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ABSTRACT

Here we offer a new randomized parallel algorithm that determines the Smith normal form
of a matrix with entries being univariate polynomials with coefficients in an arbitrary field.The
algorithm has two important advantages over our previous one: the multipliers relating the Smith
form to the input matrix are computed, and the algorithm is probabilistic of Las Veg as type, i.e.,
always finds the correct answer. The Smith form algorithm is also a good sequential algorithm.
Our algorithm reduces the problem of Smith form computation to two Hermite form computa-
tions. Thusthe Smith form problem has complexity asymptotically that of the Hermite form
problem. We also construct fast parallel algorithms for Jordan normal form and testing similarity
of matrices. Both the similarity and non-similarity problems are in the complexity classRNC
for the usual coefficient fields, i.e., they can be probabilistically decided in poly-logarithmic time
using polynomially many processors.

1. Introduction.

The different normal forms of matrices, Hermite, Smith and Jordan Normal Forms are
widely used in many different branches of science and engineering. Sequential algorithms for
computing these normal forms have been given previously. With advances in parallel hardware
and software, development of parallel algorithms is not only an intellectual exercise but also a
practical feasibility.

* This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-04391
(first author), Grant No. MCS-83-14600 (second and third author), and by an IBM Faculty Development Award (first
author). Thispaper appears inLinear Algebra and Its Applications136, pp. 189-208(1990). Theresults in
Section 2 and 4were first announced in theProc. EUROCAL ’87, Springer Lect. Notes Comput.Sci 378,
pp. 317-322 (1989).
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This paper is third in a series on canonical forms of matrices [13],[12]. Herewe offer a
new randomized parallel algorithm that determines the Smith normal form of a matrix in
F [x]m×n. The algorithm has two important advantages over our previous one. The multipliers
relating the Smith form to the input matrix are computed and the algorithm is of Las Veg as type,
that is, the result is guaranteed correct, probability only enters in speed considerations.The
Smith form algorithm is also a good sequential algorithm, faster than previous methods in the
worst case. Its speed is that of the Hermite form algorithm on which it depends.One can use
any of the algorithms by Kannan & Bachem [15], Kannan [14], Chou & Collins [2], or Iliopou-
los [10].

A sequential solution to the Smith normal form problem proceeds by iterating Hermite
normal form computations on the matrix (see, e.g. [15])., Although in practice usually two Her-
mite iterations suffice, there are input matrices for which the number of iterations is at least linear
in the dimension of the matrix.Here we show that by multiplying the input matrix with a certain
randomly chosen matrix, the new randomized matrix will require with high probability only two
Hermite steps before the Smith normal form appears.The proof of this fact uses ideas similar to
those for our Monte Carlo Smith normal form algorithm [13], but is more complicated.An
“unlucky” premultiplication is discovered immediately if after two Hermite steps we do not
obtain a Smith normal form. The point is now that if we do, we must have the unique Smith nor-
mal form of the input matrix together with the unimodular pre- and post-multipliers. Since the
Hermite normal form algorithms are deterministic [12], the entire algorithm is Las Veg as.

In this paper we also construct fast parallel algorithms for Jordan Normal Form and testing
similarity between matrices.We will show that both similarity and non-similarity can be decided
in RNC2. We refer to [3] for the definition of the complexity classesNC andRNC of problems
(probabilistically) solvable by uniform families of Boolean circuits of poly-logarithmic depth and
polynomial size.We note that since the classRNC requires us to perform field operations on
Boolean circuits, the previous claim is precise only for concrete fields such as the rationalsQ or
Fq, the finite field withq elements. Ouralgorithms are randomized in the Las Veg as sense, that
is they can fail but they will never giv e an incorrect answer.

We will also provide a parallel algorithm for computing the Jordan normal form of a given
matrix A ∈ Fn×n in RNC. The entries of the Jordan normal form in general lie in an algebraic
extension of the original fieldF , and we need to attach to each distinct (symbolic) eigenvalue λ i

a polynomial hi (x) ∈ F [x] with h(λ i ) = 0. The polynomialshi are squarefree, identical or pair-
wise relatively prime, and all their roots occur among theλ i . In fact, the Jordan block structure
corresponding to different eigenvalues with identical defining equations will be the same.The
construction ofhi assumes thatF is perfect and that we can take p-th roots in case its character-
istic is p > 0.
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2. Echelon and Hermite Forms.

In this section we give a fast parallel algorithm to compute a canonical form for column
equivalence of matrices built from our Hermite form algorithm [13].This algorithm is needed
for the parallel version of the Smith form algorithm of the next section.

Matrices, A and B, in F [x]m×n are column equivalentif there exists unimodularQ such
that AQ = B. A matrix in F [x]n×n is unimodularif its determinant is a nonzero element ofF .
Unimodular matrices are precisely the ones with an inverse inF [x]n×n.

A variety of canonical or almost canonical forms for column or row equivalence have been
given in the past, but we have not found one in the literature which completely meets our needs.
For example, linear algebra texts often present an echelon form for matrices over a field, see [
9]. An echelon form has the advantage, needed here, that for rankr , the leadingr columns are
independent. However, here we need the form over a PID. For matrices over a PID, Hermite
presented a canonical (triangular) form for nonsingular square matrices. This has been often
extended to arbitrary square matrices by allowing zeroes on the diagonal [17],[19]. Onegives
up uniqueness of the form in the process.For example, all strictly lower triangular matrices are
in Hermite form by this definition even though large collections of them are equivalent. Though
the form may be easily extended to rectangular matrices, the lack of uniqueness means that struc-
ture, such as rank, that might be revealed by a canonical form for row equivalence is not.For
these reasons, we choose to extend the notion of column echelon form to matrices of arbitrary
shape and rank over a PID.

A matrix H is in column echelon formif

(1) nonzerocolumns precede zero columns,

(2) theleading nonzero element in a nonzero column is below the leading nonzero element in
preceding columns and above leading nonzero element of succeeding columns.

(3) theleading nonzero element in each column is monic,

(4) in each row which contains the leading nonzero element of some column, the entries pre-
ceding that entry are of lower degree.

We denote byCn
i the set of all lengthi subsequences of (1, ...,n) and by AI ,J, I ∈Cn

i , J∈Cn
i , the

i×i determinant of the submatrix in the rowsI and columnsJ.

2.1 Theorem.

(1) Columnequivalent matrices have the same left kernel (row dependencies).
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Figure 1: Layout of a column echolon form of a matrix of rank 5.The • entries are monic, the
entries are residues with respect to them, and the* entries are the remaining possibly non-zero

entries.
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(2) Let I be a fixed sequence ofi rows. Columnequivalent matrices have the same greatest
common divisor of alli×i minors in the rows I , i.e., dI : = GCDJ∈Cn

i
(det(AI ,J)) is an

invariant.

(3) Eachmatrix A in F [x]m×n is column equivalent to a unique matrixH in column echelon
form. If the rank ofA is m, the unimodular cofactorQ, such thatAQ = H , is also unique.

Proof. These are standard results, cf [16],.[19]. In the literature, we have not found a unique
canonical form over a  PID and including the singular matrices, but see [21], Chapter 6.There-
fore, we offer a proof of the uniqueness of the echelon form. It suffices to show that if HQ = K ,
H and K are in column echelon form, andQ is unimodular, then H = K (andQ = I , when the
rank is m). By the invariance of row dependencies, the echelon patterns ofH and K are the
same. Supposethe rank isr . We first permute the rows so that the rows containing the leading
nonzero entries of the firstr columns are at the top, thus we premultiply by permutation matrixP
so that

PH =




H1

H2

0

0




, PK =





K1

K2

0

0




,

whereH1 andK1 arer×r nonsingular matrices in Hermite form.If we conformally blockQ, we
have
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



K1

K2

0

0





= PK = PHQ =




H1

H2

0

0









Q1

Q2

Q3

Q4





=




H1Q1

H2Q1

H1Q3

H2Q3

Looking at the first row, by the uniqueness result for the Hermite form and unimodular cofactor
in the square nonsingular case [19], we have H1 = K1, and Q1 = I r . Since H1 is nonsingular, Q3

is 0. Q2 is arbitrary andQ4 is arbitrary unimodular, but whenr = m, Q = Q1.

Most algorithms for the Hermite form have been described for the nonsingular case but
extend naturally to echelon form algorithms for the general case.However, our deterministic
parallel algorithm (inNC2, cf. Cook [3] for a description of this parallel computation model)
requires a bit more effort. We offer an extended algorithm here.

2.2 Algorithm (H , Q) ← CEF(A).
[Column Echelon Form. Thisis a fast parallel algorithm whenF is a finite algebraic extension
of a prime field.]
Input: A∈F [x]m×n, F a field.
Output: UnimodularQ∈F [x]n×n and column echelon formH ∈F [x]m×n such thatAQ = H .

(1) [Find leading independent rows:]
A′ ← the (m + n)×n matrix [AT I n]T.
A′′ ← the firstn independent rows ofA′.
(Compute in parallel the rank [18] of each matrix consisting of the firsti rows of A′. Then
include thei-th row in A′′ if the i-th rank is greater than thei − 1st rank (the 0-th rank is
0)).
[ A′′ is n×n. If r is the rank ofA, the firstr rows of A′′ are fromA and the remainingn − r
from I n.]

(2) [Hermiteform - nonsingular column echelon form:]
(H ′′, Q) ← the Hermite form ofA′′ and the corresponding unimodular cofactor. (Com-
puted by the parallel algorithm of [13] ).

(3) [Columnechelon form:]H ← AQ. ReturnQ andH .

2.3 Theorem. Algorithm CEF to compute the column echelon form and associated unimodular
cofactor of a matrix is correct and is inNC2 when F is a finite algebraic extension of a prime
field.

Proof. Each of the three steps is inNC2. The first can be done because rank is inNC2. The sec-
ond step is by [13], and the third, matrix multiplication, is inNC1. It remains to show correct-
ness.

Let r be the rank ofA, and letk1 , ..., kr be the indices of the firstr independent rows ofA.
Then fori ∈{1,...,r }, the row Aki ,*

= A′′
i ,*

, and

Hki ,*
= Aki ,*

Q = H ′′
i ,*

= (hki ,1, . . . ,hki ,i , 0, . . . , 0).
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ThenH is in echelon form unless some row before thei-th has its last nonzero entry in a column
i or greater. Supposek is the index of such a row, then thei rows of A numberedk1 , ..., ki−1,
andk are independent, contradicting the fact that the rows numberedk1, ..., ki are the firsti inde-
pendent rows.

Row echelon forms are defined by transposing everything in the above. Specifically, the row
echelon form and unimodularm×m cofactor may be computed as follows:

2.4 Algorithm (Q, H) ← REF(A).
[Row Echelon Form]

(1) (Q′, H ′) ← CEF(AT).

(2) H ← H ′T. Q ← Q′T. [QA = H ] ReturnQ andH .

3. A Smith Form Algorithm.

A matrix in F [x]m×n is in Smith normal formif it is diagonal, the diagonal entries are
monic or zero, and each divides the next. MatricesA and B in F [x]m×n areequivalentif there
exist unimodular matricesU in F [x]n×n andV in F [x]m×m such thanA = UBV.

3.1 Theorem.

(1) Equivalent matrices have the same determinantal divisors. Thei-th determinantal divisor
of a matrix is the greatest common divisor of all i×i minors of the matrix.We denote it by

s*
i .

(2) TheSmith normal form is a canonical form for equivalence, that is, there is one and only
one matrix in Smith form equivalent to a given matrix. Thediagonal entries of the Smith

form are called theinvariant factors of the matrix. The i-th invariant factor issi = s*
i /s*

i−1

(s1 = s*
1 ).

Proof. See, for example, Newman [19], Section 15.

3.2 Algorithm. (U , S,V) ← SNF(A).
[Smith Normal Form. Randomizingalgorithm.]
Input: A, a matrix in F [x]m×n, whereF is a field.
Output:U , S, and V, such thatUAV = S, S in F [x]m×n is in Smith form,U in F [x]m×m is uni-
modular, andV in F [x]n×n is unimodular.
Constant:ε , 0  < ε < 1, the probability of failing on one try.

(1) [Randomize:]d ← maxi , j deg(ai , j ).
R′ ← a strictly lower triangularn×n matrix whose entries are chosen at random fromC, a
subset ofF of sizec = 2d min(m, n)3/ε . [If F has characteristic 0,C may be the integers
1 to c. The sizec guarantees that the probability of having to repeat the algorithm is less
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thanε . If F is finite of insufficient size,C may be a subset of an algebraic extension ofF .]
R ← I + R′ [an invertible matrix].
A′ ← AR.

(2) [Row operations:] (U , H) ← REF(A′) [row echelon form: H = U A′ (= UAR). ]
[The diagonal entries ofH are now almost surely the invariant factors sought.]

(3) [Columnoperations:] (S, V′) ← CEF(H) [column echelon form:S = HV′ (= UAR V′)].
[This is expected to be an especially simple echelon form computation.For the most part
exact divisions are needed, not GCD’s.V′ will be very nearly unit upper triangular.]

(4) If S is in Smith form (that with probability≥ 1 − ε ), V ← RV′. ReturnU , S, andV.
[One could repeat withS as the input to take advantage of progress made. However, our
point is that repetition will not be necessary.]

Notice that the choice of a unit lower triangular random multiplierR makes the proof of
the following theorem substantially more complicated.However, this choice is preferable, since
then one never needs to checkR for invertibility and one needs fewer random elements.

3.3 Theorem. Algorithm SNF is correct. It requires repetition only with probability <ε . Hence
it is in Las Veg as RNC2 and runs sequentially in expected timeO(CEF time) whenF is a finite
algebraic extension of a prime field.

Proof. It is clear from the construction that the output conditions are satisfied when the algo-
rithm terminates. The algorithm terminates ink or fewer repetitions with probability 1− ε k,
which converges to 1 exponentially fast ink.

It remains to show that the probability thatS is not in Smith form is less thanε . We do
this with the aid of some lemmas.

From the first, we see thatS, computed in step (3), will be in Smith form ifH has the
property that its firstr − 1 diagonal entries are the firstr − 1 inv ariant factors ofA. The remain-
ing lemmas enable us to conclude thatH , computed in step (2), has that property unless the ran-
dom entries ofR, chosen in step 1, form a root of a certain polynomialπ . By a  lemma of
Schwartz [20], the probability that we pick such an unlucky root is deg(π )/c.

A suitableπ is the product of the polynomialsπ i of lemma 3.7, for 1< i < r . Eachπ i is of
degree bounded by 2i2d + i . Thus we may bound the degree ofπ by 2N3d for N = min (n, m).
Since we choosec = 2N3d/ε in the algorithm, we obtain the desired probability,ε .

Since the expected number of repetitions isε + 2ε 2 + 3ε 3 +⋅ ⋅  ⋅ = ε /(1 − ε )2, a constant,
and the time of one repetition is dominated by the time for echelon form computation, the paral-
lel and sequential running times are those of CEF.

3.4 Lemma (A condition under which one more echelon form suffices). LetH be a row echelon
form of rankr with hi ,i the leading nonzero entry of row i , for i = 1, ..., r . Let si be thei-th
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invariant factor ofH . If hi ,i = si for i = 1, ..., r − 1, then the column echelon form ofH is the
Smith normal form ofH .

Proof. We show that a unit upper triangular matrix,V, exists such thatHV is a matrix which is
zero everywhere except in the firstr − 1 diagonal positions and on and to the right of the diago-
nal in ther -th row, namely

HV =











s1

⋅
⋅

sr−1

hr ,r ⋅ ⋅  ⋅ hr ,n











.

We proceed by induction. Sinces1 = h1,1 is the GCD of all entries ofH , the entries off diagonal
in the first row are zeroed by subtracting multiples of the first row, a unit upper triangular opera-
tion. We proceed by induction for 1< r < i . Assume that the (i − 1) rows have been put in col-
umn echelon form by upper triangular elementary column operations, and consider the entryhi , j

, j > i . Then sinces1 ⋅ ⋅ ⋅ si = h1,1 ⋅ ⋅ ⋅ hi ,i divides alli×i minors (Theorem 2.1), it divides the
minor on columns (1, ...,i − 1, j ) and rows (1, ..., i), which is just the product
h1,1 ⋅ ⋅ ⋅ h(i−1),(i−1)hi , j . Thushi ,i divideshi , j , and hence a upper triangular column operation suf-
fices to zerohi , j . Noting that the hypotheses onH imply that hi , j = 0 whenever i > r , we con-
clude thatHV has the desired form.

Now whenHV is brought into column echelon form, it is easy to see that it will be diago-
nal. Ther -th (and last nonzero) diagonal element will be GCDj=r ,...,nhr , j . Then sinces1 ⋅ ⋅ ⋅ sr

is the GCD of allr×r minors, or what is the same, GCDj=r ,...,n(s1 ⋅ ⋅ ⋅ sr−1hr , j ), we must obtain
sr as ther -th diagonal element.

3.5 Substitution Lemma. Let f1, ..., ft be polynomials inF [ρ, x], ρ a list of new variables, with
deg(fi ) ≤ e. Then for somee ≤ 2e, there exists ane×e determinant∆ in F [ρ], whose entries are
coefficients of fi , such that for any evaluation ρ → r , wherer a list of corresponding field ele-
ments that are not a root of∆ , GCDi=1,...,t( fi (r )) = (GCDi=1,...,t( fi ))(r ). (Cf [13],. Proof of
Lemma 4.1.)

3.6 Irreducibility Lemma. Let n ≥ 2, and let

R =







1

ρ2,1...
ρ n,1

1

⋅ ⋅  ⋅ ρ n,n−1 1







∈ F [ρ]n×n,

whereρ = (ρ j ,k) j>k is a vector of indeterminants andF is a field. Then for alli , 1 ≤ i ≤ n, G ⊂
Cn

i , G ≠ ∅, and for all families of polynomialsfJ(x) ∈ F [x] \ { 0}, J ∈ G,
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J∈G
Σ fJ RJ, I =

J∈G
GCD( fJ) p,

whereI = {1 ,..., i} ∈ Cn
i and wherep ∈ F [x, ρ] is either an irreducible polynomial inF [ρ, x] \

F [x] or is 1.

Proof: By induction oni . For i = 1, ΣJ∈G fJ RJ, I is a linear form in some of the indeterminants
ρ over F [x] plus possibly an element inF [x], and the statement is immediate.Now let i ≥ 2,
and letG be fixed. BycomputingRJ, I by minor expansion along thei-th column we get

RJ, I =
j ∈J, j≥i
Σ ±RJ\{ j }, I ′ ρ j ,i , whereI ′ = I \{i } andρ i ,i is 1 (not a variable).

Define for 1≤ j ≤ n

G j = {J ′∈Cn
i−1 | j ∈/ J′, J′∪{ j } ∈ G}.

Then

J∈G
Σ fJ RJ, I =

J′∈Gi

Σ ± fJ′∪{i } RJ′, I ′ +
n

j=i+1
Σ



 J′∈G j

Σ ± fJ′∪{ j } RJ′, I ′





ρ j ,i .

For all G j ≠ ∅ the induction hypothesis applies to the inner sums, that is

J′∈G j

Σ ± fJ′∪{ j } RJ′, I ′ = d j p j , j ≥ i ,

whered j = GCDJ′∈G j
( fJ′∪{ j }) and p j is irreducible inF [ρ, x] \ F [x], or is 1. SinceΣJ∈G fJ RJ, I

is now an (inhomogeneous) linear form inρ j ,i over a subring of F [ρ, x] not depending on the
ρ j ,i , by Gauss’s lemma

J∈G
Σ fJ RJ, I =

i≤ j≤n

G j ≠∅

GCD(d j )
i≤ j≤n

G j ≠∅

GCD(p j ) p,

where p is an irreducible polynomial inF [ρ, x] \ F [x], or is 1. It remains to show that
GCDi≤ j≤n ,G j ≠∅(p j ) = 1.

Assume that ap j explicitly depends onρ l , k, k < i , l ≠ j . This ρ l , k occurs in the expansion
of someRJ′, I ′. Considerpl , which containsRJ′∪{ j }\{ l }, I ′. That determinant is not 0, sopl is not
either. Also pl cannot depend onρ l , k, so GCD(p j , pl ) = 1. On the other hand, if allp j are 1,
the claim is trivial.

Note that in this lemma it is crucial that the selected columns are the ones inI . Otherwise,
the lemma is not true, and therefore the proof of lemma 3.7 must enforce the additional condition
that H be triangular.

3.7 Lemma. Let A be a matrix inF [x]m×n of rankr and with the degrees of the entries bounded
by d, and leti ∈ {1, ..., r − 1}. Thenthere is a polynomialπ i in n(n − 1)/2 variables such that if
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(1) R in F [x]n×n is unit lower triangular,

(2) H is the row echelon form ofAR,

(3) s*
i is thei-th determinantal divisor ofA,

thenH is upper triangular ands*
i = Πi

j=1 h j , j , unless then(n − 1)/2 entries below the diagonal in
R form a root ofπ i . The degree ofπ i is no more than 2i2d + i .

Proof: We first show that if R has indeterminate entries (as in Lemma 3.6) then the statement is
true unconditionally over F(ρ)[x]. Thepolynomialπ i is then chosen such that the computation
with a specialization of theρ j ,i leads to the same decisions, in particular the same GCDs.

First it easy to show that for indeterminate entries inR the firstr columns ofAR are lin-
early independent.ThusH computed over F(ρ)[x] is triangular. Let I = {1, ..., i} and let A′ =
AR. The following sequence of equalities hold, each of which will be established below. Note
that all GCD’s are taken in the domain of polynomials inx over the fieldF(ρ).

H I , I =
L ∈Cm

i

GCD(HL, I ) =
L ∈Cm

i

GCD(A′
L, I ) (A)

=
L

GCD


 J∈Cn

i

Σ AL, J RJ, I





(B)

=
L

GCD(
J

GCD(AL, J) pL) (C)

=
L, J

GCD(AL, J)
L

GCD(pL) (D)

=
L, J

GCD(AL, J) = s*
i . (E)

(A) Since H and A′ are row equivalent, Theorem 2.1, (2) applies here. (A)=(B) This is the
Cauchy-Binet formula for a product of matrices:

(XY)L, I =
J∈Cn

i

Σ XL, JYJ, I for X∈Fm×n, Y∈Fn×k, L ∈Cm
i , I ∈Ck

i . (F)

(B)=(C) For eachL, lemma 3.6 is applied to the sum, yielding a multiplier which we denotepL .
Note thatpL is irreducible inF [ρ, x] \ F [x], or is 1. (C)=(D) For L1 andL2 in the range ofL we
have

GCD(
J

GCD(AL1, J), pL2
) = 1,

again computed inF(ρ)[x]. This is becausepL2
, if it is not 1, is not an element ofF [x], whereas

all AL1,J are, and hence their GCD is as well. Therefore, the GCD of the products is the product
of the GCDs of the mutually relative prime factors. (D)=(E)We claim that GCDL(pL) = 1, again
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computed over F(ρ)[x]. First, we observe that since thepL are irreducible over F [ρ, x], their
GCD over F(ρ)[x] is either 1 or the polynomials are all multiples by a scalar inF of one
another. Now suppose to the contrary that the latter is the case. In other words,

ΣJ AL, J RJ, I

ΣJ AM , J RJ, I
∈ F , L, M ∈Cm

i ,

which by the monomial structure inρ of the two sums leads to the existence of a multipliergL, M

∈ F such that

AL, J = gL, M AM , J for all J.

Now let L0 ∈ Cm
r , J0 ∈ Cn

r , such thatAL0, J0
≠ 0, that isL0 and J0 select a square non-singular

matrix A of maximal rank fromA. Then

det(

AL̃, J̃


L̃⊂L0, J̃⊂J0

card(L̃)=card(J̃)=i

) = 0, (G)

provided there are at least two rows in this determinant, which are linearly dependent by the
above. This is true forr > i . Howev er, the matrix in (G) cannot be singular, since it is formed
from the non-singular matrixA by computing all itsi by i minors. To justify this we employ the
Cauchy-Binet formula (F) to obtain the following identity:



AL̃, J̃


L̃ ∈Cr

i , J̃∈Cr
i

× 

(A

−1)L̃, J̃

L̃ ∈Cr

i , J̃∈Cr
i

= I
(
r

i
)
.

Therefore, the (
r

i
) by (

r

i
) matrix in (G) is invertible, a contradiction to its determinant being 0.

The polynomialπ i is now derived first from lemma 3.5 such that the relationship

L
GCD(A′

L, I ) =
L, J

GCD(AL, J)

is preserved by evaluation, and second that the firstr columns ofA′ remain linearly independent.

Incidentally, we hav eresolved a question on the coefficient size of multipliers.

3.8 Corollary. For polynomial matrices over the rational numbers, there exist unimodular pre-
and post multipliers for the Smith normal form, whose entries have coefficients of binary length
polynomial in the dimensions and coefficient lengths of the input matrices.

4. Rational Canonical Forms and Parallel Similarity Testing

We first introduce the rational canonical form of a square matrix.The companion matrix
C f (x) of

f (x) = xd + cd−1xd−1 + ⋅  ⋅ ⋅ + c0 ∈ F [x].

is defined as
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C f (x) =










0

1

0
...
0

0

⋅ ⋅  ⋅
0

1

⋅ ⋅  ⋅
⋅ ⋅  ⋅

⋅ ⋅  ⋅
0 ⋅ ⋅  ⋅

1

0

0

1

−c0

−c1

−c2...
−cd−2

−cd−1










∈ Fd×d.

A matrix C is in rational canonical formif C is block-diagonal with companion matrices on its
diagonal blocks,

C = diag(C f1(x),..., Cfm(x))

and fi (x) divides fi+1(x) for all 1 ≤ i ≤ m − 1. We hav ethe following lemma, cf [5],.Chapter
VI, or [8], Chapter S1.

4.1 Lemma. Let A, B ∈ Fn×n.

(1) A is similar toB if and only if xI − A andxI − B are equivalent, they must have the same
Smith normal forms.

(2) Let diag(s1(x) ,..., sn(x)) be the Smith normal form ofxI − A. ThenCA = diag(Cs1(x) ,...,
Csn(x)) is a rational canonical form similar toA.

(3) CA is the only matrix in rational canonical form that is similar toA. In particular, A is
similar toB if and only ifCA = CB.

The non-constant invariant polynomials ofxI − A, sn−m+1(x) ,..., sn(x), m ≤ n, are called
the invariant factors of A. The above lemma implies that two matrices are similar if and only if
the have the same set of invariant factors.

We construct the rational canonical formsCA andCB via the parallel algorithm for Smith
normal forms. A is not similar toB if CA ≠ CB. We hav eestablished the following theorem.

4.2 Theorem. Similarity and non-similarity of matrices inFn×n is for F = Q and F = Fq in
(properly Las-Veg as) RNC2.

If A is proven similar to B, it is sometimes desired to obtain a transforming matrixT such
that B = T−1AT. Rather than trying to solve the n2 by n2 system AT = TB in T, which with
sparse methods [22], still requiresO(n5) field operations, our Smith form algorithm provides a
better approach. For we also obtain the multipliers, namely

UA(x)(xI − A)VA(x) = UB(x)(xI − B)VB(x).

ThenT = VB(B)V−1
A (B) [5], Chapter VI, §5, whereVB(x) and V−1

A (x) are interpreted as polyno-
mials in x with matrix coefficients to the left ofx. Notice thatV−1

A (B) = VA(B)−1,@ which

@ George Labahn (4 August 1994) points to an error in this argument. Instead,T = P(B) where
P(x) = VB(x)VA(x)−1, as Gantmacher states. The sequential running time ofO(n4) state at the end of the para-
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reduces the computation via a matrix multiplication and inverse to evaluatingVA andVB at B. It
can be shown that the Smith normal form algorithm in this case produces multipliers of degree
O(n), so from the multipliers we can obtainT sequentially inO(n4) field operations, or in paral-
lel in O(log(n)2) time.

Finally, we wish to mention a corollary to our theorem that answers the sequential com-
plexity of similarity and is a consequence of the above algorithm and the deterministic polyno-
mial-time construction of Smith normal forms over Q[x] [13], Theorem 4.1.

4.3 Corollary. The problem of similarity of matrices inQn×n is in sequential polynomial-time.

5. Parallel Jordan Normal Form Computation

We now consider the parallel construction of the Jordan normal form of a matrixA ∈
Fn×n. That form is a block-diagonal matrix similar toA whose diagonal blocks are one-sided
band matrices of the form









λ i

0

...
0

1

λ i

0

0

1

0

⋅ ⋅  ⋅

⋅ ⋅  ⋅

0
...

1

λ i









,

whereλ i is an eigenvalue of A. The Jordan normal form is unique up to permutation of the diag-
onal blocks.Different blocks may have the same eigenvalue and/or the same size.In fact, each
ni by ni block corresponds to anelementary divisor(x − λ i )

ni of A. The elementary divisors are
simply the maximal powers of linear factors of the invariant factors ofA. We refer, e.g., to [5],
Chapter VI, §6, or [8], Chapter S1, for proofs of these facts. Theonly complication in formulat-
ing an algorithm for finding the Jordan normal form is thatλ i can lie in an algebraic extension of
F and there is no unique way to representλ i . If we assume thatF already contains the eigenval-
ues ofA and that the distinct eigenvalues are also given as input, thenwe can in parallel find the
elementary divisors by polynomial division from the invariant factors of A. Notice that the
invariant factors are already known to be correct via the verification ofCA. We hav ethe follow-
ing lemma.

5.1 Lemma. Given A ∈ Fn×n, F a field, and given the k ≤ n distinct eigenvaluesλ i ∈ F of A, 1
≤ i ≤ k, then the problem of computing the Jordan normal formJ of A is in (properly Las-Veg as)
RNC for F being an algebraic extension of the prime fieldsQ andFp.

The above lemma has the obvious weakness that the splitting field of the characteristic
equation ofA is required for the construction ofJ. The structure ofJ, that is the degrees of the
elementary divisors, can be found by squarefree decomposition and GCD operations on the
invariant factors. Letus make this process more formal.A squarefree relatively prime basis{ h1

graph cannot be obtained in this way (E.K., November 17, 1997).
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,..., hl } ⊂ F [x] for a set of polynomials {g1 ,..., gm} ⊂ F [x] satisfies

(1) hi is squarefree for 1≤ i ≤ l .

(2) GCD(hi , h j ) = 1 for 1≤ i < j ≤ l .

(3) For all 1≤ j ≤ m there exist integersei , j ≥ 0, 1≤ i ≤ l , such thatg j = Πl
i=1 h

ei , j

i .

These bases are, of course, not unique since the refinement of a given basis by factoring some of
its elements always preserves the required properties.However, the unique coarsest such basis,
thestandardbasis, can be found by squarefree decomposition and iterated GCD operations as we
describe below, see also [11], §3 for a sequential algorithm.We remark that over fieldsF of pos-
itive characteristicp the squarefree decomposition process is not purely rational.We shall
assume that our fields are perfect andp-th roots can be taken. Thisis, of course, true forF = Fq,
the parallel cost ofp-th roots beingO(log q/p) arithmetic operation inFq. (If for q = pt we
chooseFq = Fp[y]/(w[y]) with w[y] i rreducible inFp[y] of degreet, then one can even compute
p-th roots in log2(t) + log(p) parallel depth on a circuit over Fp [4].) Underthese assumptions,
both GCD and squarefree decomposition of polynomials is inNC2 [6].

We now dev elop the algorithm. First we show that squarefree relatively prime bases may
be “merged” rapidly in parallel. Let the bases be {pi } and {q j }. The entries of the merged basis

are r i , j = GCD(pi , q j ), p*
i = pi /Π j r i , j , and q*

j = q j /Πi r i , j . Unit elements may be discarded.
Since the given basis elements are relatively prime and squarefree, it is clear that the new polyno-

mials are also.The r i , j may be computed simultaneously inO(log2(n)) time. Then thep*
i and

q*
j are calculated, doing the multiplications inO(log(n)) parallel steps, again using total parallel

timeO(log2(n)). Hencewe have:

5.2 Lemma. The squarefree relatively prime bases for two sets of polynomials,G1 andG2, can
be used to construct a squarefree relatively prime basis forG1∪G2 in NC2.

Now we may use this “merging” to construct the standard squarefree relatively prime basis for a
given set of polynomials {g1 ,..., gn}. First compute the squarefree factorization of eachgi .
The squarefree factors are relatively prime, so this is also a squarefree relatively prime basis for
{ gi }. Now the n bases may be merged in pairs to formn/2 bases for pairs, {gi , gi+1}. Iterating
this process log(n) times yields the desired basis.

5.3 Theorem. To compute the standard squarefree relatively prime basis of polynomials {g1 ,...,
gn} is i n NC3.

This answers a question posed by von zur Gathen [7], Remark 6.8. A similar solution was dis-
covered independently in [1], Section 2.1.

We need such a basis for the invariant factorss1 ,..., sm ∈ F [x] of A, which satisfy the
additional condition thatsi dividessi+1, i < m, so that any factor ofsi occurs to at least the same
exponent insi+1. Because of this the basis construction can be streamlined somewhat. The
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merging can be done so that at each step bases are constructed for sets of invariant factors with
adjacent indices from smaller sets with the same property. Then the divisibility property enables
one to eliminate some of the computations.Specifically, if { pi } is the square free relatively
prime basis for {sk1

,..., sk2
} and {qi } is the basis for {sk2+1 ,..., sk3

}, then (using the above nota-

tion) p*
i need not be computed andr i , j = GCD(pi , q j ) need not be computed when the minimal

exponent ofpi in { sk1
,..., sk2

} is greater than the maximal exponent of {q j } in { sk2+1 ,..., sk3
}.

Those GCDs are necessarily units.

Let {hi } be the squarefree relatively prime basis constructed from the invariant factors of
A. The hi are defining polynomials for eigenvaluesλ i ,κ whose multiplicities in all invariant fac-
tors are the same. The multiplicity ofλ i ,κ in sj is that ofhi in sj and can be easily kept track of
during the merge process. Thus we can give the Jordan form as follows.

5.4 Corollary. Given A ∈ Fn×n, F = Q or Fq, we can compute withinNC3 from the invariant
factors of A squarefree pairwise relatively prime polynomialshi , deg(hi ) = ki , 1 ≤ i ≤ l , and the
symbolic Jordan normal formJ of A, in which k = k1 + ⋅  ⋅  ⋅ + km distinct symbolsλ i ,κ , 1 ≤ κ ≤
ki , take the place of thek distinct eigenvalues ofA, with the understanding thathi (λ i ,κ ) = 0.

The symbolic Jordan normal form as described in the above theorem appears the best we
can hope to obtain by rational operations.We would like to add that any squarefree relatively
prime basis {h1 ,..., hl } giv es rise to a rational form similar toA,

diag(Ch1(x)e1,1 ,..., Chl (x)el ,m),

whereei , j is the multiplicity ofhi in sj . If thehi are the irreducible factors ofsm then the canon-
ical form is known in the literature as theprimary rational canonical form. Our standard basis
gives rise to a canonical form between the rational and primary rational one. It is the finest of
such forms that is obtainable by purely rational operations.Each blockChi (x)ei , j can be replaced
by anei , j by ei , j matrix of blocks in “block-Jordan” form
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







Chi (x)

0

...
0

I

Chi (x)

0

0

I

0

⋅ ⋅  ⋅

⋅ ⋅  ⋅

0
...

I

Chi (x)









.

Of course, if thehi are chosen the linear factors ofsm, then we get the Jordan canonical form that
way. All this follows from the fact that all these block matrices have the same invariant factors.

6. Conclusion

Similarity of matrices and the rational and Jordan canonical forms play an important roly
in the study of linear operators on finite dimensional vector spaces.We hav eprovided parallel
algorithms for this theory by applying our parallel solution for the somehow lesser-known Smith
normal form problem.Our algorithms are also of interest as sequential new methods to solve
problems in this theory.

Acknowledgement: The authors like to express their gratitude to the anonymous referee for cor-
recting several errors in the original submission.
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