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ABSTRACT

Here we offer a ne randomized parallel algorithm that determines the Smith normal form
of a matrix with entries being wm@riate polynomials with coétients in an arbitrary fieldThe
algorithm has tw important advantagev@ our previous one: the multipliers relating the Smith
form to the input matrix are computed, and the algorithm is probabilistic of éges Ype, i.e.,
always finds the correct answerhe Smith form algorithm is also a good sequential algorithm.
Our algorithm reduces the problem of Smith form computation toHermite form computa-
tions. Thusthe Smith form problem has complexity asymptotically that of the Hermite form
problem. V¢ dso construct fast parallel algorithms for Jordan normal form and testing similarity
of matrices. Both the similarity and non-similarity problems are in the complexity RNEs
for the usual coefficient fields, i.e., thean be probabilistically decided in poly-kgthmic time
using polynomially mayprocessors.

1. Introduction.

The different normal forms of matrices, Hermite, Smith and Jordan Normal Forms are
widely used in man different branches of science and engineering. Sequential algorithms for
computing these normal formsvgaleen gven previously With advances in parallel hardwe
and softvare, deelopment of parallel algorithms is not only an intellectuadreise lut also a
practical feasibility.

* This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-04391
(first author), Grant No. MCS-83-14600 (second and third author), and by and8Ny-Development Avard (first

author). Thispaper appears ihinear Algbra and Its Applications136, pp. 189-208(1990). Theresults in

Section 2 and 4were first announced in th@roc. EURDCAL '87, Springr Lect. Notes Compubci 378,

pp. 317-322 (1989).



-2-

This paper is third in a series on canonical forms of matrices [12], Herewe offer a
nev randomized parallel algorithm that determines the Smith normal form of a matrix in
F[x]™". The algorithm has taimportant advantages/& our previous one. The multipliers
relating the Smith form to the input matrix are computed and the algorithm is okgastype,
that is, the result is guaranteed correct, probability only enters in speed consideratiens.
Smith form algorithm is also a good sequential algorittamtefr than previous methods in the
worst case. Its speed is that of the Hermite form algorithm on which it dep@miscan use
ary of the algorithms by Kannan & Bachem [15], Kannan [14], Chou & Collins [2], or Iliopou-
los [10].

A sequential solution to the Smith normal form problem proceeds by iterating Hermite
normal form computations on the matrix (see, e.g. [15])., Although in practice usuallyetw
mite iterations suffice, there are input matrices for which the number of iterations is at least linear
in the dimension of the matrixdere we sha that by multiplying the input matrix with a certain
randomly chosen matrix, thewgandomized matrix will require with high probability onlydw
Hermite steps before the Smith normal form appe@he proof of this fact uses ideas similar to
those for our Monte Carlo Smith normal form algorithm [13]t I more complicatedAn
“unlucky” premultiplication is disceered immediately if after tav Hermite steps we do not
obtain a Smith normal form. The point ismthat if we do, we must ka the unique Smith ner
mal form of the input matrix together with the unimodular pre- and post-multipliers. Since the
Hermite normal form algorithms are deterministic [12], the entire algorithm is éges.V

In this paper we also construct fast parallel algorithms for Jordan Noamaldnd testing
similarity between matricesVe will show that both similarity and non-similarity can be decided
in RNC?. We refer to [3] for the definition of the complexity clas$¢S andRNC of problems
(probabilistically) solvable by uniformamilies of Boolean circuits of poly-logarithmic depth and
polynomial size.We rote that since the clag®NC requires us to perform field operations on
Boolean circuits, the pveous claim is precise only for concrete fields such as the rati@nais
Fq, the finite field withg elements. Oualgorithms are randomized in the Lasg# ense, that
is they can fail but thg will never give an incorrect answer.

We will also provide a parallel algorithm for computing the Jordan normal form ofea gi
matrix A O F™ in RNC. The entries of the Jordan normal form in general lie in an algebraic
extension of the original fieléF, and we need to attach to each distinct (symbolic) e@ee A,

a polynomial h;(x) O F[x] with h(A;) = 0. The polynomialsh; are squarefree, identical or pair
wise relatvely prime, and all their roots occur among the In fact, the Jordan block structure
corresponding to different eigesiues with identical defining equations will be the sarfibe
construction oh; assumes thdk is perfect and that we can &R-th roots in case its character
isticisp> 0.



2. Echelon and Her mite For ms.

In this section we ge a hst parallel algorithm to compute a canonical form for column
equiaence of matrices built from our Hermite form algorithm [13his algorithm is needed
for the parallel version of the Smith form algorithm of the next section.

Matrices, A and B, in F[x]™" are column equivalenif there exists unimodula® such
that AQ = B. A matrix in F[x]™" is unimodularif its determinant is a nonzero elementFaf
Unimodular matrices are precisely the ones with aerge inF[x]™".

A variety of canonical or almost canonical forms for column oreguivalence hae keen
given in the past, bt we hae rot found one in the literature which completely meets our needs.
For example, linear algebra texts often present an echelon form for matveres field, see [
9]. An echelon form has the advantage, needed here, that for rinkleading columns are
independent. Heever, here we need the fornver a AD. For matrices wer a AD, Hermite
presented a canonical (triangular) form for nonsingular square matrices. This has been often
extended to arbitrary square matrices by allowing zeroes on the diagonal[12F],Onegives
up unigueness of the form in the proceBst example, all strictly laver triangular matrices are
in Hermite form by this definitionven though large collections of them are agient. Though
the form may be easily extended to rectangular matrices, the lack of uniqueness means that struc-
ture, such as rank, that might beeaed by a canonical form for woequivalence is not.For
these reasons, we choose xtead the notion of column echelon form to matrices of arbitrary
shape and rankver a AD.

A matrix H is in column echelon fornf
(1) nonzeraolumns precede zero columns,

(2) theleading nonzero element in a nonzero column isvbéhe leading nonzero element in
preceding columns and alleading nonzero element of succeeding columns.

(3) theleading nonzero element in each column is monic,

(4) ineach rav which contains the leading nonzero element of some column, the entries pre-
ceding that entry are of lower degree.

We cenote byC/" the set of all length subsequences of (1, n) and by A, ;, | OC!", JOC/, the
ixi determinant of the submatrix in the rolvand columns].

2.1 Theorem.

(1) Columnequivaent matrices hae the same left kernel (Wwodependencies).



Figure 1: Layout of a column echolon form of a matrix of rankThe  entries are monic, the
entries are residues with respect to them, and thetries are the remaining possibly non-zero

entries.

(2) Letl be a fixed sequence bfows. Columnequivaent matrices hae the same greatest
common divisor of allixi minors in the rars I, i.e., d; := GCD;qcn (det(A, 5)) is an
invariant.

(3) Eachmatrix A in F[x]™" is column equialent to a unique matrixd in column echelon
form. If the rank ofAis m, the unimodular cofactd®, such thatAQ = H, is dso unique.

Proof. These are standard results, cf [16]19]. In the literature, we hee rot found a unique
canonical form wer a AD and including the singular matrices, but see [21], Chaptéihére-
fore, we offer a proof of the uniqueness of the echelon form. It sufficeswotkabif HQ = K,

H andK are in column echelon form, ai@is unimodulaythenH = K (andQ =1, when the
rank ism). By the invariance of rev dependencies, the echelon patterndHoand K are the
same. Supposhe rank isr. We first permute the rows so that the rows containing the leading
nonzero entries of the firstcolumns are at the top, thus we premultiply by permutation natrix
so that

OH, oO Ok, o0
PH= * OQPK:[]1 OD
o2 Op M2 Op

whereH; andK; arerxr nonsingular matrices in Hermite fornif. we conformally blockQ, we
have
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(K, oU OH, ODEQ QD DHQ H,Q

DKl OD_ PK = PHQ DH 0 EFgl 3 Hl 1 Hl 3

T2 ] 2 0 Q4 0 O 2Q1 2Qs
Looking at the first nw, by the uniqueness result for the Hermite form and unimodulactmf
in the square nonsingular case [19], weehd, = K,, and Q; = I,. Since H; is nonsingularQs
is 0. Q, is arbitrary and, is arbitrary unimodulabut whenr = m, Q =Q;. 0O

Most algorithms for the Hermite form Ve been described for the nonsingular casé b
extend naturally to echelon form algorithms for the general cbk®vever, our deterministic
parallel algorithm (inNC?, cf. Cook [3] for a description of this parallel computation model)
requires a bit more fefrt. We dfer an extended algorithm here.

2.2 Algorithm (H, Q) — CEF(A).

[Column Echelon &rm. Thisis a fast parallel algorithm whehn is a finite algebraicxension
of a prime field.]

Input: AOF[xX]™", F a field.

Output: UnimodulaQOF[x]™" and column echelon fortd OF[x]™" such thatAQ = H.

(1) [Findleading independent rows:]
A — the (m+ n)xn matrix [A" 1,]".
A" — the firstn independent rows oA'.
(Compute in parallel the rank [18] of each matrix consisting of the ficsts of A'. Then
include thei-th rowv in A" if the i-th rank is greater than the- 1st rank (the 0-th rank is
0)).
[A" is nxn. If r is the rank ofA, the firstr rows of A" are fromA and the remaining —r
from 1 ,.]

(2) [Hermiteform - nonsingular column echelon form:]
(H", Q) « the Hermite form ofA” and the corresponding unimodular actr (Com-
puted by the parallel algorithm of [13] ).

(3) [Columnechelon form:H — AQ. ReturnQ andH. O

2.3 Theorem. Algorithm CEF to compute the column echelon form and associated unimodular
cofactor of a matrix is correct and is NC? whenF is a finite algebraicx¢ension of a prime
field.

Proof. Each of the three steps isNC?. The first can be done because rank iN@f. The sec-
ond step is by [13], and the third, matrix multiplication, iNi@*. It remains to she correct-
ness.

Letr be the rank oR, and letk, , ..., k, be the indices of the firstindependent rows oA.
Then fori ({1,...,r}, the row A, , = A/, , and

Hi. = A Q=Hi, =(hg1,....h;,0,....0.
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ThenH is in echelon form unless somewbefore the-th has its last nonzero entry in a column
i or greater Supposek is the inde& of such a rav, then thei rows of A numbered; , ..., Ki_,
andk are independent, contradicting the fact that the rows numkered k; are the first inde-
pendent rvs. O

Row echelon forms are defined by transposivgrgthing in the abee. Specifically, the rav
echelon form and unimodulanxm cofactor may be computed as follows:

2.4 Algorithm (Q, H) — REF(A).
[Row Echelon Form]

1) (@, H") ~ CEF(A).
(2) H<H'" Q< Q".[QA=H]ReturnQandH. O

3. A Smith Form Algorithm.

A matrix in F[x]™" is in Smith normal fornif it is diagonal, the diagonal entries are
monic or zero, and each divides thexmeMatricesA and B in F[x]™" are equivalentif there
exist unimodular matriced in F[x]™" andV in F[x]™™ such tharA = UBV.

3.1 Theorem.

(1) Equvadent matrices hae the same determinantaivdiors. The-th determinantal divisor
of a matrix is the greatest commonidor of allixi minors of the matrix We cenote it by

S .
(2) TheSmith normal form is a canonical form for ecplénce, that is, there is one and only
one matrix in Smith form equélent to a gien matrix. Thediagonal entries of the Smith

form are called thevariant factos of the matrix. Thei-th invariant factor iss; = si*ls*_1
(51=5))-
Proof. See, for example, Nanan [19], Section 150

3.2 Algorithm. (U, S;V) — SNHA).

[Smith Normal erm. Randomizinglgorithm.]

Input: A, a matrix in F[x]™", whereF is a field.

Output:U, S, and V, such thatUAV = S, Sin F[x]™" is in Smith form,U in F[x]™™ is uni-
modular andV in F[x]™" is unimodular.

Constantz, 0 <¢ < 1, the probability of failing on one try.

(1) [Randomize:d ~ max ; deg@ ;).
R < a drictly lower triangulamxn matrix whose entries are chosen at random ftyra
subset ofF of sizec = 2d min(m, n)®/s. [If F has characteristic @ may be the inigers
1 to c. The sizec guarantees that the probability ofvirey to repeat the algorithm is less
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thane. If F is finite of insufficient sizeC may be a subset of an algebraic extensidn.pf
R < | + R [an invertible matrix].
A - AR

(2) [Row operations:], H) « REF(A') [row echelon form:H =U A’ (=UAR). ]
[The diagonal entries dfi are nev aimost surely the weriant factors sought.]

(3) [Columnoperations:] §, V') —« CEF(H) [column echelon formS= HV' (= UARV)].
[This is pected to be an especially simple echelon form computakonthe most part
exact divisions are needed, not GCDY' will be very nearly unit upper triangular.]

(4) If Sis in Smith form (that with probability 1 - ¢),V « RV'. ReturnU, S, andV.
[One could repeat witls as the input to takadvantage of progress made. wiver, our
point is that repetition will not be necessary

Notice that the choice of a unitwer triangular random multiplieR makes the proof of
the following theorem substantially more complicatétbwever, this choice is preferable, since
then one neéer needs to check for invertibility and one needs fewer random elements.

3.3 Theorem. Algorithm SNF is correct. It requires repetition only with probability. <Hence
it is in Las \éga RNC? and runs sequentially in expected ti@ECEF time) wherF is a finite
algebraic extension of a prime field.

Proof. It is dear from the construction that the output conditions are satisfied when the algo-
rithm terminates. The algorithm terminateskiror fewer repetitions with probability 4,
which comwerges to 1 exponentially fast

It remains to she that the probability tha® is not in Smith form is less than We do
this with the aid of some lemmas.

From the first, we see th& computed in step (3), will be in Smith form i has the
property that its first — 1 diagonal entries are the finst- 1 invariant factors ofA. The remain-
ing lemmas enable us to conclude tHatcomputed in step (2), has that property unless the ran-
dom entries ofR, chosen in step 1, form a root of a certain polynomialBy a lemma of
Schwartz [20], the probability that we pick such an unjudot is degf)/c.

A suitable 7 is the product of the polynomiats of lemma 3.7, for X i <r. Eachrz is of
degree bounded byi2d +i. Thus we may bound the degreeroby 2N3d for N = min (n, m).
Since we choose = 2N3d/¢ in the algorithm, we obtain the desired probability,

Since the expected number of repetitions is 2% + 3¢ +[11F ¢/(1 - €)?, a onstant,
and the time of one repetition is dominated by the time for echelon form computation, the paral-
lel and sequential running times are those of GEF

3.4 Lemma (A condition under which one more echelon fornfisat). LetH be a rav echelon
form of rankr with h;; the leading nonzero entry ofwa, fori =1, ..,r. Lets be thei-th
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invariant factor ofH. If h;; = s fori =1, ..,r =1, then the column echelon form Hf is the
Smith normal form oH.

Proof. We show that a unit upper triangular matrix, exists such thaHV is a matrix which is
zero @erywhere except in the first— 1 diagonal positions and on and to the right of the diago-
nal in ther-th row, namely

,_\
|

I
<
I

I:II:II:II:II:II:II:II:I%
=
(|
=
=}

w
iR
A

We proceed by induction. Sincg = hy ; is the GCD of all entries dfl, the entries dfdiagonal

in the first rov are zeroed by subtracting multiples of the first,ra wit upper triangular opera-
tion. We proceed by induction for £ r <i. Assume that the ¢ 1) rows hae been put in col-
umn echelon form by upper triangular elementary column operations, and consider the;entry
, ] >1i. Then sinces; 005 = hy; OOCh; divides allixi minors (Theorem 2.1), it divides the
minor on columns (1, ...i—-1, j) and rows (1, ...,i), which is just the product
hy, O0Ohg-)6-yhi ;. Thush;; dividesh; ;, and hence a upper triangular column operation suf-
fices to zerdy; ;. Noting that the hypotheses &himply thath; ; = 0 whenever i >, we @n-
clude thatHV has the desired form.

Now whenHYV is brought into column echelon form, it is easy to see that it will be diago-

s, as ther-th diagonal elementa

3.5 Substitution Lemma. Let f,, ..., f; be polynomials irF[ 5, X], g a list of nev variables, with
deg(f;) < e. Then for somee < 2e, there @ists anexe determinantA in F[p], whose entries are
coeficients of f;, such that for ap evaluation p - 1, wherer a list of corresponding field ele-
ments that are not a root &f, GCD;-; ,(fi(r)) = (GCD-y_,(f))(r). (Cf [13],. Proofof
Lemma 4.1.) O

3.6 Irreducibility Lemma. Letn=2, and let

ol O

O 1 O
R=pg"2* 00 FLAI™,

a - O

Dpn,l o pn,n—l 1D

wherep = (p;«)j-« is @ vector of indeterminants afdis a field. Then forali, 1<i<n, GO
C!, G £, and for all families of polynomiald;(x) OF[x]\{0}, J OG,
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J%G fyRs1 = GJ‘(D:GD(fJ) P,

wherel ={1,..., i} OC!" and wherep O F[x, 2] is either an irreducible polynomial iR[ g, X] \
F[x]oris 1L

Proof: By induction oni. Fori =1, 3 ;5 f;R;, is a linear form in some of the indeterminants
o ove F[X] plus possibly an element iR[x], and the statement is immediatdow leti > 2,
and letG be fixed. BycomputingR; ; by minor expansion along theh column we get

Ry1 = 2 %Ry e, Wherel’ = I\{i} andp;; is 1 (not a variable).
j0d, j=i

Define for 1< j<n

G, ={J'0c, | j 0¥, I0{j} OG}.

Then
n O O
2 Ry = 2 £fgRer+ 2 02 % frgyRe oy
JOG J'0G; j=i+l J'0G; 0

For all G; # O the induction hypothesis applies to the inner sums, that is

2 tfyp R =djpy, 20,
J'0G;
whered; = GCD;y g, (fyny)) and pj is irreducible inF[p, x] \ F[x], or is 1. Since3 ;¢ f;R;,,
is nav an (nhomogeneous) linear form ip;; over a subring of F[p, x] not depending on the
pji, by Gausss lemma
2 3Ry, = GCD(d;) GCD(p;) p,
J10G I<]<n IS|<n
Gj#D Gj¢|:|
where p is an irreducible polynomial ifF[p,x] \ F[x], or is 1. It remains to shw that
GCDlsjsn,Gj;tD(pj) =1

Assume that g; explicitly depends orp, \, k <i, | # j. This p; , occurs in thegansion
of someR; .. Considerp,, which containsRyjyg3,-- That determinant is not O, g@ is not
either Also p; cannot depend op, , so GCD(p;, p;)) = 1. On the other hand, if alp; are 1,
the claim is twial. O

Note that in this lemma it is crucial that the selected columns are the dneStimerwise,
the lemma is not true, and therefore the proof of lemma 3.7 must enforce the additional condition
thatH be triangular.

3.7 Lemma. Let A be a matrix inF[x]™" of rankr and with the degrees of the entries bounded
by d, and leti (I{1, ...,r —1}. Thenthere is a polynomiat; in n(n — 1)/2 variables such that if
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(1) Rin F[x]™"is unit lower triangular,
(2) H is the rav echelon form ofAR,
(3) si* is thei-th determinantal divisor oA,

thenH is upper triangular ansf = |'|ij=1 h; j, unless then(n — 1)/2 entries bel the diagonal in
R form a root ofzz. The degree ofr is no more thani2d +1i.

Proof: We first shov that if R has indeterminate entries (as in Lemma 3.6) then the statement is
true unconditionally wer F(p)[x]. The polynomial 7z is then chosen such that the computation
with a specialization of thg;; leads to the same decisions, in particular the same GCDs.

First it easy to she that for indeterminate entries R the firstr columns ofAR are lin-
early independentThusH computed wer F(p)[x] is triangular Letl = {1, ...,i} and letA' =
AR The follonving sequence of equalities hold, each of which will be established.b&lote
that all GCDS ae taken in the domain of polynomialsxrover the fieldF (o).

H = ?D%P(H L1) = ?D%P(A’L,I) (A)
O O

= GEZDD 2 ARy O (B)
e O

= GE:D(GS:D(AL,J) PL) ©)

= GLCJD(AL,J)GLCD(pL) (D)

= GCD(A\ ;) = s (E)

(A) SinceH and A" are rav equivdlent, Theorem 2.1, (2) applies here. (A)=(B) This is the
Cauchy-Binet formula for a product of matrices:
XY)L, = 3 X_,Yy, for XOF™" YOF™ LOCM, | OCK. (F)
Joer
(B)=(C) For eachL, lemma 3.6 is applied to the sum, yielding a multiplier which we demate

Note thatp, is irreducible inF[p, x]\ F[x], oris 1. (C)=(D) ler L, andL, in the range of. we
have

GCD(GS:D(ALLJ)1 pL,) =1,
again computed i (p)[x]. This is because,,, if it is not 1, is not an element &f[x], whereas

all A_ ; are, and hence their GCD is as well. Therefore, the GCD of the products is the product
of the GCDs of the mutually relaé pgrime factors. (D)=(EWe daim that GCD (p.) =1, agan
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computed wer F(p)[x]. First, we obsem that since thep, are irreducible wer F[p, ], their
GCD over F(p)[X] is either 1 or the polynomials are all multiples by a scalaFimf one
another Now suppose to the contrary that the latter is the case. In other words,

ZJ AL,J RJ,I
2.5 Aw,aRy,

which by the monomial structure mof the two sums leads to the existence of a multipltier,
OF such that

OF, L, MOC™,

AL ;=0 mAw,, forall J.

Now let L, OC", Jo OC/, such thatA_ ; # 0, that isL, and J, select a square non-singular
matrix A of maximal rank fromA. Then

det(Ac 5o, 00, ) =0, G)
card(C)=card{)=i

provided there are at least awows in this determinant, which are linearly dependent by the
above. This is true for >i. Howeve, the matrix in (G) cannot be singulance it is formed
from the non-singular matri@ by computing all its by i minors. D justify this we emplyp the
Cauchy-Binet formula (F) to obtain the following identity:

oD Qa0 o
“Iloer 5o )L’Jﬂm{,jmc{ )

r r
Therefore, thei() by (i) matrix in (G) is irvertible, a contradiction to its determinant being 0.

The polynomialz is nav derived first from lemma 3.5 such that the relationship

GE:D(A’L' | ) = GLC?]D(AL J)

is preserved byvaluation, and second that the firstolumns ofA’ remain linearly independent.
O
Incidentally we haveresolved a question on the coefficient size of multipliers.

3.8 Corollary. For polynomial matrices er the rational numbers, there exist unimodular pre-
and post multipliers for the Smith normal form, whose entrigs kaefiicients of binary length
polynomial in the dimensions and cheknt lengths of the input matricess

4. Rational Canonical Formsand Parallel Similarity Testing

We first introduce the rational canonical form of a square mairhe companion matrix
Cf(x) of

f(x) = x? + cq x4t + MG cq OF[X].

is defined as
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|:|O D]D _Co |:|
01 o mo -, U
O O
9= q: 0 :
20 MO 1 0 —cysp
|:|O a0 0 1 —Cy-1 [

A matrix C is in rational canonical formif C is block-diagonal with companion matrices on its
diagonal blocks,

C = dlag(C fr(x)r-= Cfm(X))

and f;(x) divides f;.;1(x) for all 1<i < m—-1. We havethe following lemma, cf [5],.Chapter
VI, or [8], Chapter S1.

4.1 Lemma. Let A, B OF™".

(1) Ais similar toB if and only if xI — Aandxl — B are equalent, they must hae the same
Smith normal forms.

(2) Letdiag(s,(X) ,..., $(x)) be the Smith normal form off — A. ThenC, = diag(Cs (x) »- -,
Cs,(v) is a rtional canonical form similar té.

(3) C, is the only matrix in rational canonical form that is similarAo In particular, A is
similar toB if and only ifC, = Cg.

The non-constant wariant polynomials ofxl — A, sp_1(X) ,..., $(X), m< n, are called
theinvariant factos of A. The abwe lemma implies that tavmatrices are similar if and only if
the hae the same set of variant factors.

We onstruct the rational canonical forr@g andCg via the parallel algorithm for Smith
normal forms. Ais not similar toB if C, # Cz. We haveestablished the following theorem.

4.2 Theorem. Similarity and non-similarity of matrices iIR™" is for F = Q andF = Fq in
(properly Las-¥ga) RNC?.

If Ais proven amilar to B, it is sometimes desired to obtain a transforming mafrsuch
that B = T"*AT. Rather than trying to soévthe n?> by n? system AT =TB in T, which with
sparse methods [22], still requir€§n®) field operations, our Smith form algorithm provides a
better approach. For we also obtain the multipliers, namely

UA()(XI = AVA(X) = Ug(X)(XI = B)Vg(X).

ThenT =Vg(B)VAi(B) [5], Chapter VI, §5, wher¥g(x) and V,*(x) are interpreted as polyno-
mials in x with matrix coeficients to the left ofx. Notice thatV,}(B) =V(B)™*,® which

@ Geoge Labahn (4 August 1994) points to an error in thigument. Instead,T = P(B) where
P(x) = Vg(X)Va(X), as Gantmacher states. The sequential running ti@(@i?) state at the end of the para-
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reduces the computation via a matrix multiplication anerge to ®auatingV, andVg at B. It
can be shown that the Smith normal form algorithm in this case produces multipliegged de
O(n), so from the multipliers we can obtainsequentially inO(n*) field operations, or in paral-
lel in O(log(n)?) time.

Finally, we wish to mention a corollary to our theorem that answers the sequential com-
plexity of similarity and is a consequence of the\abdgorithm and the deterministic polyno-
mial-time construction of Smith normal formegeo Q[x] [13], Theorem 4.1.

4.3 Corollary. The problem of similarity of matrices @"" is in sequential polynomial-time.
5. Parallel Jordan Normal Form Computation

We row oonsider the parallel construction of the Jordan normal form of a mAtifik
F™". That form is a block-diagonal matrix similar fawhose diagonal blocks are one-sided
band matrices of the form

04 1 0 MO0 00
0 0
g0 A1 'O
[] 0
(R 10
[] ]

00 0 0 M0 A

where); is an eigewalue of A. The Jordan normal form is unique up to permutation of the diag-
onal blocks. Different blocks may h& the same eigemalue and/or the same sizén fact, each
n; by n; block corresponds to axlementary diviso(x — A;)" of A. The elementary divisors are
simply the maximal powers of linear factors of thearmant factors ofA. We refer, e.g., to [5],
Chapter VI, 86, or [8], Chapter S1, for proofs of thesg#d. Theonly complication in formulat-
ing an algorithm for finding the Jordan normal form is thatan lie in an algebraic extension of
F and there is no unique way to represgntif we assume thaF already contains the eige
ues ofA and that the distinct eigealues are also gen as nput, therwe can in parallel find the
elementary divisors by polynomial division from thevamant factors of A. Notice that the
invariant factors are already kwa to be correct via the verification Gf,. We havethe follow-
ing lemma.

5.1 Lemma. Given A OF™", F afield, and gien thek < n distinct eigemaluesA; OF of A, 1
<i £k, then the problem of computing the Jordan normal férof A is in (properly Las-¥ga)
RNC for F being an algebraic extension of the prime fi€dsndF .

The abwe lemma has the obvious weakness that the splitting field of the characteristic
equation ofA is required for the construction df The structure o, that is the degrees of the
elementary divisors, can be found by squarefree decomposition and GCD operations on the
invariant factors. Letus male this process more formaR squarefee relatively prime basigh;

graph cannot be obtained in this way (E.K.ybdiober 17, 1997).
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,..., W} O F[x] for a set of polynomialsd; ,..., ¢,} O F[x] satisfies

(1) h;issquarefree for&i <.

(2) GCD{, hj)=1forl<i<j<l.

(3) Forall 1< j <mthere exist integerg ; 20, 1<i <1, such thatg; = |_|i|=1 hie"j.

These bases are, of course, not unique since the refinemenvetf dagis by factoring some of

its elements alays preserves the required propertiebowever, the unique coarsest such basis,
thestandardbasis, can be found by squarefree decomposition and iterated GCD operations as we
describe bely, e also [11], 83 for a sequential algorithwile remark that wer fieldsF of pos-

itive characteristicp the squarefree decomposition process is not purely ratidial.shall
assume that our fields are perfect gnith roots can be tak. Thisis, of course, true fofF = F,

the parallel cost op-th roots beingO(log g/p) arithmetic operation irF,. (If for q = p' we
chooserF, = F[y]/(w[y]) with w[y] irreducible inF ,[y] of degeet, then one canven compute

p-th roots in log(t) +log(p) parallel depth on a circuitver F, [4].) Underthese assumptions,

both GCD and squarefree decomposition of polynomialsN&ih[6].

We row devdop the algorithm. First we shothat squarefree reladly prime bases may
be “merged” rapidly in parallel. Let the bases Ipg{and {q;}. The entries of the meed basis
arer; ; = GCD(p;, q;), pf = p/l1;r,;, and q? =q;/[1;r;;. Unit elements may be discarded.
Since the gien basis elements are reladly prime and squarefree, it is clear that thes pelyno-
mials are also.Ther; ; may be computed simultaneously@glog?(n)) time. Then thepi* and
q? are calculated, doing the multiplications@@log(n)) parallel steps, again using total parallel
time O(log?(n)). Hencewe have:

5.2 Lemma. The squarefree relagly prime bases for tavsets of polynomials(z; andG,, can
be used to construct a squarefree nahtiprime basis fos;0G, in NC?.

Now we may use this “merging” to construct the standard squarefreeveblgirime basis for a
given st of polynomials §, ,..., g,}. First compute the squarefreactorization of eacly;.
The squarefree factors are relaly prime, so this is also a squarefree retyi prime basis for
{9} Now the n bases may be ngzd in pairs to forrm/2 bases for pairs,gf, g,1}. Iterating
this process log) times yields the desired basis.

5.3 Theorem. To compute the standard squarefree reéitiprime basis of polynomialsy , ...,
gn}isinNC2.
This answers a question posed by von zur Gathen [7], Remark 6.8. A similar solution was dis-

covered independently in [1], Section 2.1.

We reed such a basis for thevaniant factorss, ,..., s, O F[x] of A, which satisfy the
additional condition thas; dividess,;, i < m, so hat aly factor ofs, occurs to at least the same
exponent ins;,;. Because of this the basis construction can be streamlinedvbameThe
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meiging can be done so that at each step bases are constructed for setgaat factors with
adjacent indices from smaller sets with the same prop&hgn the divisibility property enables
one to eliminate some of the computatior@pecifically if { p;} is the square free reladly
prime basis for §, ,..., §,} and {q;} is the basis for ., ,..., .}, then (using the abe rota-
tion) pi* need not be computed and = GCD(p;, g;) need not be computed when the minimal
exponent ofp; in {s ,..., §,} is greater than the maximal exponent of {in { Sc+1 ,..., S.}-
Those GCDs are necessarily units.

Let {h;} be the squarefree relasly prime basis constructed from thevanant factors of
A. Theh; are defining polynomials for eigesdues A; , whose multiplicities in all ivariant fac-
tors are the same. The multiplicity &f, in s; is that ofh; in s; and can be easily kept track of
during the merge process. Thus we cam ¢he Jordan form as follows.

5.4 Corollary. Given A O F™", F = Q or F,, we @an compute withilNC® from the ivariant
factors of A squarefree pairwise reladly prime polynomialsh;, degh;) = ki, 1<i <1, and the
symbolic Jordan normal formh of A, in which k = k; + OO k,,, distinct symbols; ., 1<« <
ki, take the place of thé distinct eigemalues of A, with the understanding thaf(4; ) = 0.

The symbolic Jordan normal form as described in theaalh®orem appears the best we
can hope to obtain by rational operatioMge would like to ald that ag squarefree relately
prime basis K, ,..., h} gives rise to a rational form similar t4,

diag(chl(x)q,l yeeey Cnl(x)el,m),

whereg, ; is the multiplicity ofh; in s;. If theh; are the irreducible factors sf; then the canon-

ical form is known in the literature as tpemary rational canonical form. Our standard basis
gives rise to a canonical form between the rational and primary rational one. It is the finest of
such forms that is obtainable by purely rational operatié&@h blockCy, ., can be replaced

by ane ; by & ; matrix of blocks in “block-Jordan” form



OCh | O OO 0 O
0 0
g9 Chw | 0
0 E
0 - | O
o 0
50 0 0 mMOCyn

Of course, if théh; are chosen the linear factorsspf, then we get the Jordan canonical form that
way. All this follows from the fact that all these block matricegehthe same weriant factors.

6. Conclusion

Similarity of matrices and the rational and Jordan canonical forms play an important roly
in the study of linear operators on finite dimensioredtor spacesWe have provided parallel
algorithms for this theory by applying our parallel solution for the soméésser-knawn Smith
normal form problem.Our algorithms are also of interest as sequential methods to sole
problems in this theory.

Acknowledgement: The authors lik to express their gratitude to the anonymous referee for cor
recting seeral errors in the original submission.
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