
Modular Rational Sparse Multivariate Polynomial

Interpolation∗

Erich Kaltofen Lakshman Y.N. John-Michael Wiley

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York, 12180-3590

Abstract

The problem of interpolating multivariate polynomials whose coefficient domain is
the rational numbers is considered. The effect of intermediate number growth on
a speeded Ben-Or and Tiwari algorithm is studied.

Then the newly developed modular algorithm is presented. The computing
times for the speeded Ben-Or and Tiwari and the modular algorithm are compared,
and it is shown that the modular algorithm is markedly superior.

1 Introduction

Symbolic expressions, that is multivariate polynomials with rational coefficients, are often
difficult to manipulate explicitly due to exponential growth in their size. An example is
the computation of the determinant of a matrix with polynomial entries. When using
straight-forward Gaussian elimination over the polynomial entry domain, it can happen
that intermediate subdeterminants are very large polynomials while the final answer is
an expression of modest size. In this case, however, we can obtain the value of the
determinant for a specialization of the variables to arbitrary field elements by Gaussian
elimination over the coefficient field without expression swell. An implicit representation
of such a polynomial is that of a black box, that is a program that produces the value
of the polynomial when supplied with values for the variables. In Kaltofen and Trager
(1988) it is shown that this representation is applicable to several problems such as
multivariate polynomial factorization.

Clearly, the process of converting a polynomial given by a black box back to the
representation where the polynomial is given by a list of non-zero coefficients and cor-
responding terms is that of interpolation. In this paper we study the complexity of

∗This material is based on work supported by the National Science Foundation under Grant No.
CCR-87-05363 and Grant No. CDA-88-05910. Please direct all correspondence to the third author
(wileyjm@turing.cs.rpi.edu). Appears in ISSAC ’90 Proc. Internat. Symp. Symbolic Algebraic
Comput., pp. 135–139, ACM Press, 1990.

1



the process with respect to the number of non-zero terms in this coefficient list, the
so-called sparse interpolation problem. It should be noted that all classical interpolation
algorithms, such as Lagrangian or Newtonian interpolation, do not account for spar-
sity in the answer; their running time is quadratic in the total term count, which in
the multivariate case can be exponential in the non-zero monomial count even if the
degree is bounded. In this paper we present an algorithm, due to Ben-Or and Tiwari
(1988), for interpolating sparse multivariate polynomials where the coefficients are from
a field of characteristic zero. Traditionally computations involving polynomials of this
type have suffered from intermediate expression swell. It was Brown (1971) who first
applied modular techniques to Euclids algorithm for polynomial greatest common divisor
computations, the use of which greatly improves the running time of the algorithm (see
[Brown, 1971]). Here we report how these techniques can be applied to the problem of
interpolating sparse multivariate polynomials.

Notation

Let P (x1, . . . , xn) = c1m1 + c2m2 + . . . + ctmt be the polynomial to be interpolated.
The mi = x

ei,1

1 . . . x
ei,n
n are distinct terms and the ci are the corresponding non-zero

coefficients; t is the number of terms in P . Let bi = p
ei,1

1 . . . p
ei,n
n denote the value of the

monomial mi at (p1, . . . , pn) where pi is the i-th prime number. Clearly, different terms
evaluate to different values under this evaluation. Let

ai = P (pi
1, p

i
2, . . . , p

i
n), 0 ≤ i ≤ τ − 1

where τ ≥ t. We have ai =
∑τ

j=1 cjb
i
j.

2 The Ben-Or and Tiwari Interpolation Algorithm

The algorithm needs as input an upper bound τ ≥ t on the number of terms in P . The
algorithm proceeds in two stages. The monomial values mi are determined first by the
use of an auxiliary polynomial Λ(z). Once the mi are known, the coefficients ci can be
obtained easily. The polynomial Λ(z) is constructed as follows. Let

Λ(z) =
t

∏

i=1

(z − mi) = zt + λt−1z
t−1 + . . . + λ1z + λ0.

Consider the sum

t
∑

i=1

cim
j
iΛ(mi) =

t−1
∑

k=0

λk(c1m
k+j
1 +c2m

k+j
2 + . . .+ctm

k+j
t )+(c1m

t+j
1 +c2m

t+j
2 + . . .+ctm

t+j
t )

for all j, 0 ≤ j ≤ t − 1 . Since Λ(mi) = 0, we have

ajλ0 + aj+1λ1 + . . . + aj+t−1λt−1 + aj+t = 0, 0 ≤ j ≤ t − 1.

2



We now have the Toeplitz system At
~λt = ~at where

Ai =













at−1 at . . . at−2+i

at−2 at−1 . . . at−3+i
...

...
. . .

...
at−i at−i+1 . . . at−1













, ~λi =













λ0

λ1

...
λi−1













, ~ai = −













at−1+i

at−2+i
...
at













.

This system is non-singular as can be seen from the factorization

At =













bt−1
1 bt−1

2 . . . bt−1
t

bt−2
1 bt−2

2 . . . bt−2
t

...
...

. . .
...

1 1 . . . 1

























c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . ct

























1 b1 . . . bt−1
1

1 b2 . . . bt−1
2

...
...

. . .
...

1 bt . . . bt−1
t













.

Since the bi are distinct, the two Vandermonde matrices are non-singular and as no ci

is zero, the diagonal matrix is nonsingular too. If the input value of the upper bound
τ is greater than t, then the coefficients ck, for k > t, can be regarded as zero and the
resulting system Aτ will be singular.

The roots of the polynomial Λ(z) give the bi and by choosing the first t evaluations
of P , we get the following transposed Vandermonde system of equations V ~c = ~a for the
coefficients of P , where

V =













1 1 . . . 1
b1 b2 . . . bt
...

...
. . .

...
bt−1
1 bt−1

2 . . . bt−1
t













~c =













c1

c2

...
ct













, ~a =













a0

a1

...
at−1













(1)

We now state the complete interpolation algorithm.

Algorithm Polynomial Interpolation (by Ben-Or and Tiwari)

Input: A black box for evaluating a multivariate polynomial P (x1, . . . , xn) and an upper
bound τ on the number of terms in P .

Output: The polynomial P =
∑t

i=1 cimi where t, ci,mi all denote the same quantities
as before.

Step 1: For i from 0 to 2τ − 1 do ai := P (pi
1, p

i
2, . . . , p

i
n).

Step 2: Find the rank t of the matrix Aτ

Step 3: Solve the Toeplitz system At
~λt = ~at to recover the auxiliary polynomial Λ(z).

Step 4: Find the integer roots of Λ(z) to get the bi. Compute the monomial mi from
bi by repeatedly dividing bi by p1, . . . , pn.

Step 5: Find the coefficients ci by solving the transposed Vandermonde system V ~c = ~a
described earlier.

3



3 The Modular Rational Interpolation Algorithm

The Ben-Or and Tiwari algorithm was implemented with the following improvements.
Recovering the auxiliary polynomial Λ(z) in Steps 2 and 3 is accomplished by

viewing the evaluation points as a linear sequence. Then Λ(z) is the feedback con-
nection polynomial which generates the sequence a0, a1, . . . , a2τ−1 [Blahut, 1983]. Thus
the Berlekamp-Massey algorithm can be used to recover Λ(z).

The Berlekamp-Massey algorithm recursively constructs a minimum length feedback
connection polynomial Λ(z) of length at most τ for the sequence a0, a1, . . . , a2τ−1. It does
this by calculating a feedback connection polynomial Λi(z) at each step i, which satisfies
the subsequence a0, a1, . . . , a2i−1, where Λ0(z) = 1. Each of the intermediate feedback
connection polynomials, Λ2k−1(z) for all k, 1 ≤ k ≤ τ, must be unique [Massey, 1969].
Thus the intermediate feedback connection polynomials satisfy the Toeplitz systems
Āi

~λi = ~ai where

Āi =













a0 a1 . . . ai−1

a1 a2 . . . ai
...

...
. . .

...
ai−1 ai . . . a2i−2













, ~λi =













λ0

λ1

...
λi













, ~ai = −













ai

ai+1

...
a2i−1













,

and λk is the kth coefficient of Λ2i−1.
It was observed during trial runs that the coefficients in the Berlekamp-Massey

algorithm were extremely large. For example, in our test case involving three variables
(see table in section 4) and Λ(z) having a degree bound of 250, Λ(0) had approximately
1400 decimal digits.

To control the coefficient growth, all computations were performed modulo pk where
p is a prime and pk is sufficiently large. The prime power pk is sufficiently large if each
mi is less than pk. Choosing pk > mi implies that the roots of Λ(z) modulo pk are the
the mi. Thus the modular image of Λ(z) is sufficient for recovering the mi.

Finding the integer roots of Λ(z) in Step 4 is accomplished using a randomized
Cantor-Zassenhaus algorithm (see [Cantor and Zassenhaus, 1981]) to factor Λ(z) modulo
a prime p. Then the true roots are reconstructed from their modular images by Hensel
lifting. Furthermore, we only need a modular image of Λ(z). The transposed Vander-
monde system in step 5 can be solved using the method of Zippel (1990).

We now state the modular version of the Ben-Or and Tiwari interpolation algorithm.

Algorithm Modular Rational Interpolation

Input: A black box for evaluating a multivariate polynomial P (x1, . . . , xn), an upper
bound τ on the number of terms in P , a degree bound d for the polynomial, and
bound C for the numerator and denominator of the coefficients appearing in P.

Output: The polynomial P =
∑t

i=1 cimi, or failure.

Step 1 (Evaluation): For i from 0 to 2τ − 1 do ai := P (pi
1, p

i
2, . . . , p

i
n).

4



Step 2 (Choosing a prime p, and k): Choose a prime p, so that p satisfies the conditions
of Lemma 1. Then choose k so that pk > max{pd

n, 2C
2}.

Step 3 (Computing the feedback connection polynomial Λ(z) mod pk): Use a modular
Berlekamp-Massey algorithm to compute Λ(z) mod pk from the ai mod pk.

Step 4 (Finding the Integer Roots of Λ(z)): Find the integer roots of Λ(z) by finding
the roots of Λ(z) mod p, and then lifting to the true roots of Λ(z) mod pk.

Step 5: Find the mod pk images of the coefficients ci by solving the transposed Van-
dermonde system V ~c = ~a using a modular realization of Zippel’s algorithm (1990).

Step 6: Recover the rational coefficients from their images modulo pk using continued
fraction recovery [Wang et al., 1982].

Step 7: Check if ai = P̄ (pi
1, p

i
2, . . . , p

i
n) where P̄ is the found polynomial.

The algorithm will fail if the prime p is not lucky. A prime p is lucky if the feedback
connection polynomial produced by the modular version of the Berlekamp-Massey algo-
rithm has the same degree as the the true (rational) feedback connection polynomial,
and if Λ(z) mod p remains square free.

If the prime p does not divide the numerator or the denominator of the leading
coefficients of any intermediate feedback connection polynomials computed during the
rational Berlekamp-Massey algorithm then the modular algorithm produces a feedback
connection polynomial of the same degree. The following lemma characterizes the suit-
able primes for the Berlekamp-Massey algorithm.

Lemma 1 Let p be a prime chosen uniformly randomly in the range max{8, pn} < p < D
where D = 14dt3 max(1, logn) + 8t2logC. Then the probability that p does not divide the
numerator or the denominator of the leading coefficients of any of the feedback connection
polynomials computed by the rational Berlekamp-Massey algorithm is at least 3/4.

Proof. Let a = tCp2dt
n . By the definition of the ai, a ≥ ai, for all i, 0 ≤ i ≤ 2t − 1.

Since the intermediate feedback connection polynomials are solutions to linear sys-
tems of the form Āiλ̂i = âi, then the numerator and denominator of the leading coefficient
of for any of these intermediate feedback connection polynomials are bounded by (ia2)1/2.
The product of all the leading coefficients is thus bounded by the value

E = t4t2C2t2p3dt3
n .

Consider the r primes pk, pk+1, . . . , pk+r, where k is the smallest integer such that pk ≥
max{8, pn}, and r = 7dt3logn + 4t2logC. Now for any r/4 these primes,

r/4
∏

j=1

pj > 23r/4 > E.

5



Hence at most r/4 of these primes divide the product of the numerators and denominators
of the leading coefficients. Thus if a prime p is chosen uniformly randomly in the given
range, the probability that p does not divide E is at least 3/4.

Once Λ(z) mod pk has been found, the prime p can be used in step 5 for finding the
roots of Λ(z) . The roots, modulo p, can be lifted to the true roots of Λ(z) mod pk, which
are the true roots of Λ(z). The prime chosen is large enough to insure a high probability
for success during the root finding stage [Kaltofen et al., 1989].

Large intermediate numbers were noticed also in the final step of the interpolation
algorithm, that of recovering the rational coefficients of the interpolating polynomial by
solving a transposed Vandermonde system. A modular solver was used and the rational
coefficients were recovered using a continued fraction recovery method[Wang et al., 1982].

4 Implementation

The algorithm was coded in AKCL (Austin Kyoto Common Lisp) running on Sun4 (Unix
Sun OS 4.0.3). It takes as input the number of variables n and the term bound τ .

It first uses the input values to generate a random polynomial (Lisp function)
to be used as the black box. It uses the given black box to generate the sequence
a0, a1, . . . , a2τ−1. Then it chooses a random prime, p so that pn < p ≤ τ 3. An integer k is
chosen so that pk > pd

n. It is assumed that pd
n > 2C2 (C is the bound on the numerator

and denominator of the coefficients), this way the true coefficients can be recovered in
step 6. Once the modulus pk has been chosen the program steps 3, 4, and 5 are then
performed. If at any time during these computations the program tries to invert a di-
visor of zero, or if the feedback connection polynomial is not square free modulo p, the
program returns to step 2.

The following table summarizes the results of the experiments. The values for the
run times are the average of all the runs completed for polynomials of the given size. For
most of the cases, this involves at least twenty different polynomials. For the larger case
(60 to 250 terms) fewer computations were used.

Fast Ben-Or Modular
and Tiwari Algorithm
3 4 3 4

Term Bound Vars Vars Vars Vars
5 20.8s 42.0s 3.0s 5.7s

10 1622.0s 3807.4s 9.9s 17.2s
15 15542.3s 57550.0s 20.4s 32.5s
20 95953.4s ? 36.2s 58.6s
30 ? ? 92.3s 143.8s
60 ? ? 602.3s 1051.2s

100 ? ? 2627.1s 4690.3s
250 ? ? 57056.6s 131652.6s

? - Computation did not complete

6



Conclusion

In attempting to implement Ben-Or and Tiwari’s algorithm for sparse multivariate poly-
nomial interpolation where the coefficient domain was the rational numbers, one imme-
diately encounters the problem of intermediate coefficient growth. The coefficient growth
causes the running times for problems of a reasonable size to grow unreasonably large.

The modular algorithm avoids this problem by mapping the problem into a domain
in which the solutions can be more easily computed. The modulus is chosen so as to
preserve the roots of the error locator polynomial, and so that the true coefficients can
be recovered using continued fractions.

References

[Ben-Or and Tiwari, 1988] M. Ben-Or and P. Tiwari. “A deterministic algorithm for
sparse multivariate polynomial interpolation”, In Proc. 20th annual ACM Symp. The-
ory Comp., pages 301–309, 1988.

[Blahut, 1983] R.E. Blahut. Theory and Practice of Error Correcting Codes. Addison
and Wesley, Reading, Mass., 1983.

[Brown, 1971] W.S. Brown. “On Euclid’s algorithm and the computation of polynomial
greatest common divisors”, Journal of the ACM, 18(4):478–504, October 1971.

[Cantor and Zassenhaus, 1981] David G. Cantor and Hans Zassenhaus. “A new al-
gorithm for factoring polynomials over finite fields”, Mathematics of Computation,
36(154):587–592, April 1981.

[Kaltofen and Trager, 1988] E. Kaltofen and B. Trager. “Computing with polynomials
given by black boxes for their evaluation: Greatest common divisors, factorization,
seperation of numerators and denominators”, In Proc. 29th Annual Symp. Foundations
of Comp. Science, pages 296–305, 1988. Also to Appear in J. Symbolic Computation.

[Kaltofen and Yagatil, 1988] E. Kaltofen and L. Yagatil. “Improved sparse multivariate
poynomial interpolation algorithms”, Proc. ISSAC ’88, Springer Lect. Notes Computer
Science, 358:467–474, 1988.

[Kaltofen et al., 1989] E. Kaltofen, Y.N. Lakshman, and J.M. Wiley. “Efficient sparse
multivariate poynomial interpolation algorithms”, Manuscript, December 1989.

[Massey, 1969] J. Massey. “Shift-register synthesis and BCH coding”, IEEE Trans. In-
form. Theory, IT-15:122–127, 1969.

[Wang et al., 1982] P.S. Wang, M.J.T. Guy, and J.H. Davenport. “P-adic reconstruction
of rational numbers”, SIGSAM Bulletin, 16(2):2–3, May 1982.

7


