
Computing the Irreducible Real Factors and Components

of an Algebraic Curve*

Erich Kaltofen

Department of Computer Science, Rensselaer Polytechnic Institute
Troy, New York 12180-3590; ARPA-Net: kaltofen@cs.rpi.edu

Abstract. We present algorithms that decompose an algebraic curve with rational coefficients in
its defining bivariate equation into its irreducible real factors and its non-empty irreducible real
components. We show that our algorithms are of polynomial bit complexity in the degree of the
equation and the size of its coefficients. Our construction is based on computing the irreducible
complex factors and then investigating high precision complex floating point coefficients of these
factors and the complex norms.

Keywords: Polynomial factorization, algebraic curves, real number arithmetic, polynomial-
time complexity

Running title: Computing real factors

*This material is based on work supported in part by the National Science Foundation under Grant
No. CCR-87-05363 and under Grant No. CDA-88-05910. A preliminary version of this paper appears in the
Proceedings of the 5th Annual Symposium on Computational Geometry, ACM Press, pp. 79–87, (1989).

Appears in Applic. Algebra Engin. Commun. Comput., 1/2, pp. 135–148 (1990).

1



1. Introduction

An algorithm is presented that allows to decompose an algebraic curve with rational coeffi-
cients into its irreducible real factors. A real algebraic coefficient of a factor is represented
by its defining minimal integral polynomial as well as by a rational interval such that the
only real root of this minimal polynomial within the given interval is that real coefficient.
Our algorithm runs in time polynomial in the degree and the coefficient size of the rational
bivariate polynomial defining the curve. As a corollary we get, for example, that the problem
of deciding whether a multivariate polynomial factors over the reals is in polynomial-time.

From our representation of the irreducible real factors one can, for instance, find arbitrar-
ily precise floating point approximations of their coefficients, or one can by Seidenberg’s [20]
algorithm determine whether there are real points that lie on the curves defined by these
factors. Our algorithm can also be used as a size reduction tool in any of the algorithms for
deciding the theory of real closed fields, e.g., Collins’s cylindrical algebraic decomposition
method (see [1]) very much in the same way as polynomial factorization over the ground
field can be used to fork the reductions in a Gröbner basis completion.

The problem of finding the irreducible real factors of a curve is clearly a problem in
the existential theory over the reals. However, the number of unknown real variables, the
coefficients of the factors, grows with the degree of the polynomial. The existential theory
over the reals is easily shown NP-complete and hence any of the general algorithms, such
as Canny’s [2] P-space solution or Renegar’s [18] efficient method, have running time expo-
nential in the number of variables. Therefore, such algorithms do not solve our problem in
polynomial-time.

Our polynomial-time solution relies on the theory of factoring polynomials over the
complex numbers. One key result in this theory is that one can represent all the absolutely
irreducible factors over small distinct extension fields of the coefficient field, even though
their least common superfield would in the worst case have exponential extension degree
(see §2). Therefore, one can compare the factors pairwise by only squaring the degrees of
the extensions. In particular, the coefficients of the complex norm of these factors—which
are the real factors—will not lie in asymptotically higher degree extensions.

As in any of the algorithms dealing with algebraic real numbers, we will combine algebraic
field theory with high precision numerical approximation techniques. In order to compute
separating intervals, we need to bound the minimum distance between certain algebraic reals
from below. In particular, for non-real complex numbers we need to bound their imaginary
part away from zero. For all problems of separation we will get bounds that require to
work with a maximal precision that is polynomial in the degree and the binary length of the
coefficients of the input polynomial.

Our methods generalize to curves with totally real algebraic coefficients. We also can
factor implicitly given surfaces over the reals, since our methods work in polynomial-time
for any fixed dimension. However, for simplicity’s sake we shall treat here the case of curves
with rational coefficients only.

We will also briefly describe how one can test whether an irreducible real factor in our
output representation contains a real point. The irreducible factors with real points define
all irreducible components of the input curve. The method we use is essentially Seidenberg’s
[20]. and it turns out that this adaptation is also polynomial-time in the input parameters.

2



Notation. By Z, Q, R, and C we denote the set of integers, rational, real, and complex
numbers, respectively. The symbols ϕ, ψ, and χ will be used to denote minimal polynomials
over Q, the symbols ζ, η, ξ, and ϑ will be used to denote complex algebraic numbers. <(ζ)
and =(ζ) denote the real and imaginary part of ζ, respectively, and ζ∗ denotes the complex

conjugate of ζ, ζ∗ = <(ζ)−
√
−1=(ζ). Furthermore, ζ̃, ϑ̃, etc., will denote complex floating

point approximations of the algebraic numbers ζ, ϑ. The symbols ε1, ε2, etc., denote small
quantities, usually a guaranteed precision of an approximation. Finally, we use the symbols
:= and =: to define new mathematical objects (the new quantities being on the side of the
colon), and we use the symbols ← and → as assignment operators in program code.

2. Factoring over the Complex Numbers

The procedure we will give below is an adaptation of the algorithm presented in [10]. Since
we are interested in a polynomial-time solution, the input polynomial can be assumed to be
irreducible, for otherwise we factor it over the coefficient field by any of the polynomial-time
methods. In addition, the input polynomial can be assumed monic in one of the variables
and squarefree when evaluating the other variable at zero, which can be enforced by the
simple isomorphic transformation

f̂(x, y) := b f(x, ax+ y + c), a, b, c ∈ K, b 6= 0,

where a is chosen such that degx(f) = deg(f̂) [11], and c not a root (as a polynomial in y)
of the resultant [10, §2]

Resx (f(x, ax+ y), (∂/∂x)f(x, ax+ y)) .

The correctness of the algorithm follows from a lemma proved by several persons, among
them Chistov and Grigoryev [3, Lemma 1], Trager [21, §3.2], Dvornicich and Traverso [7],
and the author [10, Theorem 1].

Lemma 1. Let f(x, y) ∈ K[x, y] be irreducible, monic in x, K a field of characteristic 0.
Let g(x, y) ∈ K[x, y] be an absolutely irreducible factor of f . Then there exists a root α of
f(x, 0) such that the coefficient field of g is isomorphic to a subfield of K(α).

This lemma allows to compute all absolutely irreducible factors of f without construction
an algebraic extension common to all the factors, which in the worst case can be of degree
degx(f)!.

Algorithm Factorization over the Algebraic Closure

Input: f(x, y) ∈ K[x, y] irreducible and monic in x, f(x, 0) squarefree, K a field of char-
acteristic 0. Furthermore, we are given the factorization of f(x, 0) into irreducible
polynomials over K, f(x, 0) = ϕ1(x) · · ·ϕr(x). Notice that this factorization can be
found in polynomial-time for the usual representations of K.

Output: Either f will be certified to be absolutely irreducible; or for all 1 ≤ i ≤ r the
algorithm returns polynomials

fi(x, y) ∈ Ki[x, y] with Ki := K[z]/(ϕi(z))

3



with the following property. For any irreducible factor g(x, y) ∈ K(x, y) there exists
an index j, 1 ≤ j ≤ r, and there exists an embedding ιj:Kj → K that fixes K such
that ιj(fj) = g. Notice, however, that a factor g may arise as the image of several
fi’s, even as the image of several conjugates of a single fi (see remark following the
algorithm).

The idea of the algorithm is to compute the approximation of a root of f(x, y) in any Ki[[y]],
and then find the corresponding minimal polynomial.
Set the order of the approximation

`max ← 2(degx(f)− 1) degy(f).

For i← 1, . . . , r Do Steps N and L.

Step N: Set the initial points for the Newton iteration

αi,0 ← z mod ϕi(z) ∈ Ki, βi,0 ←
1

(∂f/∂x) (αi,0, 0)
∈ Ki.

Notice that (∂f/∂x)(αi,0, 0) 6= 0 because f was assumed irreducible, thus squarefree.
We now perform Newton iteration with quadratic convergence (see [13, §3.3]).
For j ← 0, . . . , blog2(`max)c Do:

αi,j+1 ←
(
αi,j − βi,jf(αi,j, y)

)
mod y2j+1

;

βi,j+1 ←
(
2βi,j −

∂f

∂x
(αi,j+1, y) β

2
i,j

)
mod y2j+1

.

Notice that αi,j+1 and βi,j+1 are polynomials in Ki[y] with

f(αi,j+1, y) ≡ 0 (mod y2j+1

), βi,j+1
∂f

∂x
(αi,j+1, y) ≡ 1 (mod y2j+1

).

Set the approximated root

αi ← αi,blog2(`max)c+1 mod yk+1 ∈ Ki[y].

Step L: We now find the lowest degree polynomial in Ki[x, y] whose root is αi.
For m← 1, . . . , degx(f)− 1 Do:

Here we try to find a polynomial in Ki[x, y] of degree m in x that αi satisfies.
Set the needed order of approximation

`← degy(f)(m+ degx(f)− 1).

We examine whether the equation

αm
i +

m−1∑

µ=0

hi,µ(y)α
µ
i ≡ 0 (mod y`+1),

4



has a solution for hi,µ(y) ∈ Ki[y] with deg(hi,µ) ≤ degy(f). By choosing an indeterminate
‘Ansatz’ for the coefficients of hi,µ,

hi,µ(y) =:

degy(f)∑

δ=0

ui,µ,δ y
δ, ui,µ,δ ∈ Ki,

and defining the coefficients of αµ
i ,

αµ
i ≡

∑̀

λ=0

a
(µ)
i,λ y

λ (mod y`+1), a
(µ)
i,λ ∈ Ki,

we are led to the following problem.
Solve the linear system over the field Ki

a
(m)
i,λ +

m−1∑

µ=0

degy(f)∑

δ=0

a
(µ)
i,λ−δui,µ,δ = 0, (a

(µ)
i,ν = 0 for ν < 0) (1)

for 0 ≤ λ ≤ ` in the variables ui,µ,δ, 0 ≤ µ ≤ m− 1, 0 ≤ δ ≤ degy(f). Notice that if the
system (1) has a solution in Ki, then that solution is unique (see [9, Theorem 1]). If the
system has a solution, then set

fi(x, y)← xm +
m−1∑

µ=0

degy(f)∑

δ=0

ui,µ,δy
δxµ

and exit the loop. If the system has no solution and i = 1 and m = degx(f) − 1, then
designate f absolutely irreducible and exit the algorithm. ¤

The algorithm is subject to several improvements. For one, one can combine steps N
and L so that one computes αi incrementally to the order ` needed for the m considered.
Furthermore, the systems (1) are not independent for different m, and therefore the trian-
gularizations can be incrementally computed.

We shall briefly discuss how one can algebraically prove two factors fi and fj, i 6= j,
to be the same. Necessarily, the term structure of these factors has to agree. The factors
lie in the fields Ki := K[z1]/(ϕi(z1)) and Kj := K[z2]/(ϕj(z2)), respectively. We use van der
Waerden’s method of computing a primitive element for a smallest common superfield of
Ki and Kj [14]. Such an element can be chosen of the form ζ0 = ζ1 + cζ2 with minimal
polynomial ψ(z0) ∈ K[z0], where c ∈ K, ζ1 is a root of ϕi(z1), and ζ2 is a root of ϕj(z2).
Furthermore, both ζ1 and ζ2 are algebraically expressible in ζ0, i.e., there are polynomials
w1(z0) and w2(z0) in K[z0] that with w1(ζ0) = ζ1 and w2(ζ0) = ζ2, respectively. Interpreting
fi ∈ K[x, y, z1]/(ϕ1(z1)) and fj ∈ K[x, y, z2]/(ϕ2(z2)) we test whether

fi(x, y, w1(z0)) ≡ fj(x, y, w2(z0)) (mod ψ(z0)).

If the test fails, fi and fj are distinct factors of f .
We shall also briefly discuss how to count the number of distinct conjugates of fi that are

factors of f . Let us first give an example. Consider f(x, y) = x4−2(y+1)2 ∈ Q[x, y]. Clearly,

5



r = 1 and ϕ1(z) = z4−2. The factors of f over K1 are x2+ ζ2(y+1) and x2− ζ2(y+1), with
ϕ1(ζ) = 0. In other words, only two of the four conjugates of ϕ(z) lead to distinct factors.
What one might want to do is find the defining equation of the smallest subfield of Ki that
contains all the coefficients of fi. For the example this is K[v]/(v2−2). One way to construct
this subfield is as follows. Let ui,1(z), . . . , ui,t(z) ∈ K[z]/(ϕi(z)) be the coefficients of fi(x, y).
We first find the minimal polynomials ψi,j(vi,j) ∈ K[vi,j] for vi,j = ui,j(z), 1 ≤ j ≤ t, by
computing the minimum linear dependence over K of

1, ui,j(z) mod ϕi(z), ui,j(z)
2 mod ϕi(z), · · · .

Then we compute a primitive element ζ0 and its defining polynomial ψ0(z) for the smallest
superfield of the fields

K(vi,1)/(ψi,1(vi,1)), . . . ,K(vi,t)/(ψi,t(vi,t))

by inductively using the van der Waerden procedure discussed before. All conjugates of ζ0

now will generate distinct conjugate polynomials of fi.
Both problems, that of identifying the same factors and that of counting the number of

distinct conjugates, require a factorization procedure for K[z] and are therefore quite costly.
For the computation of real factors we will adopt a different strategy, applicable if K is
a finite algebraic extension of Q. We will compute a high precision complex floating point
approximation of the factors. Using a separation lemma for the coefficients of distinct factors,
we then can guarantee that we have approximated distinct factors or identified identical ones.

3. Separation Lemmas

In section 4 we will identify complex and real factors by computing a complex floating
point approximation to their coefficients. In order to decide at what precision (“fuzz”) a
coefficient can be declared real, or two coefficients in two factors distinct, we need so-called
separation lemmas. We will formulate these inequalities in term of certain norms of the
defining polynomials. We shall first define these norms.

Let
f(z) = an(z − ζ1) · · · (z − ζn)

= anz
n + an−1z

n−1 + · · ·+ a0 ∈ Z[z], ζν ∈ C.
The p-norm of f , 0 < p ≤ ∞, is defined as

‖f‖p := p
√
|a0|p + |a1|p + · · ·+ |an|p.

The cases that are used most often are for p = 1, 2, and p =∞. The∞-norm of f is referred
to as the height of f ,

‖f‖∞ = max(|a0|, |a1|, . . . , |an|).
Clearly, ‖f‖∞ ≤ ‖f‖2 ≤ ‖f‖1, but we also have

‖f‖2 ≤
√
n+ 1 ‖f‖∞ and ‖f‖1 ≤

√
n+ 1 ‖f‖2.

The measure of f is defined as

M(f) := |an|
n∏

ν=1

max(1, |ζν |).

6



The discriminant of f is

Disc(f) := a2n−2
n

∏

1≤µ<ν≤n

(ζµ − ζν)2 =
1

an
Res

(
f,
∂f

∂x

)
,

which is always an integer.
The first lemma is a root separation lemma for polynomials with integer coefficients, and

is due to Mignotte [16] based on inequalities by Landau [12] and Mahler [15]. Independently,
a similar inequality for Gaussian polynomials was proven by Collins and Horowitz [6].

Lemma 2. Let n ≥ 2 and let f(z) = an(z − ζ1) · · · (z − ζn) ∈ Z[z] be squarefree, ζν ∈ C for
1 ≤ ν ≤ n. Then M(f) ≤ ‖f‖2 and

∀µ 6= ν: |ζµ − ζν | >
√

3 |Disc(f)|
n(n+2)/2M(f)n−1

≥
√
3

n(n+2)/2‖f‖n−1
2

=: ε1(n, ‖f‖2). £

In section 4 we will need to distinguish real from complex roots. Since the complex roots
of an integer polynomial lie symmetric about the real axis, we get the following corollary.

Corollary 1. Let n, f , and ζν be as in lemma 2. Furthermore, let <(ζν) be the real and
=(ζν) be the imaginary part of ζν , 1 ≤ ν ≤ n. Then

∀ν:=(ζν) 6= 0 =⇒ |=(ζν)| >
1

2
ε1(n,M(f)). £

The preceding lemma allows us to determine root isolations for f , which will be a crucial
tool for our algorithm. Consider approximations ζ̃ν to ζν given as complex rational numbers,
perhaps in floating point format

mantissa× 2exponent.

Such approximations are said to isolate the roots of f(z) if

∀ν: |ζν − ζ̃ν | < ε0, where ε0 ≤ min
ν 6=µ
{|ζν − ζµ|/4}.

The precision ε0 is chosen such that a circle of radius ε0 around each approximate root ζ̃ν
contains exactly one of the actual roots of f . Furthermore, the distance between the ap-
proximations is larger than 2ε0. Now the separation lemma allows us to terminate a root
approximation algorithm as soon as ε0 ≤ ε1/4. We also remark that such root approxima-
tions can be computed quite efficiently. E.g., one of Schönhage’s procedures [19] has bit
complexity

O(n3 log(‖f‖∞/ε0)
3).

Older algorithms based on the Cauchy principle of argument and the Routh-Hurwitz theo-
rem [17], [23], or real root approximation [5] also have polynomial running time.

We finally give a separation lemma for the roots of relatively prime polynomials.

7



Lemma 3. Let

f(z) = an(z − ζ1) · · · (z − ζn) ∈ Z[z],
g(z) = bm(z − η1) · · · (z − ηm) ∈ Z[z], ζν , ηµ ∈ C

be two squarefree, relatively prime polynomials. Then

∀ν, µ: |ζν − ηµ| ≥ ε1(n+m,
√

(n+ 1)(m+ 1) ‖f‖2‖g‖2)
=: ε2(n,m, ‖f‖2, ‖g‖2).

Proof. Consider h(z) := f(z) g(z). Since f and g are squarefree and relatively prime to one
another, h is squarefree. In order to apply lemma 2 to h, we need an upper bound for ‖h‖2.
A simple argument shows that

‖h‖2 ≤ ‖fg‖1 ≤ ‖f‖1‖g‖1 ≤
√

(n+ 1)(m+ 1) ‖f‖2‖g‖2.

Hence
|ζν − ηµ| > ε1(n+m, ‖h‖2)

≥ ε1(n+m,
√

(n+ 1)(m+ 1) ‖f‖2‖g‖2). £

4. Complex Conjugation

The problem addressed in this section is the following. Given be an irreducible polynomial
ϕ(z) ∈ Z[z] of degree n and one of its non-real roots ζ. Let ζ∗ be its complex conjugate. We
want to find an algebraic number ϑ and its minimal polynomial ϕ̂(t) ∈ Z[t] such that

ζ = p1(ϑ), ζ∗ = p2(ϑ), p1(t), p2(t) ∈ Q[t].

The rationale behind this to our problem is the following. If we have found a complex
non-real factor g(x, y, ζ) ∈ Q(ζ)[x, y] of f(x, y) ∈ Q[x, y], then

g(x, y, ζ) g(x, y, ζ∗) ∈ Q(ϑ)(x, y)

is an irreducible real factor of f(x, y).
The process of the construction of ϕ̂ and p1, p2 is again based on the determination of a

primitive element. We know that ϑ = ζ+cζ∗ is a primitive element for c chosen appropriately.
The polynomials p1, p2 are then ζ, ζ∗ expressed in terms of ϑ. However, one needs to identify
the appropriate minimal polynomial ϕ̂ for ϑ by complex floating point approximations. The
precise algorithm follows.

Algorithm Complex Conjugation

Input: Given is an irreducible polynomial ϕ(z) ∈ Z[z] and a complex floating point

number ζ̃ of sufficient mantissa length that isolates a non-real root ζ of ϕ.
Output: An irreducible polynomial ϕ̂(t) ∈ Z[t], polynomials p1(t), p2(t) ∈ Q[t] and a

complex floating point approximation ϑ̃ that isolates a root ϑ of ϕ̂ such that p1(ϑ) = ζ
and p2(ϑ) = ζ∗.

8



Step 1: Pick an integer c and compute the resultant

Φ(z)← Resy

(
ϕ(y), cnϕ(

z + y

c
)
)
= a2n

n

∏

1≤i,j≤n

(z − (ζi − cζj)),

where
ϕ(z) =: an(z − ζ1) · · · (z − ζn)

(see [14]).

Step 2: Factor Φ(z) over the integers and identify that irreducible factor ϕ̂(z) which has
ϑ := ζ − cζ∗ as its root. For that we may have to compute ζ to higher precision than
that of ζ̃ in order to separate ϑ̃ ← ζ̃ − c(ζ̃)∗ from all other roots of Φ. Automatically, the

approximation ϑ̃ will isolate a root ϑ of the factor ϕ̂. Notice that Q(ϑ) is now isomorphic to
Q[t]/(ϕ̂(t)).

Step 3: Compute the GCD of ϕ(z) and ϕ(t + cz) over (Q[t]/(ϕ̂(t)))[z]. Clearly, for t = ϑ,
ζ∗ is a common root of both polynomials. By selecting

c 6= ζ1 − ζi
ζ1 − ζk

, 1 ≤ i ≤ n, 2 ≤ k ≤ n,

this will be the only common root of the two polynomials [22, §40].
Test whether the computed GCD is a linear polynomial z − p2(t). If not, go back to step 1
and start with a new c. Otherwise, compute p1(t)← t+ cp2(t). ¤

5. Factoring over the Real Numbers

We now discuss how to factor a polynomial f(x, y) ∈ Z[x, y] into its real factors. One of the
problems we encounter is how to represent the real coefficients. A standard representation
is the one chosen by Collins’s [4] in his cylindrical algebraic decomposition algorithm. For
a real algebraic number ξ one gives an irreducible integer polynomial χ(v) that has ξ as a
root, and one gives a rational interval that isolates ξ among the real roots of χ. Our output
representation is different, but can be easily converted to Collins’s representation. The main
reason for not performing the conversion inside the algorithm is that Seidenberg’s method
for testing which of the irreducible real factors has a real point is more efficiently performed
with our representation (see §6).
Algorithm Factorization over the Real Numbers

Input: f(x, y) ∈ Z[x, y] irreducible over Q, monic in x.
Output: A list of distinct monic factors

gl(x, y) =
∑

j, k

ξl, j, kx
jyk ∈ R[x, y], 1 ≤ l ≤ s,

that are irreducible over R. Each factor gl is represented by an irreducible polynomial
ϕ̂l(t) ∈ Z[t] together with complex floating point number ϑ̃l that isolates a root
ϑl ∈ C of ϕ̂, and by coefficient polynomials ûl, j, k(t) ∈ Q[t] such that

∀j, k: ξl, j, k = ûl, j, k(ϑl).

9



Step 1: Factor f(z, 0) over Q into

f(z, 0) = ϕ1(z) · · ·ϕr(z), ϕi(z) ∈ Q[z]

and then call the algorithm Factorization over the Algebraic Closure of Section 2. The
algorithm returns for each ϕi(z), 1 ≤ i ≤ r, an absolutely irreducible factor

fi(x, y, z) =
∑

j, k

ui,j,k(z)x
jyk ∈

(
Q[z]/(ϕi(z))

)
[x, y].

By multiplying through with the least common integral denominator make the coefficients

of ui,j,k integral.
Let ψi,j,k(v) ∈ Z[v] be the minimal polynomial of v = ui,j,k(z) ∈ Q[z]/(ϕi(z)). We will not
compute these polynomials. However, in order to distinguish the factors via floating point
approximation we will need the maximum norm of the ψi,j,k(v).
For i← 1, . . . , r Do: Compute an upper bound

Ni ≥ max{‖ψi,j,k‖2 | 0 ≤ j ≤ degx(fi), 0 ≤ k ≤ degy(fi)}.

Such a bound can be deduced from the coefficient sizes of ui,j,k and ϕi (see the proof of
theorem 1 below).

Step 2: Initialize the index of factors s, t← 0.
For i← 1, . . . , r Do Step 3 and Step 4.

Step 3: Let di := deg(ϕi), dmax ← max1≤ι≤i{dι}, and Nmax ← max1≤ι≤i{Nι}.
Compute all complex roots of ϕi(z) to floating point precision

ε3(dmax, di, Nmax, Ni, ‖ϕi‖2,max
j, k
{‖ui,j,k‖∞}),

obtaining the complex floating point numbers ζ̃i,1, . . . , ζ̃i,di
. Notice that ε3 is chosen relative

to ε4 below. A possible value for ε3 is given in the proof of theorem 1 below. To find roots
to this precision, we can use any of the arbitrary precision complex root approximation
procedures, e.g., the fast algorithms discussed by Schönhage [19]. These algorithms usually

identify the real roots among the ζ̃i,δ as well as match complex conjugate roots.
Next, substitute all these numbers into the polynomials ui,j,k(z) resulting in an approximate
polynomial

f̃i,δ(x, y)←
∑

j, k

ui,j,k(ζ̃i,δ)x
jyk, 1 ≤ δ ≤ di.

Now the coefficients of f̃i,δ are approximations guaranteed to precision

ε4(dmax, di, Nmax, Ni) := min{ε1(di, Ni)/4, ε2(dmax, di, Nmax, Ni)/4}. (2)

By that we mean that the approximate coefficients lie within a circle of radius ε4 of the
actual coefficients. By lemma 3 this precision is sufficient to distinguish new complex factors
from previously computed ones. By corollary 1 this precision is also sufficient to identify
completely real factors, as well as match up complex conjugated ones (see the following step).

10



Step 4: For h̃ in the set of factors S = {f̃i,1, . . . , f̃i,di
} Do:

At this point we have collected distinct complex factors of f in a set of approximate poly-
nomials T = {g̃1, . . . , g̃t}. To each of these factors belongs a factor of f(x, 0), designated by
ϕι1 , . . . , ϕιt . Also, the corresponding real factors of the g̃’s have been produced.

Step 4.1: First, we check whether h̃ corresponds to a real or a non-real factor. Let ζi,δ ∈ C
be the root of ϕi whose approximate root ζ̃i,δ produced h̃. If ζi,δ is real (which is usually
indicated by the root approximation algorithm used in step 3), so must be fi(x, y, ζi,δ).
However, even a non-real ζi,δ may lead to a real f(x, y, ζi,δ). Test if

‖=(h̃)‖∞ > ε1(di, Ni)/4.

From corollary 1 and (2) we deduce that this condition is necessary and sufficient for
fi(x, y, ζi,δ) to be a non-real polynomial. We refer to this outcome of the test as the non-real
case.

Eliminate h̃ from the set S. Furthermore, if ζi,δ is non-real, let δ? be the index with

ζ̃i,δ? = (ζ̃i,δ)
∗ (the equality is usually guaranteed by the root approximation algorithm em-

ployed in step 3). In that case, also eliminate f̃i,δ? from S.

Step 4.2: Next, we check whether h̃ has already been treated earlier. If

min
1≤l≤t

‖g̃l − h̃‖∞ < 2 ε4(dmax, di, Nmax)

then, again by (2), the considered factor is already in the list of factors, therefore process

the next factor h̃.

Step 4.3: Now h̃ is the approximate version of a new factor. Clearly, in the non-real case
h̃ (h̃)∗ is the approximate version of the corresponding real norm with respect to complex
conjugation. If need be, we can compute the coefficients of this real factor to any precision
by increasing the precision of the approximate root ζ̃i,δ of ϕi.

For future tests in step 4.2, add h̃, and in the non-real case (h̃)∗, to the set T of g̃’s and
update t accordingly.
We now treat the two cases. The real case, in which f(x, y, ζi,δ) was determined to be a real

factor, is easy: Set gs+1(x, y)← fi(x, y, t); ϕ̂s+1(t)← ϕi(t); and ϑ̃← ζ̃i,δ.
In the non-real case, first compute, by the Complex Trace and Norm algorithm given in

section 4, a minimal polynomial ϕ̂i,δ(t) ∈ Q[t] one of whose roots, ϑi,δ, generates both
ζi,δ + ζ∗i,δ and ζi,δ ζ

∗
i,δ. Then express

gs+1(x, y)← fi(x, y, ζi,δ) fi(x, y, ζ
∗
i,δ)

as a polynomial in Q[x, y, t]/(ϕ̂(t)). Also, return the approximation ϑ̃i,δ for ϑi,δ, which is
also produced by the Norm and Trace algorithm.
In conclusion to both cases, increment s, since we have added a new real factor, and proceed
to the next h̃. ¤

Even though the precision ε3 is in the worst case unreasonably large (see the proof of
theorem 1 below), the algorithm can be implemented in an adaptive more efficient way.

11



We can work with a lesser precision and first generate all real factors we have certified to
be distinct with that precision. If the degrees of those factors add up to the degree of f ,
we need not certify other factors to coincide with already computed ones. The same holds
for the process of identifying non-real complex factors. If we are left with some factors
whose precise form is undecided, we increase the precision and try to distinguish again. Our
estimate essentially proves that this process will terminate in polynomial-time. We have the
following theorem.

Theorem 1. The bit complexity of the Algorithm Factorization over the Real Numbers is

bounded from above by a polynomial in deg(f) and the binary length of the coefficients of
f . £

This theorem follows from the lemmas 2 and 3 as well as the fairly elaborate analysis
of the coefficient growth in the algorithm Factorization over the Algebraic Closure (see [9,
§6]) we will not give an explicit upper bound for the bit complexity of the algorithm, but
show that all size bounds are polynomially dependent on deg(f) and log(‖f‖∞). If one were
to implement the algorithm, it is paramount to determine the bounds precisely not only
with respect these two parameters, but also with respect to ‖ϕi‖∞, ‖ui,j,k‖∞, and |ζi,δ|. We
begin the analysis by first proving a lemma on the height of a the minimal polynomial of an
algebraic number in Q[z]/(ϕ(z)).

Lemma 4. Let u(z) ∈ Z[z]/(ϕ(z)), where ϕ is a monic integral polynomial of degree n, and
let ψ(v) ∈ Z[v] be the minimal polynomial of v = u(z). Then

‖ψ‖∞ ≤ n5n/2‖ϕ‖n3

2 ‖u‖n
2

1 =: B1(n, ‖ϕ‖2, ‖u‖1). (3)

Proof. Let ψ(v) =: bm(v
m + bm−1v

m−1 + · · ·+ b0), and let, for all µ ≥ 0,

u(z)µ (mod ϕ(z)) =: w0,µ + w1,µz + · · ·+ wn−1,µz
n−1.

Now b0, . . . , bm−1 is the unique solution to the linear system




w0,0 w0,1 . . . w0,m

w1,0 w1,1 . . . w1,m
...

...
. . .

...
wn−1,0 wn−1,1 . . . wn−1,m







b0
...

bm−1

1


 = 0.

Hence, using Cramer’s rule and Hadamard’s determinant inequality we get as the bound for
both the denominator bm and the numerators bmbµ, 0 ≤ µ ≤ m− 1, in the rational solution
of this system

‖ψ‖∞ ≤ mm/2Wm with W := max
ν, µ
{|wν,µ|}. (4)

We now need to bound W . We first observe that ‖uν‖∞ ≤ ‖u‖ν1 and that

‖zl (mod ϕ)‖∞ ≤ ‖ϕ‖l−n+1
2 , l ≥ n.

The latter follows again by using Cramer’s rule and Hadamard’s determinant inequality, now
on the linear system arising from computing the coefficients of the quotient and remainder

12



in the polynomial division of zl by ϕ. Combining these two bounds, we get

max
µ
{|wµ,ν |} = ‖uν (mod ϕ)‖∞

≤
(
ν(n− 1)− n+ 2

)
‖ϕ‖ν(n−1)−n+1

2 ‖u‖ν1.

Plugging this bound into (4) and crudely bounding µ by n and ν by n − 1 we obtain (3).
£

Next, we show how close an approximation to a root ζ of ϕ we need in order to approx-
imate the value u(ζ) of a polynomial u(z) ∈ Z[z] to a given precision.

Lemma 5. Let u(z) ∈ Z[z], deg(u) < n, and let ζ, ζ̃ ∈ C such that |ζ − ζ̃| < ε. Then

|u(ζ)− u(ζ̃)| < εn2(|ζ|+ ε)n‖u‖∞. (5)

Proof. This bound is simply established by expanding, with u(z) =:
∑

j bjz
j,

|u(ζ)− u(ζ̃)| =
∣∣∣∣
n−1∑

j=1

bj(ζ
j − ζ̃j)

∣∣∣∣

≤ |ζ − ζ̃|
n−1∑

j=1

|bj|
j−1∑

l=0

|ζ lζ̃j−l|.

Then (5) follows by crudely estimating the double sum. £

We now are in a position to provide a polynomial estimate for Ni and ε3.

Proof of Theorem 1. By lemma 4, we can choose

Ni := max
j,k
{B1(di, ‖ϕi‖2, ‖ui,j,k‖1)}.

Finally, we determine ε3 such that ε4 satisfies (2). By lemma 5, with

Zi := max
δ
{|ζi,δ|} ≤ ‖ϕi‖2,

where the inequality follows from the bound for the measure of ϕi given in lemma 2, it is
sufficient to have

ε3 := min
j,k

{
ε4

/(
d2
i (|Zi|+ 1)di‖ui,j,k‖∞

)}
.

Since all |ui,j,k| are bounded polynomially in size (see [9, §6]), log(1/ε3) must also be bounded
by a polynomial in deg(f) and the coefficient size of f . £

6. Seidenberg’s Method

We now describe how one can test whether an irreducible factor produced by our algorithm
Factorization over the Reals contains, as a curve, a real point. Of course, those factors
with real points constitute the irreducible real components of the curve defined by the input
polynomial f . The algorithm is due to Seidenberg [20], and can also be found in Jacobson’s
[8] book, §5.

13



Algorithm Real Point Test for a Curve

Input: A complex algebraic number ϑ given by its minimal polynomial ψ(ϑ) and an

approximate isolated root ϑ̃. Furthermore, a polynomial f(x, y, t) ∈ Q[x, y, t] such
that f(x, y, ϑ) is an irreducible real polynomial, monic in x.

Output: True or false, depending whether there exists a real point (x0, y0) such that
f(x0, y0, ϑ) = 0.

Step 1: For a← 0, 1, . . . Do:
Test whether

GCD
(
f, (x− a)∂f

∂y
− y∂f

∂x

)

computed over (Q[y, t]/(ϕ(t)))[x] is 1. If that is true, set

g(x, y, t)← (x− a)∂f
∂y

(x, y, t)− y∂f
∂x

(x, y, t)

and go to the next step. Otherwise, try the next a. Notice that since f is irreducible, hence
squarefree, there are at most degx(f) values of a for which this test can fail.

Step 2: Choose b an integer such that

b > |=(x0)/=(y0)|

for all x0, y0 with f(x0, y0, ϑ) = g(x0, y0, ϑ) = 0 and =(y0) 6= 0, and compute the resultant

h(Y, t)← ResX(f(X − bY, Y, t), g(X − bY, Y, t)).

Notice that h(Y, t) is a non-zero polynomial in Q[Y, t]/(ϕ(t)), and that by the input assump-
tion h(Y, ϑ) has real coefficients.

Step 3: Test whether h(Y, ϑ) has a real root. By Seidenberg’s argument, this is equivalent
to the problem whether f possesses a real point. The test itself can be performed by Sturm’s
method on Q(ϑ)[Y ]. In order to determine the sign of a polynomial remainder at an integer
point c one evaluates that remainder at a sufficiently precise approximation of ϑ, which can
be obtained from ϑ̃. ¤

The correctness of this algorithm follows as in Seidenberg [20]. A polynomial size bound
for b can be derived from the fact that x0 and y0 are roots in the corresponding resultants.
Also, the Sturm sequence method can be performed with polynomially bounded approxi-
mations. We shall omit the arguments, which are similar to those in §5. However, for the
record, we state the following theorem.

Theorem 2. The bit complexity of the algorithm Real Point Test for a Curve is bounded

from above by a polynomial in deg(f), deg(ψ), and the coefficient length of f and ψ.

7. Literature Cited

1. Arnon, D. S., Collins, G. E., and McCallum, S., “Cylindrical algebraic decomposition I: The basic
algorithm,” SIAM J. Comp. 13, pp. 865–877 (1984).

2. Canny, J., “Some algebraic and geometric computations in P-space,” Proc. 20th Annual ACM Symp.

Theory Comp., pp. 460–467 (1988).

14



3. Chistov, A. L. and Grigoryev, D. Yu., “Subexponential-time solving of systems of algebraic equations
I,” Tech. Report E-9-83, Steklov Mathematical Institute, Leningrad, 1983.

4. Collins, G. E., “Quantifier elimination for real closed fields by cylindrical algebraic decomposition,”
Proc. 2nd GI Conf. Automata Theory Formal Lang., Springer Lec. Notes Comp. Sci. 33, pp. 515–532
(1975).

5. Collins, G. E., “Infallible calculation of polynomial zeros to specified precision,” in Mathematical Soft-

ware III, edited by J. R. Rice; Academic Press, New York, pp. 35–68, 1977.

6. Collins, G. E. and Horowitz, E., “The minimum root separation of a polynomial,” Math. Comput. 28,
pp. 589–597 (1974).

7. Dvornicich, R. and Traverso, C., “Newton symmetric functions and the arithmetic of algebraically closed
fields,” in Proc. AAECC-5, Springer Lect. Notes Comput. Sci. 356; pp. 216–224, 1987.

8. Jacobson, N., Basic Algebra I; W. H. Freeman & Co., San Francisco, 1974.

9. Kaltofen, E., “Polynomial-time reductions from multivariate to bi- and univariate integral polynomial
factorization,” SIAM J. Comp. 14, pp. 469–489 (1985).

10. Kaltofen, E., “Fast parallel absolute irreducibility testing,” J. Symbolic Computation 1, pp. 57–67
(1985).

11. Kaltofen, E., “Deterministic irreducibility testing of polynomials over large finite fields,” J. Symbolic

Comp. 4, pp. 77–82 (1987).

12. Landau, E., “Sur quelques théorèmes de M. Petrovic relatifs aux zéros des fonctions analytiques,” Bull.

Soc. Math. France 33, pp. 251–261 (1905).

13. Lipson, J., Elements of Algebra and Algebraic Computing; Addison-Wesley Publ., Reading, Mass., 1981.

14. Loos, R., “Computing in algebraic extensions,” in Computer Algebra, 2nd ed., edited by B. Buchberger
et al; Springer Verlag, Vienna, pp. 173–187, 1982.

15. Mahler, K., “An inequality for the discriminant of a polynomial,” Michigan Math. J. 11, pp. 257–262
(1964).

16. Mignotte, M., “Some useful bounds,” in Computer Algebra, 2nd ed., edited by B. Buchberger et al;
Springer Verlag, Vienna, pp. 259–263, 1982.

17. Pinkert, J. R., “An exact method for finding roots of a complex polynomial,” ACM Trans. Math.

Software 2/4, pp. 351–363 (1976).

18. Renegar, J., “A faster P-space algorithm for deciding the existential theory of the reals,” Proc. 29th

Annual Symp. Foundations of Comp. Sci., pp. 291–295 (1988).

19. Schönhage, A., “The fundamental theorem of algebra in terms of computational complexity,” Tech.

Report, Univ. Tübingen, 1982.

20. Seidenberg, A., “A new decision method for elementary algebra,” Annals Math. 60, pp. 365–374 (1954).

21. Trager, B. M., “Integration of algebraic functions,” Ph.D. Thesis, MIT, 1984.

22. van der Waerden, B. L., Modern Algebra; F. Ungar Publ. Co., New York, 1953.

23. Wilf, H. S., “A global bisection algorithm for computing the zeros of polynomials in the complex plane,”
J. ACM 25/3, pp. 415–420 (1978).

15


