — b;) for 2 < i < n. If the degrees
of the returned polynomials are below d and e respectively, continue the For loop
with the next I. Otherwise, set i;11 < I, fj+1(X) to the numerator polynomial
returned, and gj+1(X) to the denominator polynomial returned. Increment j by 1.
If j = max(d,e) + 1 then exit the loop. Otherwise continue the For loop with the
next I.

As we will show below, if the substitutions of step 1 are lucky the above loop will discard

at most 2de values of I. Thus, if more values are unusable the entire program is incorrect.

Of course, this should be tested for and diagnosed, instead of getting into a possible

infinite loop in such an unlucky case.
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Step B: From the polynomials fj, g; compute, by interpolation, candidates for the poly-
nomials f(X,Y),g(X,Y).

Step C: Return f(p1,1) and g(p1,1) as the values of f(p1,...,pn) and g(pi,...,pn)
respectively. [

Algorithm Special Padé Approximation

Input: The same black box for f/g that is input of the Numerator and Denomina-
tor algorithm. Furthermore, two degree bounds d,e and linear forms us X +
Vo, ..., Uy X + v, with u;,v; € Kfor 2 <¢<n.

Output: Two polynomials f(X),§(X) € K[X] with the following property. The al-
gorithm has chosen d + e + 1 integers

1§i1<7;2<"'<7;d+e+1

such that forall 1 <k <d+4+e+1,

gg:)) B g(ik, Unil + V2, s Uplk + Un), @)

and such that

deg(f) <d, deg(§) <e, ldef(g) = 1.

If the right-hand side of (2) is not oo for all k, then such f , g can be determined
(see lemma 1 below). Furthermore, if d > deg(f) and e > deg(g), the algorithm
will return relatively prime polynomials f ,g. (Refer also to the remark following
the algorithm description.) No appropriate i) can be selected if either

0 :g(X,u2X+v2,...,unX+vn) = g(X)v

or if deg(g) > e and more than e of the integers j in 1 < j < d+2e+1 are roots
of g(X). In these exceptional cases two zero polynomials are returned.
Step I: We first find, if possible, a set of d + e+ 1 integers 1 <47 <ig < -+ < igresr1 <
d + 2e 4+ 1 that are not roots of §(X) = g(X,u2 X + va,...,us, X + v,) € K[X].
k0.
For J —1,...,d+2e+ 1 Do:
By evaluation of the black box for f/g compute

Apy1 — g(J7 ugd +va, ..., U + Up).

If Ag4q # oo then ipy1 <« J. Increment k by 1 and if k = d + e + 1 exit loop.
At this point we have tried at most d + 2e + 1 values for J.
If k < d+ e+ 1 then return two zero polynomials for f and §. With

FX) = f(X,un X +v2, .. up X +vy)
we now have Ay = f(ix)/g(ix) for all 1 <k < d +e+ 1.
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Step II: By polynomial interpolation compute a polynomial h(X) € K[X] with h(iy) =
Ap forall1 <k <d+e+1 and deg(h) <d+e.

Step IIL: Now we compute polynomials f(X),§(X) € K[X] such that
F(X) = g(X)A(X) (mod (X —i1) - (X —iares1))s

and

GCD(f,§) =1, deg(f) <d, deg(g) <e, ldcf(g)=1.

This is accomplished by the extended Euclidean algorithm as follows:
Initialize
ho(X) e (X —i1) - (X —igres1); go(X) « 0;
hi(X) — h(X); g1(X) < L.
Forl«—1,2,... Do:
If deg(h;) < d then exit the loop. Otherwise, perform a polynomial division with
remainder of hj_1 and hy,

hiy1(X) — -1 (X) (mod hy(X));

@+1(X) — (h-1(X) = huga (X)) /ha(X);

gi+1(X) = g1—1(X) — @41 (X) g (X).
Return f «— hy/1dct(g)); § — gi/Mdcf(g;). O

We first discuss the auxiliary Special Padé Approximation algorithm in more detail.

It can be shown that in the case where d < deg(f) or e < deg(g) the fraction f/§ of
polynomials satisfying the output conditions is uniquely determined (see, for instance,
(Knuth 1981, Exercise 4.6.1-26)). However, since we want to avoid the GCD reduction to
relative prime outputs at the end of the algorithm, and because we do not need this fact
in step 2, we will not provide a proof. Nonetheless, all other needed conditions can be

deduced from the following simple lemma, whose content is long known (see, for instance,
(Gragg 1972)).

Lemma 1. Let d and e be non-negative integers, and let F(X), G(X), H(X) € K[X], K an
arbitrary field, deg(H) < d+e+1, GCD(F,G) = 1; furthermore, let i, 1 <k < d+e+1,
be not necessarily distinct elements in K such that

F=GH (mOd (X —Zl) (X —id+e+1)).

Define ho(X) := (X —41) - (X —igyet1), 00 :=d+e+ 1, and hy(X) := H(X), §; :=
deg(H). Now let h)(X),q(X) € K[X] be the I-th remainders and quotients respectively,
in the Euclidean polynomial remainder sequence

hl,Q(X) = ql(X)hlfl(X) + hl(X), = deg(hl) < §j_1 forl > 2.

In the exceptional case H = 0 the sequence is defined to be empty.
Finally, let fi(X),g/(X) € K[X] be the multipliers in the extended Euclidean scheme
ftho + gih1 = hy, namely,

Jor=g1:=1, f1:=g0:=0,
fii=fice—aficr, g =gi—2—qgi—1 forl>2.
Then there exists an index j, 1 < j, such that §; < d < d;_;. For that index we have
hj =g;H (mod (X —i1)-- (X —igyeq1)) and deg(g;) <e. (3)
Furthermore, if d > deg(F') and e > deg(G) then F = A\h;, G = \g; for some X € K.
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Proof. 1t follows by induction on [ that
V12> 2: fiho + gihy = by, deg(fi) = 61— 011, deg(g1) = do — d1—1.

Furthermore, one can easily show that f;g;—1 — fi—1g1 = £1, which implies that GCD(f;,
1) = 1 (see (Knuth 1981, §4.6.1, Exercise 3)). Since in the Euclidean sequence the
remainder 0 eventually appears, an index j can always be found. Now, we have

hj = g;H (mod ho), deg(g;)=0d0—0d;-1 <e.

This shows that the pair of polynomials h;, g; is a solution to (3).
We finally prove uniqueness in case d > deg(F') and e > deg(G). Observing that

ngfth: (F*GH)gjf(h] 7ng)GEO (mod ho),

and the left hand side polynomial has degree less than d+e+ 1, we must have g;F' = h;G.
Thus there is a w(z) € K[z] with F' = h;/w, G = g;/w. Plugging into h; = fjho + gjh1
we infer that then

fiho

=F—GH =0 (mod hy),
w

which implies that w must divide f;. From GCD(f;, g;) = 1 we thus conclude that w € K.
X

The analysis of the above algorithms now leads us to a theorem very similar in spirit
to theorem 1. Notice that only the cardinality of R depends on the failure probability
bound ¢, thus making the arithmetic complexity independent of it, while for properly
chosen R (see theorem 1) the binary complexity is polynomially dependent on log(1/e)
as well. Again as for theorem 1, bounds for the degrees of f and g are required in
the estimates. Without any knowledge of degree bounds, one can neither guarantee
termination nor estimate the failure probability in any way, since the black box for might
evaluate a rational function of astronomical degree for which all choices taken from a
selected set R are bad.

Theorem 3. Given a bound e > deg(g) as an additional input, the algorithm Black Box
Numerator and Denominator can construct its output program in polynomially many
arithmetic steps as a function of n, deg(f) and é. It requires O((deg(f) +&)?) oracle calls
to the black box for f/g. If the cardinality of the set R in step 1 is chosen at least

max<2 (2deg(f) + 1) deg(g), 3m? — m)/e, m := max(deg(f), deg(g)),

then the resulting program correctly evaluates f and g with probability no less than 1 —e.
That program in turn can be executed in polynomially many arithmetic steps and it

makes O(deg(f)deg(g)(deg(f) + deg(g))) calls to the black box for f/g.
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Proof. The Special Padé Approximation algorithm takes O(d+e) evaluations of the input
black box, where d and e are the supplied degrees. Clearly, step 2 will call this algorithm
at most max(deg(f), €) times until the original and the computed rational functions agree
at A. In order to deduce the number of calls to the Padé algorithm in step A, we need
to estimate how many I can lead to lower degrees. The argument is fairly standard.
Consider the Sylvester resultant (see (van der Waerden 1953, §7))

pl(Y) = RGSX(f(X, Y)vg(X7 Y))
If f1 and g; are relatively prime images of f and g with deg(g;1) = deg(g), then

p1(0) = Resx (f1(X), 1(X)) # 0.

Furthermore, deg(p1) < 2de, and any I with p;(I) # 0 will satisty GCD(f(X,I),g(X,I)) =
1, which proves that in the lucky case at most 2de of the I are unusable. Hence the number
of evaluations of the input black box that are triggered in step A are at most

(2de + max(d,e) + 1)(d + 2e + 1) = O(deg(f) deg(g)(deg(f) + deg(g))).

It remains to estimate the probability that the returned program is incorrect. Again the
argument is standard. Consider the generic leading coefficient

9( X, X + Bo, ..., X + 6n)) = 1, ..., ap) xdeslo) 4 ...
and consider the Sylvester resultant
pQ(a27 s 7ﬂn) = ReSX(f(Xa aQX + ﬂ27 cee ,OénX + 677:)79()(7 aQX + 527 s 7O[nX + /BTL))

Clearly, 71 (az,...,an)p2(az,...,b,) # 0 implies GCD(f1,91) = 1 and deg(g1) = deg(g).
Since deg(71p2) < (2deg(f)+1) deg(g), the probability of missing this condition in step 1

is no more than
(2deg(f) +1)deg(g)
card(R)

€
< —.

-2

Finally, step 2 must return the correct degrees under the assumption that step 1 picked
a lucky evaluation. An element A establishes too low a degree if, despite the fact that
0 < m = max(deg(f),deg(g)), it is a zero of the polynomial

7(X) = f1(X) 9" (X) = 91(X) 17 (X) # 0.
However, deg(m2) < m + 0, so A will be a witness for all § < m with probability at least

3m? —m

_omom X
2 card(R)

>1- &
=173
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As for theorem 1, when K is an algebraic number field and in particular the rational
numbers, the algorithm Black Box Numerator and Denominator is of polynomial-time
bit complexity under the usual assumptions. The algorithm also can be used to solve
the sparse rational function recovery problem (Ben-Or and Tiwari 1988). One version
of that problem assumes that one has term count as well as degree bounds for both the
numerator and the denominator. Unlike the sparse polynomial interpolation algorithm in
(Ben-Or and Tiwari 1988), our solution uses randomization. However, the final answer
can be verified, that is the randomization can be made ‘Las Vegas’. Let ¢ be a common
term bound for both the actual numerator f and denominator g, and let f and g be the
computed sparse numerator and denominator polynomials, respectively. Notice that the
sparse interpolation methods might return incorrect polynomials, but they will always
have no more than ¢ terms. Therefore h := fg — f g is a polynomial with no more than
2t? terms. Then, if

Frol !
P1;---5Pn
J P, 2 Pn) ! l) Lt
gy, ---ph) g
for distinct primes p1,...,p, and for all [ with 1 <1 < 2t2, then we must have h = 0
(Zippel 1990), that is f = f and § = g. We have the following theorem.

Theorem 4. Given a black box for f/g as in the algorithm Black Box Numerator and
Denominator, and given an upper bound t for the number of non-zero monomials in both
f and g, we can in expected polynomially many arithmetic steps in deg(f), deg(g), n,
and t compute the sparse representations of f and g.

Proof. One distinction of this to the previous results is that no degree estimates are needed
as inputs. The reason is that the verification procedure discussed above is always correct.
Therefore, the algorithm can step through degree estimates and select a set R such that
the failure probability is exponentially small. This strategy may lead to an endless run,
but the expected value of the run time will be polynomial in the said parameters. X

Notice that this theorem can also be formulated in terms of bit complexity for an
algebraic coefficient field K = Q(«}) similar to treatment of this special case in theorem 1.

4. Conclusion

Oracle calls in algorithms is a ubiquitous paradigm in complexity reductions such as
Turing reductions in recursive function theory, Cook reductions in the theory of A/'P-
completeness, or reductions that relate the matrix multiplication complexity asymptot-
ically to other linear algebra problems such as solving linear systems. Here we have
introduced this paradigm to several classical problems on multivariate polynomials. We
solved the greatest common divisor, factorization, and numerator /denominator problems.

One application of the black box factorization procedure is that to factor u-resultants
(Macaulay 1916). In fact, in that case all factors are known to be linear forms and the
algorithm specializes to a method very similar to that in (Canny 1988). An efficient black
box for evaluating the u-resultant is discussed in (Canny et al. 1989), and this algorithm,
based on Wiedemann’s (1986) randomized sparse determinant procedure, is particularly
hard to formulate in the straight-line model.

From a pragmatic point of view, the black box model appears to be superior to
the straight-line program model because of space requirements. Algorithms acting on
straight-line programs usually amplify the length of the result by a factor depending on
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the degree, whereas the programs making oracle black box calls are of small additional
size over the input black boxes. Furthermore, one can adapt most of the results to
finite coefficient fields of sufficiently high characteristic and thus avoid costly rational
coefficient arithmetic. Moreover, the resulting evaluation programs are especially easy
to distribute to asynchronous parallel processors for multiple evaluation in parallel, and
perhaps subsequent sparse interpolation. We believe that the black box approach not
only provides a simple, but also a practically very efficient solution to, say, the problem
of sparse multivariate polynomial factorization.
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Errata to: Fast Parallel Irreducibility Testing
This Journal (1985) 1, 57-67

Page 61, line 10: [log,(K)| < | logy(K) |. Page 61, line 24: [log, K| < | logy K |.
Page 63, line 8: (6) < (5). Page 65, line 6: |logy(n)] < | logy(n) |.

Page 65, line 11 from bottom: reducible « irreducible.

Page 67, Kaltofen (1983) reference: 469-489 « 469.
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