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Abstract

An algorithm is developed for the factorization of a multivariate polynomial represented by a
straight-line program into its irreducible factors. Thealgorithm is in random polynomial-time as a func-
tion in the input size, total degree, and binary coefficient length for the usual coefficient fields and outputs
a straight-line program, which with controllably high probability correctly determines the irreducible fac-
tors. It also returns the probably correct multiplicities of each distinct factor. If the coefficient field has
finite characteristicp andp divides the multiplicities of some irreducible factors our algorithm constructs
straight-line programs for the appropriatep-th powers of such factors.

Also a probabilistic algorithm is presented that allows to convert a polynomial given by a straight-
line program into its sparse representation. This conversion algorithm is in random-polynomial time in
the previously cited parameters and in an upper bound for the number of non-zero monomials permitted
in the sparse output.Together with our factorization algorithm we therefore can probabilistically deter-
mine all those sparse irreducible factors of a polynomial given by a straight-line program that have less
than a given number of monomials.We show that this result is valid without any restriction on the char-
acteristic of the coefficient field.

The first section of this paper also summarizes the history of the polynomial factorization problem,
and the last section discusses what questions for this problem remain to be resolved. We hav e also
attempted to provide an extensive list of references on the subject, so that this paper can serve as a starting
point for someone without previous knowledge in polynomial factorization.

1. The Problem of Factoring Polynomials

* This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-04391
and by an IBM Faculty Development Award. Theresults of §6 were originally announced in the paper “Uniform
closure properties of p-computable functions” [32]. This paper appears inRandomness and Computation, edited by
S. Micali, vol. 5 of the Advances in Computing Research series, JAI Press Inc., Greenwich, Connecticut,
pp. 375-412 (1989).
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“The invention of divisors of universal quantities,” what we refer today as the computation
of factors of polynomials, was already taught by Newton in 1673 and the method subsequently
published in his Arithmetica Universalis [46]. In 1882 Kronecker [36], pp. 10-13, reduced the
problem of factoring multivariate polynomials over algebraic number fields to factoring univari-
ate polynomials over the integers, for which he applied Newton’s algorithm. Van der Waerden’s
influential text [63] discusses those algorithms and suggests that for larger problems they are not
very practical. Nonetheless, early computer programs realized this classical approach [23] and
verified that it is quite inefficient. Theensuing search for efficient algorithms to factor polynomi-
als is a fine example in the discipline of the design and analysis of algorithms as well as com-
plexity theory and exhibits many of the techniques developed for these subjects.

In 1967 Berlekamp [2] found an algorithm to factor univariate polynomials over moder-
ately sized finite fields in time proportional to the cube of the input degrees. Berlekamp’s algo-
rithm is the first evidence that polynomial factorization is not as complex a problem as is integer
factoring. However, his algorithm performed badly when applied to large finite fields.
Berlekamp’s own resolution of this problem in 1970 [3] is remarkable in that by introducing the
selection of random field elements the algorithm could be exponentially sped up. Thus the fac-
torization algorithm over large finite fields became one of the forerunners of “randomized” algo-
rithms. We also refer to Rabin’s 1976 version of this algorithm [48] for his appealing probability
analysis, and to the book [35], §4.6.2, for a discussion of additional work. Recently, the problem
of removing the random choices from the algorithm without sacrificing polynomial running-time
has been resolved for several special cases by help of interesting new ideas, and we refer to the
two exemplary papers [53] and [20].The performance in practice of the randomized algorithms
for univariate polynomial factorization over large finite fields is quite satisfactory and, at the
moment, far superior to any known deterministic algorithms.

The advances in factoring polynomials modulo a prime integer suggested to apply these
algorithms to factoring polynomials with integer coefficients as well. Zassenhaus in 1969 [67]
pointed to the “Hensel Lemma” [18], §4, as a means to reconstruct the integral factors from mod-
ular ones. Unlike the factorization algorithm for polynomials over finite fields, however, the
reconstruction procedure for the integral polynomial factors from the modular ones can have
exponential complexity due to “combinatorical explosion” [3] and [34].“Probabilistic analysis”
[45] and [6] shows, however, that this problem does not arise on “average” inputs and implemen-
tations of the Berlekamp-Hensel algorithm for factoring univariate integral polynomials perform
quite well, except for very special inputs.However, such inputs can arise and are, in fact, gener-
ated by Kronecker’s reduction from algebraic number fields, for instance.In 1982 a remarkable
diophantine algorithm was found by A. K. Lenstra, H. Lenstra, and Lovász [42] to overcome the
combinatorical explosion by a polynomial-time construction.Several more classical problems
could then be shown to also belong to the polynomial-time complexity class, for example solv-
ability by radicals [38], factorization of univariate polynomials over algebraic number fields [60]
and [37], and the multivariate polynomial factorization problem.

Already in 1971 Musser [44] demonstrated that “Hensel Lifting,” as the procedure apply-
ing the Hensel lemma is now called, can be also applied to reconstruct multivariate from univari-
ate factors. Combinatoricalexplosion is still a problem, but not all mappings to the univariate
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factorization are categorically bad. This is a consequence of the famous Hilbert Irreducibility
Theorem [19], and the first polynomial-time reduction by Kaltofen found in late 1981 is based on
an effective deterministic version of that theorem [24], also in [26], §7.A number of different
polynomial-time reductions from multivariate to univariate polynomial factorization are known
today [4], [13], [26], [31], [40],and [41]. All these algorithms assume that all possible terms
count towards the input size, in other words the multivariate polynomials are represented
“densely.”

If the number of variables in the multivariate factorization problem is allowed to grow with
the problem size, then the “sparseness” of the input and output polynomials need to be taken into
considerations. Wang upon considering the very sparse examples presented by Claybrook [5]
invented several heuristics to cope with the intermediate “expression swell” occurring for sparse
inputs and outputs [64].Zippel in 1979 carried these considerations further by introducing ran-
domization into the Hensel lifting process [69]. In order to make a rigorous analysis of the fail-
ure probabilities, an effective probabilistic version of the Hilbert irreducibility theorem was
needed. Althoughalready Heintz and Sieveking [17] had provided such a theorem for alge-
braically closed fields, in 1983 von zur Gathen proved a suitable version for arbitrary coefficient
fields [11] and applied it to the sparse factoring problem [14]. In retrospect, Kaltofen’s effective
Hilbert irreducibility theorem also lent itself to an even simpler probabilistic version [27]. In
[14] sparse polynomials are described that possess irreducible factors with super-polynomially
more terms. These examples imply that any sparse Hensel Lifting scheme can have more than
polynomial running time on certain inputs. It became clear that to to deal with this phenomenon
the sparse representation had to be replaced by a more powerful one.

The usage of “straight-line programs” as a means to compute certain polynomials has been
developed in the framework of complexity theory in the past decade, refer for example to [57],
[58], [47], [59], [50],and [16]. In 1983 von zur Gathen [11] combined his probabilistic Hilbert
irreducibility theorem with the probabilistic method of straight-line program evaluation [54] and
[21] to find the factor degree pattern of polynomials defined by straight-line computations.A
previously known operation on polynomials in straight-line representation is that of taking first
order partial derivatives [1]. Althoughthere is evidence that other operations such as higher par-
tial derivatives are inherently complex [62], the greatest common divisor problem of polynomials
in straight-line program representation is in probabilistic polynomial-time, as shown by Kaltofen
in 1985 [33]. In this paper we show that straight-line programs for the irreducible factors of a
polynomial given by a straight-line program can also be found in probabilistic polynomial-time.
With Zippel’s 1979 sparse polynomial interpolation algorithm [68] our factorization result
resolves all problems left open in [69], [14], and [28].We note that, unlike the randomized solu-
tions for factorization of univariate polynomials over large finite fields, the probabilistic solutions
are of the Monte-Carlo kind, “probably correct and always fast.” The failure probability can, of
course, be made arbitrarily small.
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2. Discussion of Results

A straight-line program is a sequence of arithmetic assignments to new variables, the
operands of which are either constants, indeterminates, or previously assigned variables. The
operators allowed are addition, subtraction, multiplication, and division. Ouralgorithms treat
this straight-line program as a data structure to represent the polynomials computed by them.
This representation can define in polynomial-space families of polynomials with exponentially
many individual terms, such as determinants by Gaussian elimination sequences.Unlike in the
algebraic complexity theory applications, where a straight-line program is a model of computa-
tion, our algorithms must not only produce straight-line results of polynomial-length but also
perform the transformations efficiently, that is in random polynomial-time.

It appears proper that we explicitly define the model of algebraic computation in which our
algorithms can be formulated. Our model is thesequential probabilistic algebraic random
access machine(RAM), with which we not only manage computations over an abstract algebraic
domain but also resolve the question of random element selections from the abstract fields.For
concrete domains such as the rational numbers we also establish binary polynomial running time,
ev en if then the algorithms would be formulated on the probabilistic Turing machine model.We
think that the algebraic RAM model is in the spirit of new algebraic computing languages such
as Scratchpad II [22].

The factorization algorithm presented here takes as input a straight-line program comput-
ing a polynomial and outputs a straight-line program and multiplicities for irreducible polynomi-
als that with controllably small error probability determine the irreducible factors of the input
polynomial. If the multiplicities are divisible by the characteristic of the coefficient field, our
output is slightly different. Thefactorization algorithm calls a bivariate polynomial factorization
procedure and is therefore only effective and of polynomial running time for the usual coefficient
fields. We measure the running time as a function in the input size and input polynomial degree.
Over the rationals, for instance, we get an algorithm of binary complexity that is a polynomial
function in the binary size of the straight-line program determining the input polynomial, in its
total degree and the size of the numerators and the common denominator of its rational coeffi-
cients, and in the logarithm of the inverse of the probability that the output program incorrectly
determines the irreducible factors or their multiplicities.

The key idea of our algorithm, which we will present and analyze in §5, in addition to pre-
viously known approaches, is to employ Hensel lifting but to replace the p-adic expansion of the
coefficients by the expansions into homogeneous parts of the minor variables. We thus lift all
minor variables simultaneously and avoid the variable by variable lifting loop that would com-
pound programs of exponential size. This method can be viewed as a combination of Strassen’s
trick for eliminating divisions in straight-line computations [57] and Yun’s Hensel lifting scheme
[66]. If the coefficient field is of positive characteristicp and the multiplicity of an irreducible
factor is divisible by p, there arises an additional problem.We can, however, compute a
straight-line computation for the appropriatepk-th power of such a factor.

For completeness we present in §3 our version of Zippel’s conversion algorithm [68] from
straight-line to sparse polynomial representation.Our algorithm is of polynomial complexity in
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the size of the straight-line program defining the input polynomial, in its total degree, and in an
upper boundt for the maximal number of monomials permitted in the sparse output. The algo-
rithm produces either a sparsely represented polynomial with no more thant monomials or a
message indicating that the input polynomial has more thant terms. Thealgorithm is Monte-
Carlo and can give a wrong answer, that with controllably small probability. Over the rational
numbers the algorithm is of binary polynomial running time also in the coefficient size of the
input polynomial and the logarithm of the inverse of the failure probability. We believe that our
conversion algorithm is a general and useful way in which Zippel’s sparse interpolation scheme
can be formulated.

Let us now come back to the question of factorizing into sparse polynomials.The exam-
ples causing super-polynomial blow-up for the size of the answer have the property that many
other factors are very sparse. In general, one may wish to retrieve the sparse factors as such and
leave the dense factors in straight-line format.Fortunately, the sparse conversion algorithm dis-
cussed before allows to do just that.More precisely, giv en a bound t we now can probabilisti-
cally determine in polynomial-time also int the sparse format of all irreducible factors with no
more thant terms, this without any restriction on characteristic and multiplicities.Moreover, the
running time is always polynomial even if we were unlucky in our choice of evaluation points.
We think that this finally settles the question of sparse factorization in a very satisfactory manner.

The next section introduces the model of probabilistic algebraic RAMs, defines straight-
line programs, and summarizes results needed from other sources.In §4 we present the conver-
sion algorithm to sparse format and in §5 the theorems on probabilistically preserving the factor
degree pattern.§6 contains the straight-line polynomial factorization algorithm.We conclude in
§7 with a discussion of open problems in connection with the polynomial factorization problem.
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3. Definitions and Previous Results

We now repeat the main notions and results presented in [33].We denote the field of ratio-
nal numbers byQ and the finite field withq elements byFq. An algebraic RAM over F, F a
field, has a CPU which is controlled by a finite sequence of labelled instructions and which has
access to an infinite address and data memory (see fig. 1).

3 √2−1

Input Medium Address Data
↓ Memory Memory

CPU 1: READADDR 2 → 1 5  1 ?

2: READ −2 2 3 2 ?

3: CONSTADDR 1,2 3 ? 3 √2−1

4: ADDADDR 1,2 4 ? 4 ?

5: CONST −1, √2 5 ? → 5 2+ √2

6: DIV 5, −2 6 ?  6 ?

7: PRINT −1
8: HALT

↓
2+ √2 EOT

Output Medium

Fig. 1: Algebraic RAM over Q(√2).

The split into two memories, one that facilitates pointer manipulation for array processing
as well as maintaining a stack for recursive procedures, and another memory in which the alge-
braic arithmetic is carried out, is also reflected in other models for algebraic computations such
as the parallel arithmetic networks in [12] or by the omnipresence of the built-in type Integer in
the Scratchpad II language [22].Each word in address memory can hold an integral address and
each word in data memory can store an element inF . The CPU also has access to an input and
an output medium. The instructions in the CPU may have one or two operands which typically
are integers. Theoperands refer to words in address or data memory depending whether the
instruction is an address or a data instruction.Indirect addressing is indicated by a negative
operand. For completeness the micro-code for a full instruction set is given in fig. 2.

The arithmetic timeand space complexity of an algebraic RAM for a given input are
defined as the number of instructions executed and the highest memory address referenced,
respectively. It is not always realistic to charge for each arithmetic operation inF one time unit.
We will consider encoding data in binary and define as size(a), a ∈ F , whereF is a concrete
field such asQ or Fq, the number of bits needed to representa. Then the cost and space of an
arithmetic instruction depends on the size of its operands.Thebinary time and space complexity
of an algebraic RAM over F is derived by charging for each arithmetic step inF as many units
as are needed to carry out the computation on a multitape Turing machine. Notice that we
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Instruction Description

ADD{ADDR} i , j Opi ← Opi + Opj (see below).
SUB{ADDR} i , j Opi ← Opi − Opj .
MULT{ADDR} i , j Opi ← Opi × Opj .
DIVADDR i , j Opi ←  Opi /Opj .
DIV i , j Opi ← Opi /Opj .
CONST{ADDR} i , c Opi ← c.
MOVE{ADDR} i , j Opi ← Opj .
JMP{ADDR} l Execution continues at program labell .
JMPZ{ADDR} i , l If Opi = 0 then execution continues at program labell .
JMPGZADDR i , l If Opi > 0 then execution continues at program labell .
READ{ADDR} i The input medium is advanced and the next item is read into

Opi .
PRINT{ADDR} i The output medium is advanced andOpi is written onto the

medium.
HALT An EOT marker is written onto the output tape and execution

terminates.

AM[ i ] address
DM[ i ] data

if i > 0 and instruction

AM[AM[ −i ]] address
DM[AM[ −i ]] data

if i < 0 and instruction
Opi =

AM = address memory, DM = data memory
AM[ −i ] must be positive, otherwise an interrupt occurs.

Fig. 2: Summary of algebraic RAM instructions

generally assume that the field arithmetic can be carried out in polynomial binary complexity
with respect to the size of the operands. What that implies in particular is that elements inFq,
say, always requireO(log(q)) representation size indendent whether they are residues of small
integral value or not.For READ, PRINT, CONST, MOVE, or JMPZ instructions we charge as
many units as is the size of the transferred or tested element.

We also apply this “logarithmic cost criterion” to the address computations and assume
that every address is represented as a binary integer. The binary cost for performing address
arithmetic is again the Turing machine cost.For indirect addressing we add the size of the final
address to the binary time and space cost of the corresponding instruction.We note that in most
circumstances the binary cost for performing address arithmetic is by far dominated by the
binary cost of the algebraic operations and that for all practical purposes the largest storage loca-
tion is of constant size.But our more precise measure has its advantages. First,all binary poly-
nomial-time algorithms on algebraic RAMs are also polynomial-time in the Turing machine
model. Second,the true binary complexity is measured if we can use the address memory for
more than address computations, e.g. for hashing with sophisticated signatures.Another such
example is that of selecting random field elements.
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A probabilisticalgebraic RAM is endowed with the additional instruction

RANDOM{ADDR} i , j

with the following meaning.Into Opi an element∈ F (or address) is stored that was uniformly
and randomly polled from a setR of elements (or integers) with card(R) equal to the address
operandOpj (see fig. 2 for the definition ofOp). Theselection ofR is unknown except all its
elementsa ∈ R have size(a) = O(log Opj). This model of randomized algebraic computation
overcomes the problem of how to actually generate a “random” rational number, say, and, as we
will show later, the failure probabilities can in our circumstances be fully analyzed.Now we
only note that for a non-zero polynomialf the probability

Prob(f (a1,..., an) = 0 | ai ∈ R) ≤
deg( f )

card(R)
, (†)

see [54].

Our algorithms will read as input, produce as intermediate results, and print as output
straight-line programs. Let us first precisely define what we mean, see also [56].

Definition: Let F be a field,X = { x1 ,..., xn} a set of indeterminates.ThenP = (X, V, C, S) is
analgebraic straight-line program over K = F(x1 ,..., xn) if

(SLP1) S = { s1 ,..., sk} ⊂ F , V = { v1 ,..., vl }, V ∩ K = ∅. X is called the set ofinputs, V the
set of (program)variables, S the set ofscalars.

(SLP2) C = (vλ ← v′
λ λ v′′

λ)λ=1,..., l with λ ∈ {+, −, ×, ÷}, v′
λ , v′′

λ ∈ S ∪ X ∪ { v1 ,..., vλ−1} f or
all λ = 1 ,..., l. C is called thecomputation sequenceandl the lengthof P, l = len(P).

(SLP3) For all λ = 1 ,..., l there exists sem(vλ) ∈ K , thesemanticsof vλ , such that

sem(a) = a if a ∈ S∪ X,
sem(vλ) = sem(v′

λ) ± sem(v′′
λ) if λ = ±,

sem(vλ) = sem(v′
λ) sem(v′′

λ) if λ = ×,
sem(v′′

λ) ≠ 0 and sem(vλ) = sem(v′
λ)/sem(v′′

λ) if λ = ÷.

Theset of elementscomputed byP is sem(P) = ∪l
λ=1 {sem(vλ)}.

We say f ∈ F [x1 ,..., xn] is given bythe straight-line programP = (X, V, C, S) if f ∈
sem(P). Noticethat we use the notationf ∈ sem(P) with the implied understanding that we also
know the vλ ∈ V with f = sem(vλ). Straight-lineprograms are originally meant to be evaluated
at pointsφ(xi ) ∈ F . It can happen that such an evaluation is impossible due to a division by zero.
We say thatP is defined atφ: { x1 ,..., xn} → F if a division by zero does not occur during evalu-
ation ofP atφ(xi ) in place ofxi , 1 ≤ i ≤ n.

Here we will not describe a concrete data structure that can be used to represent straight-
line programs on an algebraic RAM. It is fairly easy to conceive of suitable ones, e.g. labeled
directed acyclic multigraphs could be used.A more intricate data structure was used for the first
implementation of our algorithms and is described in [8]. At this point it is convenient to define
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theelement sizeof a straight-line program as

el-size(P) =
v*

λ ∈ X ∪ S, * ∈ { ′, ′′}
Σ size(v*

λ ).

Notice that the actual size ofP is in bits

O(len(P) log len(P) + el-size(P)),

since it takes size(vλ) = O(log(λ)) bits to representvλ in address memory.

We now reproduce the input and output specifications of those algorithms presented in
[33], which we will need for the algorithms discussed in this paper.

Algorithm Zero-Division Test

Input: A straight-line programP = ({ x1,..., xn}, V, C, { s1,..., sm}) of lengthl over Q(x1,..., xn),
aν ∈ Q, 1 ≤ ν ≤ n, and a failure probabilityε << 1.

Output:An integer p such thatP is defined atψ with ψ (xν ) = aν mod p, ψ (sµ) = sµ mod p, or
“f ailure”. Thelatter occurs with probability <ε in caseP is defined atφ given by φ(xν ) = aν .

Algorithm Evaluation

Input:As in algorithm Zero-Division Test. Furthermorean indexλ , 1 ≤ λ ≤ l , and a boundBλ .

Output:Either “failure” (that with probability <ε in caseP is defined atφ ) or eλ = sem(φ(vλ))
provided that

|num(eλ)| , |den(eλ)| ≤ Bλ.

Both algorithms have a binary complexity of order(l log(B) log(1 /ε)O(1 ) on a probabilistic
algebraic RAM over Q, whereB = max(size(aν ), size(sµ), Bλ ) [33].

Algorithm Polynomial Coefficients

Input: f ∈ F [x1 ,..., xn] giv en by a straight-line programP = ({ x1 ,..., xn}, V, C, S) over F(x1

,..., xn) of lengthl , a failure probabilityε << 1, and a boundd ≥ degx1
( f ).

Output:Either “failure”, this with probability <ε , or a straight-line programQ = ({ x2 ,..., xn},
VQ, CQ, SQ) over F(x2 ,..., xn) such that

{ c0,..., cd} ⊂ sem(Q) and len(Q) = O(l d + M(d) logd),

wherecδ ∈ F [x2 ,..., xn] satisfies

f =
d

δ =0
Σ cδ (x2,..., xn)x

δ
1 .

Here and laterM(d) denotes a function dominating the time for multiplying polynomials inF [x]
of maximum degreed. Notice that for arbitrary fields the best known upper bound forM(d) is
O(d log(d) log log(d)) [51].
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The running-time of this algorithm is summarized by the following theorem, which is typi-
cal for our theory.

Theorem 3.1: Algorithm Polynomial Coefficients does not fail with probability > 1 −ε . It
requires polynomially many arithmetic steps ind andl on a probabilistic algebraic RAM over F .
For F = Q and F = Fq its binary complexity is also polynomial in el-size(P) and log(1 /ε ) [33],
Theorem 5.1.

The Polynomial Coefficients algorithm requires the knowledge of a boundd ≥ degx1
( f ). If

no such bound is given, we can probabilistically guess the degree by running our algorithm for

d = 1, 2,4,...,2k, ⋅ ⋅ ⋅.

Let fk(x1 ,..., xn) be the interpolation polynomial that is produced for thek-th run. We then
choosea1 ,..., an ∈ R randomly and probabilistically test whether

f (a1,..., an) − fk(a1,..., an) = 0.

This test can be performed by a simple modification of the Zero-Division Test algorithm, and the
chance that the difference is falsely determined as 0 can be made smaller thanε . The probability
that the randomly selectedai certify the inequality off and fk can by (†) be made exponentially
close to 1.Of course, by further testingcδ (x2 ,..., xn) for zero,δ = 2k, 2k −1, ⋅ ⋅  ⋅ we can get a
probabilistic estimate for the actual degree degx1

( f ). This procedure has expected polynomial
running time in degx1

( f ), and can be made quite efficient by computing thefk incrementally [8].
The total degree off can be similarly estimated by testing degx1

( f̃ ), where

f̃ (x1,..., xn) = f (x1, x2 + b2x1,..., xn + bnx1)

with bi randomly selected [33], Lemma 5.1.A similar algorithm is also described in [11],
Remark 5.4.More general, one can even probabilistically determine the degrees of the numera-
tor and denominator of a rational function computed by the input program, and therefore one can
probabilistically test whether it computes a polynomial to start with, cf [30],. Corollary 4.1.
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4. Conversion into Sparse Polynomials

We now discuss our version of Zippel’s [68] sparse interpolation algorithm for converting
a polynomial from its straight-line to its sparse representation. Thesparse representationfor

f (x1,..., xn) =
(e1,..., en) ∈ J

Σ ce1,..., en
xe1

1 ⋅ ⋅ ⋅ xen
n , 0 ≠ ce1,..., en

∈ F , J ⊂ Nn

is the vector

((e1,..., en, ce1,..., en
))(e1,..., en)∈J.

Here N denotes the set of non-negative integers. We write mon( f ) = card(J), the number of
monomials inf , and skel( f ) = J, theskeletonor set of non-zero monomial exponents off . Zip-
pel’s algorithm is based on the idea that during the variable by variable interpolation process any
zero coefficient is, with high probability, the image of a zero polynomial.We first present the
algorithm for general fields.Extra difficulties arising from coefficient size growth are dealt with
afterwards.

Algorithm Sparse Conversion

Input: f ∈ F [x1 ,..., xn] giv en by astraight-line programP of lengthl . Furthermore, a boundd0

≥ max1≤i≤n {degxi
( f )}, the allowed failure probabilityε << 1, and an upper boundt ≤ (d0 +1)n for

the number of monomials permitted in the answer.

Output:Either “failure” (that with probability <ε ), or the representation of a sparse polynomial
with no more thant monomials, or the message “f has (probably) more thant monomials.” The
latter two outputs are correct with probability > 1 −ε .

Step R(Select Initial Evaluation Points): From a setR⊂ F with

card(R) >
1

ε
max


ndeg( f ) (d0 +1)n, (n(d0 +1)t +1) 2l+1 + ndeg( f ) (d0 +1)t



select random elementsa2 ,..., an ∈ R. Notice that if deg( f ) is not known one can use the crude
upper bound deg( f ) ≤ nd0.

Step L (Interpolation Loop):For i ← 1 ,..., n Do Step I. Then returnΣ ce1,..., en
xe1

1 ⋅ ⋅ ⋅ xen
n ,

ce1,...,en
≠ 0.

Step I (Interpolate One More Variable): At this point we have with high probability correctly
computed the sparse representation of

f (x1,...,xi−1, ai ,...,an) =
(e1,...,ei−1)∈Ji

Σ ce1,...,ei−1
xe1

1 ⋅ ⋅ ⋅ xei−1
i−1, 0 ≠ ce1,...,ei−1

∈F , Ji⊂Ni−1.

For i = 1 we hav eJ1 = {∅}. We need not knowc∅ = f (a1 ,..., an). Set

j i ← card({(e1,..., ei−1, δ ) |  (e1,..., ei−1) ∈ Ji, 0 ≤ δ ≤ de1,...,ei−1
}),

wherede1,...,ei−1
= min(d0, deg( f ) − e1 − ⋅ ⋅  ⋅ − ei−1).
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For k ← 1 ,..., ji Do
From the subsetR select random pointsbk,1, bk,2 ,..., bk,i ∈ R. Compute

gk,i = f (bk,1,..., bk,i, ai+1,..., an)

by evaluating P at φ k,i(xµ) = bk,µ , 1 ≤ µ ≤ i , φ k,i(xν ) = aν , i +1 ≤ ν ≤ n. If P is not defined
atφ k,i return “failure”.

Solve the j i by j i linear system

(e1,..., ei−1)∈Ji

Σ
de1,...,ei−1

δ =0
Σ γ e1,..., ei−1,δ be1

k,1 ⋅ ⋅ ⋅ bei−1
k,i−1 bδ

k,i = gk,i, 1 ≤ k ≤ j i, (†)

in the indeterminatesγ e1,..., ei−1,δ . If the system is singular, report “failure”.

Setce1,..., ei = γ e1,..., ei , where the RHS ranges over all non-zero components of the solution of the
above system. Noticethat the subscripts of these components define the setJi+1. If the number
of those non-zero coefficients becomes more thant, return “input polynomial has (probably)
more thant monomials.”

The challenging part is the verification of the failure and incorrectness probabilities.For
this, it is helpful to prove the following lemma.

Lemma 4.1:Let Ji ⊂ Ni , card(Ji) = j i < ∞. Then

∆ i = det([β e1
k,1 ⋅ ⋅ ⋅ β ei

k,i](e1,..., ei)∈Ji; k=1,..., ji )

is a non-zero polynomial inF [β1,1 ,..., β j i,i].

Proof: Simply observe that the monomial contributed by the main diagonal of the determinant is
unique.

We now hav ethe following theorem:

Theorem 4.1: Algorithm Sparse Conversion does not fail and outputs the correct result with
probability 1− 2ε . In that case it requires

O(n(l d0 t + d3
0t3))

arithmetic steps on a probabilistic algebraic RAM over a (sufficiently large) fieldF .

Proof: Each of thej i ≤ (d0 +1)t evaluation in step I requiresO(l ) arithmetic steps. Solving thej i

by j i system takesO( j3i ) steps. Noticethat this bound also includes setting up the linear system
from Ji andgk,i . Step I is executedn times, which shows the stated complexity.

We now analyze the probabilistic behavior of the algorithm.Let us first assume that the algo-
rithm does not fail. A correct answer is returned provided the system (†) captures for alli ev ery
non-zero monomial coefficient off (x1 ,..., xi , ai+1 ,..., an). Let

f (x1,..., xi,α i+1,...,α n) =
(e1,..., ei)∈Ĵi+1

Σ ĉe1,..., ei xe1
1 ⋅ ⋅ ⋅ xei

i ,



November 17, 1987

0 ≠ ĉe1,..., ei ∈ F [α i+1 ,...,α n], and let

σ i =
(e1,..., ei)∈Ĵi+1

Π ĉe1,..., ei, deg(σ i) ≤ mon(f ) deg( f ).

Notice that in general̂Ji+1 ⊇ Ji+1. But σ i(ai+1,..., an) ≠ 0 implies thatĴi+1 = Ji+1, which in turn
means that the unique solution to (†) must determinef (x1 ,..., xi , ai+1 ,..., an). Sincemon(f ) ≤
(d0 +1)n the probability

Prob(σ i(ai+1,..., an) ≠ 0 for all 1 ≤ i ≤ n)

is not less than

1 −
n

i=1
Σ deg(σ i)

card(R)
≥ 1 −

nmon(f )deg( f )

card(R)
≥ 1 −

ndeg( f )(d0 +1)n

card(R)
> 1 − ε.

We now estimate the failure probability. We define the events

E0 = {( a2,..., an) | P is definedat φ0(x1) = x1, φ0(xi) = ai, 2≤ i ≤ n}

and

Ek,i = {( bk,1,..., bk,i) | P is definedat φ k,i }.

As in [33], Lemma 4.2, we have

Prob(E0), Prob(Ek,i|E0) ≥ 1 −
2l+1

card(R)
.

Since j i ≤ (d0 +1)t we get

Prob(E0 ∩
i=1,..., n

k=1,..., ji

∩ Ek,i) ≥ (1 −
2l+1

card(R)
)

i=1,..., n

k=1,..., ji

Π (1 −
2l+1

card(R)
)

≥1−
(n(d0 +1)t +1)2l+1

card(R)
.

Now by lemma 4.1 for a given i the coefficient matrix for (†) is non-singular with probability≥

1 −
deg(∆i)

card(R)
≥ 1 −

deg( f ) j i

card(R)
≥ 1 −

deg( f )(d0 +1)t

card(R)
.

Thus all n arising systems are non-singular with probability≥ 1 − ndeg( f )(d0 +1)t/card(R).
Therefore, the algorithm fails with probability≤

1

card(R)


(n(d0 +1)t +1) 2l+1 + ndeg( f )(d0 +1)t


.

We wish to remark that the input parametersd0 andt need not be specified beforehand.In
§3 we have discussed how to probabilistically determinedi = degxi

( f ). In fact, the Sparse Con-
version algorithm runs more efficiently if we usedi in place ofd0 for the i-th iteration of step I.
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The parametert is used only to abort execution in casef has too many monomials or that we are
interpolating with unlucky evaluation points. By adjusting card(R) appropriately we can achieve
expected polynomial running time also in mon( f ) without the input parametert. In the context
of an actual computer algebra system we prefer our formulation of the algorithm, whose running
time is independent of bad random choices.

We now discuss the complications arising forF = Q. Our requirement is to accomplish
binary polynomial-time complexity. It is clear that we must include thecoefficient sizeof f ,

c-size(f ) =
(e1,..., en)∈skel(f )

max {size(ce1,..., en
)},

into our input parameters. One might think that all we have to do is use the Evaluation algorithm
of §3 inside the FOR loop of step I and adjust the failure probability accordingly. Unfortunately,
there exists a theoretical possibility that size(gk,i) is exponential inn. This would happen, for
instance, if all denominators ofce1,..., en

were distinct primes and mon( f ) were exponential inn.
A way to overcome this problem is to perform the entire conversion modulop, p an integer that
has been tested to be a prime with probability≥ 1 − ε [55], [49], and retrieve the rational coeffi-
cients of f by a continued fraction approximation from the coefficients of f mod p as in step C
of the cited Evaluation algorithm. The pseudo-primep must be selected such that also with
probability≥ 1 − ε , P is defined atφ(xν ) = xν , φ(s) = s mod p for all s ∈ S (cf. the Zero-Division
Test algorithm cited in §3), and such that

p ≥ card(R), 22c-size(f ) +1.

In practice, it is better to work modulopk at the danger of increasing the failure probability.
Then one avoids the generation of the rather large pseudo-primep, and one can also solve the
linear system (†)p-adically [8]. For the record, let us state the following theorem.

Theorem 4.2:For F = Q, algorithm Sparse Conversion, if used in conjunction with a probabilis-
tic primality test, the Zero-Division Test algorithm, and a recovery procedure for rational num-
bers from their modular images, can complete and determine a correct answer with probability≥
1 − 3ε . Its binary running time is polynomial inl , d0, log(1 /ε), t, el-size(P) and the additional
input parameter that is a bound for c-size(f ).

An interesting result concerning the conversion of a straight-line program to a sparse ratio-
nal function is a direct consequence of this theorem and the Numerator and Denominator algo-
rithm in [30].

Corollary 4.1: Let f /g be given by a straight-line programP, f , g ∈ F [x1 ,..., xn], GCD( f , g)
= 1, d ≥ deg( f ), deg(g), 0< ε << 1. In order to avoid ambiguity assume that the coefficient of the
lexicographically first monomial ing is 1. Provided the sparse representation off , respectively
g, has less thant monomials, it can be computed correctly with probability >1− ε on a proba-
bilistic algebraic RAM over F in polynomially many arithmetic steps in len(P), d, and t. In case
F = Q the binary running time is also polynomial in el-size(P), log(1 /ε ), and c-size( f ), respec-
tively c-size(g).
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Before we can apply theorem 4.2 to the Polynomial GCD algorithm in [33] we must intro-
duce a slightly more restricted notion of coefficient size off , that where the coefficients are
already brought to a common denominator. Assume that

ce1,..., en
=

ue1,..., en

u
*

, ue1,..., en
, u

*
∈ Z for all (e1,..., en) ∈ skel(f ).

Then thecombined coefficient sizeof f is defined as

cc-size(f ) = size(u
*
) +

(e1,..., en) ∈skel(f )
max {size(ue1,..., en

)}.

Now since the size of the coefficients of integral multivariate polynomial factors can be polyno-
mially bounded [15], Chapter III, §4, Lemma II, we obtain from the straight-line GCD algorithm
in [33] the following typical corollary.

Corollary 4.2: Let fρ ∈ F [x1 ,..., xn] be giv en by a straight-line programP, d ≥ deg( fρ), 1 ≤ ρ
≤ r , g = GCD1≤ρ≤r( fρ), 0< ε << 1. Provided the sparse representation ofg has less thant mono-
mials, it can be computed correctly with probability >1− ε on a probabilistic algebraic RAM
over F in polynomially many arithmetic steps in len(P), d, and t. In caseF = Q the binary run-
ning time is also polynomial in el-size(P), log(1 /ε ), and min1≤ρ≤r {cc-size(fρ)}.

Notice that we cannot yet prove the above corollary for c-size( fρ) replacing cc-size( fρ).
Therefore, one might question whether our restriction is reasonable. The answer is that for three
large subclasses of polynomial representations, namely

Sparse polynomials, Formulas, and Determinants,

the combined coefficient size as well as the degrees are polynomially related to the input size.In
fact, we know of no example for a straight-line program representing a polynomial of polynomi-
ally bounded degree and coefficient size, but where the combined coefficient size becomes expo-
nential.

We shall conclude this section with a remark on counting the number of monomials.
Clearly, the Sparse Conversion algorithm can probabilistically produce the number of monomials
in a polynomial given by a straight-line program in time polynomial in the unary representation
of that count. One may question whether it is possible to find the number of monomials in
binary in random polynomial-time. This is most likely not the case due to the fact that the evalu-
ation of 0-1 permanents is #P-hard [61].For if we replace all 1 entries in a 0-1 matrix by indeter-
minatesxi , j , i the corresponding row and j the corresponding column, then the number of mono-
mials in the determinant of the new matrix is equal to the permanent of the original 0-1 matrix.
Therefore the problem of counting the number of monomials in families of polynomials with
polynomially bounded degree and straight-line computation length, which Valiant calls p-com-
putable [62], is #P-hard.
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5. Evaluation and Factor Degree Pattern

It is crucial for our Factoring algorithm that the Hensel lifting is started with true factor
images. Fortunately, the effective versions of the Hilbert irreducibility theorem [11] and [27]
make it possible to probabilistically enforce this assumption.In this section we present a theo-
rem (Theorem 5.2) on the probabilities that certain evaluations preserve the factor degree pattern
that determines the number of irreducible factors, their multiplicities, and their total degrees.
The argument is essentially the same as that in [11], Theorem 3.6, but with our effective version
of the Hilbert irreducibility theorem (Theorem 5.1). The main advantage of this change is that
the evaluations are simpler and the probability of success is higher.

Theorem 5.1(Effective Hilbert Irreducibility Theorem): Let f (x1 ,..., xn) ∈ F [x1 ,..., xn], F a
field, have total degreed and be irreducible. Furthermore, assume thatx2 occurs in f , that is
degx2

( f ) > 0. If char(F) = p > 0 we require that each coefficient off in F possesses ap-th root
in F . A sufficient condition for this to be true is thatF be perfect.Let R ⊂ F and leta1, a3 ,...,
an, b3 ,..., bn, be random elements inR. Then the probability

Prob(f (x1 + a1, x2, b3x1 + a3 ,..., bnx1 + an)

becomes reduciblein F [x1, x2]) ≤
4d 2d

card(R)
.

For a proof see [27], Theorem 3.

In the following association between two polynomials f and g is denoted byf ∼ g and
means thatf = cg with 0 ≠ c ∈ F . The factor degree pattern off ∈ F [x1 ,..., xn] is defined as a
lexicographically ordered vector ((di , ei))i=1,..., r such that forf = Πr

i=1 hei
i , hi ∈ F [x1 ,..., xn],

hi irreducible, di = deg(hi) ≥ 1, 1≤ i ≤ r , hi ∼| h j, 1 ≤ i ≠ j ≤ r .

We want to apply theorem 5.1 to the irreducible factors of a multivariate polynomial.However,
theorem 5.1 will only apply to those factors that depend onx2. Therefore we need the following
notion. Theprimitive partof a polynomial with respect to a variable is the polynomial divided
by the GCD of all (polynomial) coefficients of that variable. We denote it by ppx(. ), wherex is
the corresponding variable. Inparticular, if no factors are independent ofx we call the polyno-
mial primitive in x.

Theorem 5.2: Let f ∈ F [x1 ,..., xn], F a perfect field,d = deg( f ), R ⊂ F . Let a1, a3 ,..., an,
b3 ,..., bn ∈ R be randomly selected elements,

f2 = f (x1 + a1, x2, b3x1 + a3,..., bnx1 + an).

Then

Prob(ppx2
( f ) and ppx2

( f2) have thesame factordegree pattern) ≥ 1 −
4d 2d + d3

card(R)
.
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Proof: First we consider all the factorshi with degx2
(hi) > 0. By theorem 5.1,

hi ,2 = hi(x1 + a1, x2, b3x1 + a3,..., bnx1 + an)

remains irreducible inF [x1, x2] with probability≥ 1 − 4di2
di /card(R). It remains to estimate the

probability that deg(hi ,2) = di and thathi ,2 ∼| h j ,2 for all j ≠ i . Let

ĥi(x1, x2,α1,α3,...,α n, β3,...,β n) = hi(x1 + α1, x2, β3x1 + α3,..., β nx1 + α n),

ĥi ∈ F [x1, x2, α1, α3 ,...,α n, β3 ,..., β n]. Clearly, degx1,x2
(ĥi) = di . Let

0 ≠ π i(β3,..., β n) ∈ F [β3,..., β n]

be the coefficient of a monomialx j1
1 x j2

2 , j1 + j2 = di , in ĥi . Now deg(π i) ≤ di and

π i(b3,..., bn) ≠ 0 implies deg(hi ,2) = di.

By [54], Lemma 1, this happens with probability≥

1 −
deg(π i)

card(R)
≥ 1 −

di

card(R)
.

We finally estimate the chance thathi ,2 ∼| h j ,2. First we claim that̂hi ∼| ĥ j , i ≠ j , in F[x1, x2], F =
F(α1, α3 ,..., α n, β3 ,..., β n). For if this were not the case, then there would exist non-zerogi ,
g j ∈ F [α1, α3 ,...,α n, β3 ,..., β n], GCD(gi , g j ) = 1, such that(gi /g j) ĥi = ĥ j . Hence either one

of ĥi or ĥ j would have to be reducible inF [x1, x2, α1, α3 ,...,α n, β3 ,..., β n], say ĥi = ĥ
(1 )
i ĥ

(2 )
i .

However then

hi = (ĥ
(1 )
i ĥ

(2 )
i )(x1 − α1, x2,α1, x3 − β3(x1 − α1),..., xn − β n(x1 − α1), β3,...,β n)

would be a non-trivial factorization ofhi which would necessarily have to lie in F [x1 ,..., xn], in
contradiction to the irreducibility ofhi . This shows non-associativity of̂hi and ĥ j over F . We
now hav etwo coefficients ofĥi in F , that is

ĥi = ⋅  ⋅  ⋅ +σ (λ1,λ2)
i xλ1

1 xλ2
2 + ⋅  ⋅ ⋅ +σ (µ1,µ2)

i xµ1
1 xµ2

2 + ⋅  ⋅  ⋅, σ (λ1,λ2)
i , σ (µ1,µ2)

i ∈ F,

and two corresponding coefficients in̂h j ,

ĥ j = ⋅  ⋅  ⋅ +σ (λ1,λ2)
j xλ1

1 xλ2
2 + ⋅  ⋅ ⋅ +σ (µ1,µ2)

j xµ1
1 xµ2

2 + ⋅  ⋅  ⋅, σ (λ1,λ2)
j , σ (µ1,µ2)

j ∈ F,

such that

τ i , j = σ (λ1,λ2)
i σ (µ1,µ2)

j − σ (µ1,µ2)
i σ (λ1,λ2)

j ≠ 0.

Now τ i , j ∈ F [α1, α3 ,...,α n, β3 ,..., β n] and it is relatively easy to see that

τ i , j(a1, a3,..., an, b3,..., bn) ≠ 0 implies hi ,2 ∼| h j ,2.

Since deg(τ i , j) ≤ di + d j the probability of this event is≥ 1 −(di + d j)/card(R).

Now we consider thosehi with degx2
(hi) = 0. All that must be satisfied for the theorem to hold is

that hi ,2 as defined above is not identical zero.Again the total degree ofhi gets preserved with
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probability di /card(R), which is a sufficient condition.Overall, the factor degree pattern is pre-
served with probability not less than

1 −




r

i=1
Σ 4di2

di

card(R)
+

r

i=1
Σ di

card(R)
+

1≤i< j≤r
Σ

di + d j

card(R)





≥ 1 − 


4d 2d

card(R)
+

d

card(R)
+

d(d −1)

2

d

card(R)



≥ 1 −
4d 2d + d3

card(R)
.

One can probabilistically enforce that the input polynomial is primitive in x2 by making
the linear substitutionxi + ci x2 for all xi , i ≠ 2, with randomly chosenci . This substitution does
not effect the factor degree pattern. It should be clear from the above theorem that we thus can
probabilistically obtain the factor degree pattern of a polynomial given by a straight-line program
by evaluation. We formulated theorem 5.2 in its generality because we will make a slightly dif-
ferent substitution in the Factorization algorithm in §6.Moreover, the theorem in its current
form can be used to also compute the degrees of individual variables in the factors. Onelets each
variable take the role ofx2 and identifies the factors in the different bivariate domains by evaluat-
ing that variable at a linear form.However, since this result is not needed in the following, we
shall skip the details.

The assumption that the field is perfect can be dropped at the cost of increasing the failure
probability somewhat (cf [11],.Lemma 4.2), but since the usual coefficient fields are perfect we
do not incorporate this generalization.
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6. Straight-Line Factorization

We now describe the algorithm for finding the straight-line factors of a straight-line poly-
nomial. Thealgorithm is derived from the One-Variable Lifting algorithm in [28], with the
homogeneous parts of the minor variables replacing the monomials of the single variable with
respect to which is lifted. Note that a homogeneous polynomial of degreed has the form

e1+⋅ ⋅ ⋅+en=d
Σ ce1,...,en

xe1
1 ⋅ ⋅ ⋅ xen

n , ce1,...,en
∈ F .

We will compute those homogeneous parts by straight-line programs.The main reason why the
answer is polynomial in length is that we only need to add on to the intermediate programs.This
is because subsequent homogeneous parts can be computed from previous ones and Strassen’s
technique of obtaining a homogeneous program need not be applied at each iteration.

Algorithm Factorization

Input: f ∈ F [x1 ,..., xn] giv en by a straight-line programP of lengthl , a boundd ≥ deg( f ), and
an allowed failure probabilityε << 1.

Output:Either “failure”, that with probability <ε , or ei ≥ 1 and irreduciblehi ∈ F [x1 ,..., xn], 1
≤ i ≤ r , giv en by a straight-line programQ of length

len(Q) = O(d2l + d M(d2) log(d))

such that with probability > 1 −ε , f = Πr
i=1 hei

i . (Refer to algorithm Polynomial Coefficients in
§3 for the definition ofM( .  ).) In casep = char(F) divides any ei , that isei = pêi ei with ei not

divisible by p, we returnei in place ofei andQ will computehpêi

i .

Step R(Random Points Selection): From a setR⊂ F with

card(R) >
6

ε
max(2l+2, d 2d + d3, 2(d +1)4)

select random elementsa1 ,..., an, b2 ,..., bn, c1, c3 ,..., cn. If F = Fq with q small we can
instead work over Fqp, p a prime integer >d. By Theorem 6.1 in [11] no additional factors
occur.

Test whetherP is defined atφ(xi) = ai , 1 ≤ i ≤ n. For F = Q we call algorithm Zero-Division
Test in [33] such that the probability of “failure” even if P were defined atφ is less thanε /6. If P
turns out to be (probably) undefined atφ we return “failure”. Otherwise,P is definitely defined
atφ and we compute the dense representation of

f2 = f (x1 + c1x2 + a1, x2 + b2x1 + a2, b3x1 + c3x2 + a3,..., bnx1 + cnx2 + an).

This can be done by evaluation and interpolation similarly to the Sparse Conversion algorithm.
If F = Q, a bound for the cc-size( f ) must be added to the input parameters and we must again
make the probability that “failure” occurs due to the use of modular arithmetic during evaluation
less thanε /6.
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Step F(Factorization): Factor

f2 =
r

i=1
Π g̃ei

i ,2,

g̃i ,2 ∈ F [x1, x2] i rreducible and pairwise not associated.Notice that by theorem 5.1f and f2
have with high probability the same factor degree pattern, that is irreducible factors off map to
pairwise non-associated irreducible factors off2 of the same total degrees. For the remainder of
the algorithm we will assume that this is the case.

If char(F) = p > 0 divides any of the ei , say ei = pêi ei with ei not divisible byp, we replaceei

by ei andg̃i ,2 by g̃pêi

i ,2 . This replacement guarantees that none of the multiplicities are divisible by
the characteristic.

Now set

gi ,0(x1) ← g̃i ,2(x1, 0) ∈ F [x1].

Check whether GCD(gi ,0, g j ,0) ∼ 1 for 1≤ i < j ≤ r and whether deg(g̃i ,2) = deg(gi ,0) for 1≤ i ≤ r .
If not return “failure”.

Let

f (x1,...,xn) = f (x1 + a1, x2 + b2x1 + a2,...,xn + bnx1 + an) =
r

i=1
Π hi(x1,...,xn)

ei,

and assume thathi are the factors that correspond tõgi ,2. Notice that the assumptions on the
preservation of the total degrees of the factors throughout the evaluation process also imply that

ldcfx1
( f ) ∈ F . (*)

Here ldcfx1
denotes the coefficient of the highest power of x1 and is generally a polynomial in

F [x2 ,..., xn]. Furthermore,let P be a straight-line program computingf . We write

f (x1,..., xn) =
d

j=0
Σ

d

m=0
Σ f j ,m(x2,..., xn) xm

1 ,

where f j ,m ∈ F [x2 ,..., xn] is homogeneous of degree j . We remark thatd can now be set to
deg(f ) rather than a bound for it.We will need a straight-line program that computesf j ,m. If we

replacexi by xi x
d+1
1 , 2 ≤ i ≤ n, in P then f j ,m is the coefficient ofx j (d+1)+m

1 . Therefore by evaluat-
ing at x1 and interpolating as in the Polynomial Coefficients algorithm (§3) we can find a
straight-line programQ0 for f j ,m of length

len(Q0) = O(d2l + M(d2) log(d)).

Notice that we need to randomly pick(d +1)2 distinct points at which we interpolate and we
must make sure that the straight-line programP is defined at those points. If that is not the case,
or if for F = Q we cannot confirm by the Zero-Division Test algorithm (§3) that a point is good,
that with probability <ε /( 6(d +1)2), we return “failure”. For more details we refer to step P in
the cited Polynomial Coefficients algorithm.



November 17, 1987

Step H (Hensel Lifting Loop):For k ← 0 ,..., d−1 Do step L.

Step L (Lift by One Degree): Let

hi(x1,..., xn) =
di

m=0
Σ

di

j=0
Σ ci , j ,m(x2,..., xn) xm

1 , di = deg(hi),

whereci , j ,m(x2 ,..., xn) ∈ F [x2 ,..., xn] is homogeneous of degree j . At this point we have a
straight-line programQk over F(x2 ,..., xn) that computesci , j ,m for 1 ≤ i ≤ r , 0 ≤ j ≤ k, 0 ≤ m ≤
di , and all f j ,m, 0 ≤ j , m ≤ d. Notice thatci ,0,m ∈ F is the coefficient ofxm

1 in gi ,0 found in step
F, and thereforeQ0 need not encode them.Whenever reference to these coefficients is made
later, we just encode them as scalars.Notice also that by (*)ci , j ,di

= 0 for j > 0. We will extend
Qk to Qk+1 that also computesci ,k+1,m. It is useful to introduce the following polynomials

gi ,k =
k

j=0
Σ

di

m=0
Σ ci , j ,mxm

1 , ĝi ,k+1 =
di

m=0
Σ ci ,k+1,mxm

1 .

Now consider the congruence

r

i=1
Π(gi ,k + ĝi ,k+1)

ei ≡ f mod (x2,..., xn)
k+2. (†)

Expanding the LHS we get

ge1−1
1, 0 ⋅ ⋅ ⋅ ger −1

r ,0

r

i=1
Σ(ei ĝi ,k+1

r

j=1

j≠i

Π g j ,0) ≡ f −
r

i=1
Π gei

i ,k mod (x2,..., xn)
k+2. (‡)

By our loop invariant forQk

( f −
r

i=1
Π gei

i ,k) mod (x2,..., xn)
k+2 = tk+1 =

d−1

m=0
Σ tk+1,m(x2,..., xn) xm

1 ,

wheretk+1,m ∈ F [x2 ,..., xn] is homogeneous of degreek +1. Noticethat the degree oftk+1 in x1

is ≤ d −1 by the assumption (*).We need a programTk+1 that computestk+1,m. Howev er, Tk+1

does not start from scratch, but references the program variables inQk that computeci , j ,m and
f j ,m. If Tk+1 encodes a tree-like bivariate multiplication scheme with those program variables as
undetermined coefficients, that can be done in

len(Tk+1) = O(M(d2) log(d)).

Now, since tk+1 equals the LHS of (‡)ge1−1
1, 0 ⋅ ⋅  ⋅ ger −1

r ,0 must divide tk+1 in F [x1 ,..., xn]. Notice
that this claim might not be valid ifgi ,0 is not an image ofhi , since then the existence of thêgi ,k+1

cannot be guaranteed.However, in that case our construction still completes, but the resulting
straight-line answer is incorrect. Let

uk+1 =
d1+⋅ ⋅ ⋅+dr −1

m=0
Σ uk+1,m xm

1 =
tk+1

ge1−1
1, 0 ⋅ ⋅ ⋅ ger −1

r ,0

, uk+1,m ∈ F [x2,..., xn].
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Again, we need a straight-line programUk+1 that computes alluk+1,m from the program variables
for tk+1,m in Tk+1 as indeterminates. Since the leading coefficient inx1 of ge1−1

1, 0 ⋅ ⋅  ⋅ ger −1
r ,0 is an ele-

ment inF , the uk+1,m can be determined by simply encoding a univariate polynomial division in
x1 over the coefficient fieldF(x2 ,..., xn). Thereforewe can constructUk+1 of length len(Uk+1) =
O(M(d)). (Actually, the entire divisor is in F [x1] but our argument also applies to a quadratic
lifting procedure, see the remark below the proof of theorem 6.1.) Now consider

uk+1

g1, 0 ⋅ ⋅ ⋅ gr ,0
=

e1ĝ1,k+1

g1, 0
+ ⋅  ⋅ ⋅ +

er ĝr ,k+1

gr ,0
.

It is clear thatei ci , j ,k+1 are the coefficients of the univariate partial fraction decomposition of
uk+1/(g1, 0 ⋅ ⋅ ⋅ gr ,0) carried out over the field F(x2 ,..., xn). Oneway to compute these coeffi-
cients by a straight-line program̂Qk+1 with len(Q̂k+1) = O(d2) is to once and for all find̂g(m)

i ,0 ∈
F [x1], 0 ≤ m ≤ d1 +⋅ ⋅  ⋅+ dr − 1, with

xm
1

g1, 0 ⋅ ⋅ ⋅ gr ,0
=

ĝ(m)
1, 0

g1, 0
+ ⋅  ⋅ ⋅ +

ĝ(m)
r ,0

gr ,0
, deg(ĝ(m)

i ,0 ) < di,

and encode the summation

ĝi ,k+1 =
1

ei

d1+⋅ ⋅ ⋅+dr −1

m=0
Σ uk+1,mĝ(m)

i ,0 , 1 ≤ i ≤ r .

We must be able to divide byei and here we need the fact that the multiplicities must not be
divisible by char(F). We finally link the programsQk, Tk+1, Uk+1, and Q̂k+1 properly together to
obtain the programQk+1. Notice that

len(Qk+1) ≤ len(Qk) + C M(d2) log(d),

whereC is an absolute constant. Therefore len(Qk+1) = len(Q0) + O((k +1) M(d2) log(d)).

Step T (Final Translation): FromQd we obtainQ that computes

hi(x1 − a1, x2 − b2(x1 − a1) − a2,..., xn − bn(x1 − a1) − an)

by adding in front ofQd instructions for translating thexi appropriately.

The following theorem summarizes the complexity of the above algorithm.

Theorem 6.1: Algorithm Factorization does not fail with probability > 1 −ε . In that case it
reduces the problem in polynomially many steps on a probabilistic algebraic RAM over F as a
function in l andd to factoring bivariate polynomials.Its answer will be correct with probability
> 1 − ε . It requires polynomially many randomly selected field elements.For F = Q or F = Fq

the algorithm has binary polynomial complexity also in log(1 /ε), el-size(P), and cc-size(f ).

Proof: The arithmetic and binary running time is polynomial as a direct consequence of the
results in [33], in particular Theorem 3.1, 4.1, and 5.1. It remains to analyze the failure probabil-
ities of the Factorization algorithm. The only way an incorrect programQ can be produced is
that the factor degree patterns off and f2 disagree. Ifdegx2

( f ) = deg( f ), which is true with
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probability > 1 −d/card(R) > 1 − ε /1 2, then by by theorem 5.2 this happens with probability less
than

4d 2d + d3

card(R)
<

4 ε
6

.

Thus the compound probability of getting an incorrect result is <ε .

“Failure” can occur in six separate circumstances.First, P may be undefined atφ , that with
probability <2l+1/card(R) < ε /6 by Lemma 4.2 of [33]. Second, forF = Q we might fail to rec-
ognize thatP is defined atφ , but we make this possibility happen with probability <ε /6. Third,
for F = Q the computation off2 may fail with probability <ε /6.

Fourth, “failure” can occur if for somei ≠ j , GCD(gi ,0, g j ,0) ∼| 1, or deg(gi ,0) < deg(g̃i ,2). Let
π i(β2) = ldcfx1

(g̃i ,2(x1, β2x1 + α2)) and let

σ i , j(α2, β2) = resultantx1
(g̃i ,2(x1, β2x1 + α2), g̃ j ,2(x1, β2x1 + α2))

over F [α2, β2, x1]. It is easy to see that 0≠ π i σ i , j ∈ F [α2, β2] and π i(b2) σ i , j(a2, b2) ≠ 0
implies that the above events are impossible.Now, deg(π i ) ≤ di and deg(σ i , j ) ≤ 2di d j and there-
fore the probability that the above events occur for anyi ≠ j is less than

r

i=1
Σ di

card(R)
+

1≤i< j≤r
Σ

2di d j

card(R)
<

(d1 + ⋅  ⋅ ⋅ +dr )
2

card(R)
<

d2

card(R)
<

ε
6

.

Notice that ifP were division-free, this event would be the only one where failure could occur.

Fifth, we may not find good interpolation points in order to produceQ0. If we try at most
(d +1)4 points, the probability that at least(d +1)2 = d* points are good can be estimated like in
the proof of [33], Theorem 5.1.We shall repeat the argument here.An individual point was not
picked earlier with probability≥ 1 −(d +1)4/card(R) > 1 − ε /1 2. P is not defined at an individual
point substituted forx1 with probability <2l+1/card(R) < ε /1 2. Hence a suitable point can be
found in a block ofd* points with probability >

1 − (ε * )d* > 1 −
ε *

d*
, ε * =

ε
6

,

because (1/ε * )d* −1 > 2d* −1 ≥ d* for ε * < 1/2. Now the probability that a good point occurs in
all of thed* blocks of points is >

(1 −
ε *

d*
)d* > 1 − ε * ,

and therefore failure happens with probability <ε /6. Sixth and last, forF = Q we may not rec-
ognize that we have good interpolating points, that for all(d +1)2 points together with probability
< ε /6. Summing up these failure probabilities completes the proof.

We remark that our result in [26] would allow to further reduce the problem on an alge-
braic RAM over F to univariate factorization. We also mention that the input parameterd can be
probabilistically estimated in expected polynomial-time in deg( f ) (§3). Furthermore,the
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algorithm could be formulated using quadratic lifting [25] in step L.Then the length ofQ could
be asymptotically reduced toO(d2l + M(d2) log(d)). Finally we mention that the binary polyno-
mial-time upper bound can be easily generalized toF being an algebraic extension ofQ.

We now formulate two corollaries to theorem 6.1. The first refers to computing the sparse
factorization of f and follows from theorem 4.2.

Corollary 6.1: If in addition to the input parameters of the Factorization algorithm we are given
t > 0, for F = Q or F = Fq we can find in polynomially many binary steps and random bit
choices in

l , d, log(
1

ε
), el-size(P), cc-size(f ), and t

sparse polynomials that with probability > 1 −ε constitute all irreducible factors off with no
more thant monomials.

Notice that the above running time is always polynomial independently whether the correct
sparse factors were produced or whether other factors are dense. This makes this corollary supe-
rior to all previous work on sparse factorization. Thesecond corollary deals with possibly non-
uniform closure. Again, in a family of p-computable polynomials the degrees computation
lengths are polynomially bounded [62].

Corollary 6.2: Let F be a field of characteristic 0. Then any family of factors of a family of p-
computable polynomials is p-computable.

Notice that this corollary applies even to fields in which arithmetic is recursive but over
which polynomial factorization is undecidable [9]. It also shows that a polynomial degree bound

is necessarily required.We note thatx2d

− 1 can be computed withO(d) instructions but it is
known that over the complex numbers there exist factors that requireΩ(2d/2/√ d) computation
length [43] and [50]. It would be nice to give such an example where the factors are irreducible
polynomials over Q.

We hav e implemented the Factorization algorithm [8]. In order that len(Q) does not
become too large, two practically important improvements to the Factorization algorithm as it is
described above were made. First, the coefficients f j ,m are not computed a-priori but as they are
needed for eachk in the lifting loop. This is accomplished by using the Polynomial Coefficients
algorithm in the original version of [33], which is based on Taylor series expansion. Second,the
productΠr

i=1 gei
i ,k is also computed incrementally using the coefficients determined already for

k −1 of the same product.
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7. Conclusion

Aside from the predecessor paper [33] currently two more of our papers deal with the sub-
ject of manipulating polynomials in straight-line representation. In the forthcoming paper [32]
we show how to replace the input parameterd in the Factorization algorithm by a degree bound
for the individual factors. We also have implemented our algorithms in Lisp with an interface to
Macsyma. Thedetails of this first implementation together with practical improvements and our
experience on test cases are reported in [8].

The question arises what major unresolved problems in the subject of polynomial factor-
ization remain.It is appropriate to distinguish between theoretical and practical issues. One the-
oretical question is to remove the necessity of random choices from any of the problems known
to lie within probabilistic polynomial-time, say factorization of univariate polynomials over large
finite fields. Another problem is to investigate the parallel complexity of polynomial factoriza-
tion, say for theNC model [7]. Kronecker’s reduction from algebraic number coefficients [36],
[60], and [37], Berlekamp’s factorization algorithm over small finite fields [10], Kaltofen’s deter-
ministic Hilbert irreducibility theorem [26], §7, and Weinberger’s irreducibility test forQ[x] [65]
all lead toNC solutions by simply applying known NC methods for linear algebra problems.It
is open whether factoring inQ[x] or irreducibility testing inFp[x], p large, or inQ[x, y] can be
accomplished inNC. We remark that testing a rational dense multivariate polynomial for abso-
lute irreducibility can be shown to be inNC [29].

In connection with the Factorization algorithm presented here, we also mention an open
question. Assumethat a straight-line program computes a polynomial whose degree is exponen-
tial in the length of the program. Are then at least its factors of polynomially bounded degree p-
computable? Apositive answer to this question would show that testing a polynomial for zero in
a suitable decision-tree model is polynomial-time related to computing that polynomial (cf [32],.
§6, Problem 6). In general the theory of straight-line manipulation of polynomials may be
extendable in part to unbounded input degrees, but even for the elimination of divisions problem
[57] the answer is not known.

From a pragmatic point of view the main unresolved question is what role the polynomial-
time polynomial factorization algorithms should play in computer algebra systems, that is in
actually used implementations. The “L3” algorithm [42] has been considered impractical by
ev en one of the inventors, but that was not meant to imply that this algorithm is useless for poly-
nomial factorization. Infact, usingL3 to recover algebraic numbers from their modular images
leads to a practically competitive factoring algorithm for polynomials over algebraic number
fields [39]. We submit that careful implementations of different lattice reduction schemes
together with the complex root approximation method [52] might out-perform the Berlekamp-
Hensel algorithm on hard-to-factor polynomials. The first implementation of the straight-line
factorization algorithm is reported in [8]. There its practical merits have been demonstrated on
very dense inputs such as symbolic determinants.

In summary, in this paper we were able to contribute to Valiant’s algebraic counterpart of
the theory ofP vs. NP in the positive, that is establish a polynomial upper bound for a major
problem in computational algebra. In fact, it comes to us as a small surprise that p-computable
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polynomials are closed under factorization. Andwe have, finally, put to rest the problem of com-
puting the sparse factorization of a multivariate polynomial.

Note added in proof: Since this chapter has been submitted, progress on several problems discussed can be
reported. The sparse conversion problem in Section4 has been solve more efficiently by Ben-Or and Tiwari
[Proc. 20thAnnual ACM Symp. Theory Comput.301--309 (1988)], Zippel [J. Symbolic Comput.to appear (1990)],
and by Lakshman Yagati and the author [Proc. ISSAC 1988, Springer Lec. Notes Comput.Sci. to appear (1989)].
John Canny and Barry Trager have made the author aware of a more effective version of the Hilbert Irreducibility
Theorem 5.1,that essentially reduces the numerator of the probability bound todO(1 ). Such a theorem also follows
from methods presented in [K6], Section 5. Finally, Barry Trager and the author [Proc. 29thAnnual Symp.Founda-
tions Comput.Sci. 296--305 (1988)] have shown that another implicit representation for multivariate polynomials,
that of black box programs that merely allow to evaluate the polynomials at given input points, can be used as input
and output representation for polynomial-time polynomial factorization.

Acknowledgement: A discussion I had with Barry Trager a few years ago has helped me in developing §4. I also
thank Joachim von zur Gathen and Gregory Imirzian for their valuable comments.
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92, pp. 1-122 (1882).

37. Landau,S., “Factoring polynomials over algebraic number fields,”SIAM J. Comp.,14, pp. 184-195 (1985).

38. Landau,S. and Miller, G. L., “Sovability by radicals,”J. Comp. System Sci.,30, pp. 179-208 (1985).

39. Lenstra,A. K., “Lattices and factorization of polynomials over algebraic number fields,” Proc. EUROCAM
’82, Springer Lec. Notes Comp. Sci.,144, pp. 32-39 (1982).

40. Lenstra,A. K., “Factoring multivariate integral polynomials,” Theoretical Comp. Sci.,34, pp. 207-213
(1984).

41. Lenstra,A. K., “Factoring multivariate polynomials over finite fields,” J. Comput. System Sci.,30, pp.
235-248 (1985).

42. Lenstra,A. K., Jr., H. W. Lenstra, and Lovász, L., “Factoring polynomials with rational coefficients,” Math.
Ann.,261, pp. 515-534 (1982).

43. Lipton, R. and Stockmeyer, L., “Evaluations of polynomials with superpreconditioning,” Proc. 8th ACM
Symp. Theory Comp.,pp. 174-180 (1976).



November 17, 1987

44. Musser, D. R., “Multivariate polynomial factorization,”J. ACM, 22, pp. 291-308 (1975).

45. Musser, D. R., “On the efficiency of a polynomial irreducibility test,”J. ACM, 25, pp. 271-282 (1978).

46. Newton, I., Arithmetica Universalis, 2nd ed.,London (1728). In English. Reprinted inThe Mathematical
Works of Isaac Newton, vol. 2, D. T. Whiteside, ed., Johnson Reprint Corp., New York, 1967.

47. Paterson, M. S. and Stockmeyer, L. J., “On the number of nonscalar multiplications necessary to evaluate
polynomials,”SIAM J. Comp.,2, pp. 60-66 (1973).

48. Rabin,M. O., “Probabilistic algorithms in finite fields,”SIAM J. Comp.,9, pp. 273-280 (1980).

49. Rabin,M. O., “Probabilistic algorithms for testing primality,” J. Number Theory,12, pp. 128-138 (1980).

50. Schnorr, C. P., “Improved lower bounds on the number of multiplications/divisions which are necessary to
evaluate polynomials,”Theoretical Comp. Sci.,7, pp. 251-261 (1978).
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63. Waerden, B. L. van der,Modern Algebra,F. Ungar Publ. Co., New York (1953).

64. Wang, P. S., “An improved multivariate polynomial factorization algorithm,” Math. Comp.,32, pp.
1215-1231 (1978).

65. Weinberger, P. J., “Finding the number of factors of a polynomial,”J. Algorithms,5, pp. 180-186 (1984).

66. Yun, D. Y. Y., “The Hensel lemma in algebraic manipulation,” Ph.D. Thesis, M.I.T. (1974). Reprint: Garland
Publ., New York 1980.

67. Zassenhaus,H., “On Hensel factorization I,”J. Number Theory,1, pp. 291-311 (1969).

68. Zippel,R. E., “Probabilistic algorithms for sparse polynomials,” Proc. EUROSAM ’79, Springer Lec. Notes
Comp. Sci.,72, pp. 216-226 (1979).



November 17, 1987

69. Zippel,R. E., “Newton’s iteration and the sparse Hensel algorithm,” Proc. ’81 ACM Symp. Symbolic Alge-
braic Comp.,pp. 68-72 (1981).


