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Abstract

An algorithm is deeloped for the factorization of a mulériate polynomial represented by a
straight-line program into its irreducibladtors. Thealgorithm is in random polynomial-time as a func-
tion in the input size, total degree, and binary fecient length for the usual coefficient fields and outputs
a graight-line program, which with controllably high probability correctly determines the irreduaible f
tors. Italso returns the probably correct multiplicities of each distimctiof If the coefficient field has
finite characteristip andp divides the multiplicities of some irreducible factors our algorithm constructs
straight-line programs for the approprigtéh powers of such factors.

Also a probabilistic algorithm is presented thatwalido conert a polynomial gien by a sraight-
line program into its sparse representation. This/@sion algorithm is in random-polynomial time in
the preiously cited parameters and in an upper bound for the number of non-zero monomials permitted
in the sparse outpuftTogether with our factorization algorithm we therefore can probabilistically-deter
mine all those sparse irreducible factors of a polynomiangoy a draight-line program that ke less
than a gren number of monomialsWe show that this result is valid without gimestriction on the char
acteristic of the coefficient field.

The first section of this paper also summarizes the history of the polynasti@iiZation problem,
and the last section discusses what questions for this problem remain to bedrest#vhave also
attempted to provide anxtensve list of references on the subject, so that this paper cam agrviarting
point for someone without previous knowledge in polynomial factorization.

1. The Problem of Factoring Polynomials

* This material is based upon work supported by the National Science Foundation under Grant No. DCR-85-04391
and by an IBM Faculty Delopment Avard. Theresults of 86 were originally announced in the paper “Uniform
closure properties of p-computable functions” [32]. This paper appeRanidomness and Computatiedited by

S. Micali, wl. 5 of the Advances in Computing Reselarseries, JAl Press Inc., Greenwich, Connecticut,

pp. 375-412 (1989).
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“The invention of divisors of uniersal quantitie$,what we refer today as the computation
of factors of polynomials, was already taught by Newton in 1673 and the method subsequently
published in his Arithmetica Uwérsalis [46]. In 1882 Kronecker [36], pp. 10-13, reduced the
problem of &ctoring multvariate polynomials wer algebraic number fields to factoring uaii-
ate polynomials er the integers, for which he applied\Wen’s dgorithm. Van der Vderden’s
influential text [63] discusses those algorithms and suggests that for larger probleane tine
very practical. Nonetheless, early computer programs realized this classical approach [23] and
verified that it is quite indicient. Theensuing search for efficient algorithms to factor polynomi-
als is a fine xeample in the discipline of the design and analysis of algorithms as well as com-
plexity theory and exhibits mgrof the techniques deloped for these subjects.

In 1967 Berlekamp [2] found an algorithm to factorvanate polynomials wer moder-
ately sized finite fields in time proportional to the cube of the inpgrteés. Berlekamp’dgo-
rithm is the first evidence that polynomial factorization is not as conggdeoblem as is intger
factoring. Havever, his algorithm performed badly when applied to large finite fields.
Berlekamps own resolution of this problem in 1970 [3] is remarkable in that by introducing the
selection of random field elements the algorithm could be exponentially sped up. Thas the f
torization algorithm wer large finite fields became one of the forerunners of “randomized” algo-
rithms. We dso refer to Rabirs 1976 version of this algorithm [48] for his appealing probability
analysis, and to the book [35], 84.6.2, for a discussion of additiarél viRecentlythe problem
of removing the random choices from the algorithm without sacrificing polynomial running-time
has been resodd for seeral special cases by help of interestingvndeas, and we refer to the
two exemplary papers [53] and [20]The performance in practice of the randomized algorithms
for uniariate polynomial factorizationver large finite fields is quite satisfactory and, at the
moment, far superior to gkknown deterministic algorithms.

The advances in factoring polynomials modulo a prime integer suggested to apply these
algorithms to factoring polynomials with integer coefficients as well. Zassenhaus in 1969 [67]
pointed to the “Hensel Lemma” [18], 84, as a means to reconstruct the integral factors from mod-
ular ones. Unlike the factorization algorithm for polynomials/e finite fields, hwever, the
reconstruction procedure for the integral polynomial factors from the modular onesvean ha
exponential complexity due to “combinatorical explosion” [3] and [3#robabilistic analysis”

[45] and [6] shows, heever, that this problem does not arise onéiage” inputs and implemen-
tations of the Berlekamp-Hensel algorithm for factoringzanmte integral polynomials perform
quite well, except forery special inputsHowever, such inputs can arise and are, in fact, gener
ated by Kronea8r’s reduction from algebraic number fields, for instante1982 a remarkable
diophantine algorithm ®as found by A. K. Lenstra, H. Lenstra, andsész [42] to gercome the
combinatorical explosion by a polynomial-time constructi@&eral more classical problems
could then be shn to also belong to the polynomial-time complexity class, for example solv-
ability by radicals [38], factorization of wariate polynomials wer algebraic number fields [60]
and [37], and the multariate polynomial factorization problem.

Already in 1971 Musser [44] demonstrated that “Hensel Liftiag,the procedure apply-
ing the Hensel lemma is wocalled, can be also applied to reconstruct mari@te from unvari-
ate factors. Combinatoricaxplosion is still a problem, but not all mappings to thevamate
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factorization are categorically bad. This is a consequence of the famous Hilbert Irreducibility
Theorem [19], and the first polynomial-time reduction by Kaltofen found in late 1981 is based on
an efective deterministic ersion of that theorem [24], also in [26], 8&. number of diferent
polynomial-time reductions from multriate to unvariate polynomial factorization are kwa

today [4], [13], [26], [31], [40],and [41]. All these algorithms assume that all possible terms
count tavards the input size, in other words the nuatiate polynomials are represented
“densely’

If the number of variables in the mutriate factorization problem is allowed to gravith
the problem size, then the “sparseness” of the input and output polynomials need to be taken into
considerations. Ahg upon considering theery sparse examples presented by Claybrook [5]
invented sgeral heuristics to cope with the intermediate “expression swell” occurring for sparse
inputs and outputs [64]Zippel in 1979 carried these considerations further by introducing ran-
domization into the Hensel lifting process [69]. In order to enakigorous analysis of theil-
ure probabilities, an #fctive probabilistic version of the Hilbert irreducibility theoremasv
needed. Althouglalready Heintz and Sieking [17] had preided such a theorem for alge-
braically closed fields, in 1983 von zur Gathenvpdoa siitable version for arbitrary cdefient
fields [11] and applied it to the sparsetbring problem [14]. In retrospect, Kaltoferdfective
Hilbert irreducibility theorem also lent itself to amea smpler probabilistic @rsion [27]. In
[14] sparse polynomials are described that possess irreduaditest with supepolynomially
more terms. These examples imply thay goarse Hensel Lifting scheme carnvearore than
polynomial running time on certain inputs. It became clear that to to deal with this phenomenon
the sparse representation had to be replaced by a more powerful one.

The usage of “straight-line programs” as a means to compute certain polynomials has been
developed in the frameork of complexity theory in the past decade, refer for example to [57],
[58], [47], [59], [50],and [16]. In 1983 von zur Gathen [11] combined his probabilistic Hilbert
irreducibility theorem with the probabilistic method of straight-line prograauation [54] and
[21] to find the factor degree pattern of polynomials defined by straight-line computations.
previously known operation on polynomials in straight-line representation is that of taking first
order partial deviatives [1]. Althoughthere is gidence that other operations such as higher par
tial dervatives ae inherently compbe[62], the greatest common divisor problem of polynomials
in straight-line program representation is in probabilistic polynomial-time, amshy Kaltofen
in 1985 [33]. In this paper we shahat straight-line programs for the irreducibéetors of a
polynomial gven by a graight-line program can also be found in probabilistic polynomial-time.
With Zippels 1979 sparse polynomial interpolation algorithm [68] oactdrization result
resoles all problems left open in [69], [14], and [28)e rote that, unlik the randomized solu-
tions for factorization of umariate polynomials wer large finite fields, the probabilistic solutions
are of the Monte-Carlo kind, “probably correct andagis fast! T he failure probability can, of
course, be made arbitrarily small.
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2. Discussion of Results

A straight-line program is a sequence of arithmetic assignmentswovareables, the
operands of which are either constants, indeterminates, or previously assagiadtes. The
operators allowed are addition, subtraction, multiplication, ami$idn. Ouralgorithms treat
this straight-line program as a data structure to represent the polynomials computed by them.
This representation can define in polynomial-space families of polynomials xpitmentially
mary individual terms, such as determinants by Gaussian elimination sequéhdié in the
algebraic complexity theory applications, where a straight-line program is a model of computa-
tion, our algorithms must not only produce straight-line results of polynomial-length but also
perform the transformations efficienttipat is in random polynomial-time.

It appears proper that we explicitly define the model of algebraic computation in which our
algorithms can be formulated. Our model is g8exuential pobabilistic algebraic random
access mdune (RAM), with which we not only manage computationvgrcan dstract algebraic
domain but also resadvthe question of random element selections from the abstract fledds.
concrete domains such as the rational numbers we also establish binary polynomial running time,
evean if then the algorithms would be formulated on the probabiligtrin§ machine model\We
think that the algebraic RAM model is in the spirit oflvn@gebraic computing languages such
as Scratchpad Il [22].

The factorization algorithm presented hereetaks input a straight-line program comput-
ing a polynomial and outputs a straight-line program and multiplicities for irreducible polynomi-
als that with controllably small error probability determine the irreductntéofs of the input
polynomial. Ifthe multiplicities are disible by the characteristic of the coefficient field, our
output is slightly diferent. Thefactorization algorithm calls av@riate polynomial &ctorization
procedure and is therefore onlyesftive and of polynomial running time for the usual do@ént
fields. We measure the running time as a function in the input size and input polynogrieéde
Over the rationals, for instance, we get an algorithm of binary complexity that is a polynomial
function in the binary size of the straight-line program determining the input polynomial, in its
total degree and the size of the numerators and the common denominator of its ratidinal coef
cients, and in the lagithm of the inerse of the probability that the output program incorrectly
determines the irreducible factors or their multiplicities.

The ley idea of our algorithm, which we will present and analyze in 85, in addition to pre-
viously known approaches, is to empldensel lifting but to replace the p-adic expansion of the
coeficients by the expansions into homogeneous parts of the manables. W thus lift all
minor variables simultaneously andoal the variable by variable lifting loop thatowid com-
pound programs of exponential size. This method can be viewed as a combination of Strassen
trick for eliminating divisions in straight-line computations [57] anoh¥ Hensel lifting scheme
[66]. If the coefficient field is of posite dharacteristicp and the multiplicity of an irreducible
factor is divisible by p, there arises an additional probleriVe @an, havever, compute a
straight-line computation for the appropriaeth power of such a factor.

For completeness we present in 83 our version of Zipmelversion algorithm [68] from
straight-line to sparse polynomial representati@ur algorithm is of polynomial complexity in
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the size of the straight-line program defining the input polynomial, in its tojaéeleand in an
upper bound for the maximal number of monomials permitted in the sparse output. The algo-
rithm produces either a sparsely represented polynomial with no moré thanomials or a
message indicating that the input polynomial has more tthanms. Thealgorithm is Monte-
Carlo and can ge a wong answerthat with controllably small probabilityOver the rational
numbers the algorithm is of binary polynomial running time also in thdiceet size of the
input polynomial and the logarithm of thevénse of the failure probabilityWe kelieve that our
corversion algorithm is a general and useful way in which Zigpglarse interpolation scheme
can be formulated.

Let us nev come back to the question of factorizing into sparse polynomidis. excam-
ples causing super-polynomial blow-up for the size of the answertha property that man
other factors are very sparse. In general, one may wish toveetna sparse factors as such and
leave the dense factors in straight-line form&wortunately the sparse comrsion algorithm dis-
cussed before allows to do just théllore preciselygiven a loundt we nav can probabilisti-
cally determine in polynomial-time also irthe sparse format of all irreducible factors with no
more thart terms, this without anrestriction on characteristic and multiplicitielloreover, the
running time is atays polynomial gen if we were unlucl in our choice of ealuation points.
We tink that this finally settles the question of sparse factorization in a very satisfactory.manner

The next section introduces the model of probabilistic algebraic RAMs, defines straight-
line programs, and summarizes results needed from other sotnc®.we present the cosr-
sion algorithm to sparse format and in 85 the theorems on probabilistically preserviagttine f
degree pattern86 contains the straight-line polynomial factorization algoritife conclude in
8§87 with a discussion of open problems in connection with the polynomial factorization problem.
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3. Definitions and Pevious Results

We row repeat the main notions and results presented in [88]cenote the field of ratio-
nal numbers by and the finite field witlg elements by-,. An algebric RAM over FFF a
field, has a CPU which is controlled by a finite sequence of labelled instructions and which has
access to an infinite address and data memory (see fig. 1).

3 v2-1

Input Medium Address Data
! Memory Memory

CPU 1: READADDR 2 -11]5 1 ?
2. READ -2 2|3 2 ?
3: CONSTADDR 12 3| 7? 3| vV2-1
4: ADDADDR 1,2 4 | ? 4 ?
5. CONST -1,V2 517 -5 | 2+V2
6: DIV 5, -2 6 | ? 6 ?
7:  PRINT -1
8: HALT
!

2+V2 | EOT

Output Medium
Fig. 1: Algebraic RAM ger Q(V2).

The split into tv@a memories, one that facilitates pointer manipulation for array processing
as well as maintaining a stack for recuesprocedures, and another memory in which the alge-
braic arithmetic is carried out, is also reflected in other models for algebraic computations such
as the parallel arithmetic networks in [12] or by the omnipresence oliliénbtype Integer in
the Scratchpad Il language [2Zach word in address memory can hold an integral address and
each word in data memory can store an elemeht ifhe CPU also has access to an input and
an output medium. The instructions in the CPU masehme or two operands which typically
are intgers. Theoperands refer to evds in address or data memory depending whether the
instruction is an address or a data instructibmdirect addressing is indicated by agaeve
operand. Br completeness the micro-code for a full instruction sevengn fig. 2.

The arithmetic timeand space compldty of an algebraic RAM for a gén input are
defined as the number of instructionseeuted and the highest memory address referenced,
respectrely. It is not always realistic to charge for each arithmetic operatioR ione time unit.

We will consider encoding data in binary and define ag&jze U F, whereF is a concrete
field such af) or Fy, the number of bits needed to represenfThen the cost and space of an
arithmetic instruction depends on the size of its operaftsbinary time and space compligy

of an algebraic RAM wer F is derved by chaiging for each arithmetic step Fh as mag units

as are needed to carry out the computation on a multitegagTmachine. Notice that we
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Instruction Description
ADD{ADDR} ] Op; < Op, + Op; (see below).
SUB{ADDR} 0] Op; — Op - Op;.
MULT{ADDR} i, ] Op; — Op x Op;.
DIVADDR i ] Op; — Op/Op; [
DIV I ] Op; < Op/Op;.
CONST{ADDR} i,C Op; < C.
MOVE{ADDR} i, ] Op; — Op;.
JMP{ADDR} I Execution continues at program label
JMPZ{ADDR} il If Op = 0 then &ecution continues at program label
JMPGZADDR il If Op > 0 then eecution continues at program label
READ{ADDR} i The input medium is advanced and th&tntem is read into
Op.
PRINT{ADDR} i The output medium is advanced ang, is written onto the
medium.
HALT An EOT marker is written onto the output tape anea@ution
terminates.
AM[!] if i >0and address instruction
Op = DM[i] _ data
AMIAML =]y g @AAress 4 orction
DM[AM[ —i]] data

AM = address memoryDM = data memory
AM[ -i] must be positie, otherwise an interrupt occurs.

Fig. 2: Summary of algebraic RAM instructions

generally assume that the field arithmetic can be carried out in polynomial binary xipmple
with respect to the size of the operands. What that implies in particular is that elenfépts in
say dways requireO(log(q)) representation size indendent whether tae residues of small
integral value or not.For READ, PRINT, CONST, MOVE, or JMPZ instructions we charge as
mary units as is the size of the transferred or tested element.

We dso apply this “logarithmic cost criterion” to the address computations and assume
that every address is represented as a binarygeiteThe binary cost for performing address
arithmetic is again theufing machine costFor indirect addressing we add the size of the final
address to the binary time and space cost of the corresponding instrfdéaonte that in most
circumstances the binary cost for performing address arithmetic isrbgominated by the
binary cost of the algebraic operations and that for all practical purposes the largest storage loca-
tion is of constant sizeBut our more precise measure has itsaatkges. Firs@ll binary poly-
nomial-time algorithms on algebraic RAMs are also polynomial-time in thrend machine
model. Secondthe true binary compkity is measured if we can use the address memory for
more than address computations, e.g. for hashing with sophisticated signatuodser such
example is that of selecting random field elements.
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A probabilisticalgebraic RAM is endowed with the additional instruction
RANDOM{ADDRY} i, |

with the following meaning.Into Op an element] F (or address) is stored thaagvuniformly
and randomly polled from a s& of elements (or integers) with céR) equal to the address
operandOp; (see fig. 2 for the definition @p). Theselection ofR is unknown except all its
elementsa [0 R have sze(@) = O(log Op;). This model of randomized algebraic computation
overcomes the problem of foto actually generate a “random” rational numbsy, and, as we
will show later the failure probabilities can in our circumstances be fully analyiemv we
only note that for a non-zero polynomiathe probability

Prob(f (ay,..., a) =04 O R) < S8

~ cardR)’ M

see [54].

Our algorithms will read as input, produce as intermediate results, and print as output
straight-line programs. Let us first precisely define what we mean, see also [56].

Definition: Let F be a field X ={x; ,..., %} a set of indeterminatesThenP = (X, V, C, S) is
analgebraic straight-line ppgramover K = F(Xy ,..., %) if

(SLP1) S={s,..., s} OF,V={v;,..., vy}, Vn K=0. Xis called the set ahputs V the
set of (programyariables Sthe set okcalars

(SLP2) C= (V) « Vo, Vy)ym . (With o, O{+, = %, <}, v,,v, O0SO X O{v,..., 4} for
allA=1,...,I. Cis called thecomputation sequenend| thelengthof P, | = len(P).

(SLP3) foralla=1,..., Ithere exists sem() UK, thesemantic®f v,, such that

sem@) =aifalSO X,

semy,) = sem,) = semy/,) if o, = *,

sem{,) = sem(y,) semy,) if o, = %,

sem{/,) # 0 and semy,) = sem(v,)/sem(,) if o, = +.

Theset of elementsomputed byP is semP) = D'Fl {sem(v,)}. O

We say f O F[Xq ,..., %] is given bythe straight-line prograr® = (X, V, C, ) if f O
sem@). Noticethat we use the notatioih [1sem@) with the implied understanding that we also
know thev, OV with f =sem(v,). Straight-lineprograms are originally meant to besleated
at pointsg(x;) O F. It can happen that such aveliation is impossible due to a division by zero.
We sy thatP isdefined atg { X ,..., %} — F if a division by zero does not occur duringle-
ation of P at ¢(x;) in place ofx;, 1<i<n.

Here we will not describe a concrete data structure that can be used to represent straight-
line programs on an algebraic RAM. It @ity easy to concee d suitable ones, e.g. labeled
directed acyclic multigraphs could be usé&dmore intricate data structure was used for the first
implementation of our algorithms and is described in [8]. At this point it isandent to define
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theelement sizef a straight-line program as

el-sizeP) = > size(vj).

v, OXOS % 0{,"
Notice that the actual size Bfis in bits
O(len(P) log ler{P) + el-size)),
since it takes size{) = O(log(A)) bits to represent, in address memory.

We row reproduce the input and output specifications of those algorithms presented in
[33], which we will need for the algorithms discussed in this paper.

Algorithm Zero-Division Test

Input: A straight-line progranP = ({ x,..., .}, V, C, {s},..., $n}) of lengthl over Q(X,..., %),
a, 0Q, 1<v <n, and a failure probability < 1

Output:An integer p such thatP is defined aty with ¢(x,) = a, mod p, ¢(s,) = s, mod p, or
“failure”. Thelatter occurs with probability € in caseP is defined ap given by ¢(x,) =a,. O

Algorithm Evaluation
Input: As in algorithm Zero-Division @st. Furthermoran indexi, 1< A <1, and a bound,.

Output: Either “failure” (that with probability <¢ in caseP is defined at) or e, = sem(g(v,))
provided that

[numeg,)|, |[dene,)| < B,. O

Both algorithms hee a bnary complexity of ordefl log(B) log(L/£)°® on a probabilistic
algebraic RAM wer Q, whereB = max(size@, ), size§,), B,) [33].

Algorithm Polynomial Coefficients

Input: f OF[X,..., %] given by a draight-line progranP = ({ X, ,..., %}, V, C, S) over F(x
.-+, %) of lengthl, a failure probabilitye < 1, and a boundl > deg, (f).

Output: Either “failure”, this with probability <¢, or a draight-line progranQ = ({ x> ,..., %},
Va, Co, ) over F(Xz,..., X;) such that

{co,..., @} OsemQ) and leqQ)=0(Id + M(d)logd),
wherecs; O F[X5,..., X,] satisfies
d
f=3 sl mn %)X
0=0

Here and lateM (d) denotes a function dominating the time for multiplying polynomials|ir]
of maximum dgreed. Notice that for arbitrary fields the best ko upper bound foM(d) is
O(dlog(d) log logd)) [51]. O
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The running-time of this algorithm is summarized by the falhg theorem, which is typi-
cal for our theory.

Theorem 3.1 Algorithm Polynomial Coefficients does ndilfwith probability > 1 —¢. It
requires polynomially manarithmetic steps ird andl on a probabilistic algebraic RAMver F.
For F =Q andF = F its binary complexity is also polynomial in el-si2¢ and log1/¢) [33],
Theorem 5.1.0

The Polynomial Coefficients algorithm requires theviedlge of a bound = deg, (f). If
no such bound is gén, we can probabilistically guess the degree by running our algorithm for

d=1,24,..,2% 00

Let f (X ,..., %) be he interpolation polynomial that is produced for #éh run. We then
chooses, ,..., §, 0 Rrandomly and probabilistically test whether

f(ay,..., &) — f(ay,..., &) =0.

This test can be performed by a simple modification of the Zero-Division Test algorithm, and the
chance that the difference is falsely determined as 0 can be made smalter Thamprobability

that the randomly selectex certify the inequality off and f, can by (1) be madexponentially

close to 1.0f course, by further testingy(x; ,..., %,) for zero,6 = 2%, 2 -1, [(0wve can get a
probabilistic estimate for the actualgiee dg, (f). This procedure has expected polynomial
running time in dg, (f), and can be made quite efficient by computingfthcrementally [8].

The total degree of can be similarly estimated by testing qeﬁ), where

f(xl,..., X)) = T (X, Xo +0oXq,..., % +DpX)

with b; randomly selected [33], Lemma 5.1 similar algorithm is also described in [11],
Remark 5.4.More general, one carven probabilistically determine the degrees of the numera-

tor and denominator of a rational function computed by the input program, and therefore one can
probabilistically test whether it computes a polynomial to start with, cf [30],. Corollary 4.1.
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4. Corversion into Sparse Polynomials

We row dscuss our version of Zippsl]68] sparse interpolation algorithm for erting
a polynomial from its straight-line to its sparse representation. sphaese representatidior

f(X,ooyX) = X Ceu X OOOKY, O#cq
J

.....

is the vector

((ela Y Ce1 ..... 61))(91 ..... g)0J-

Here N denotes the set of nongaive integers. V¢ wite mor{f) = card{J), the number of
monomials inf, and slel(f) = J, the skeletoror set of non-zero monomial exponentsfofZip-

pel's dgorithm is based on the idea that during the variable by variable interpolation progess an
zero coefficient is, with high probabiljtthe image of a zero polynomiallVe first present the
algorithm for general fieldsExtra difficulties arising from coefficient size growth are dealt with
afterwards.

Algorithm Sparse Conversion

Input: f OF[xq,..., X,] given by astraight-line prograni of lengthl. Furthermore, a bound,
> Max<i<n {deg, ()}, the allowed failure probability <1, and an upper bounts (d, +1)" for
the number of monomials permitted in the answer.

Output: Either “failure” (that with probability <), or the representation of a sparse polynomial
with no more thah monomials, or the messagé has (probably) more thanmonomials. The
latter two outputs are correct with probability > 1e-

Step R(Select Initial Evaluation Points): From a $&fl F with
1
cardR) > - maxgw deg(f) (do +1)", (n(dg +1)t +1) 2*1 + ndey(f) (dy +1)tg

select random elemends , ..., a, O R. Notice that if dg(f) is not knavn one can use the crude
upper bound d¥ f) < nd,.

Step L (Interpolation Loop):For i — 1,..., nDo Step |. Then returrp cg
Ce,..e 7 0.

Step | (Interpolate One More afiable): Atthis point we hae with high probability correctly
computed the sparse representation of

F(X, o Xicgy @yee @) = 2 Coueu X OOOKY, 0% Cq. o, OF, JON'™
(CTCE) [V

Fori=1we haveJ; ={0}. We reed not know; = f(a ,..., &). Set
ji < card({(e,...,64,9)|(@,...,64)0J,0=0<dg, ¢},

......
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Fork - 1,..., j Do
From the subseR select random pointsy ;, by, ,..., b O R. Compute

gk,i = f(bk,l!"'! h(,il = TIPS I aﬂ)

by evaluatingP at g j(x,) = by ,, 1< u<i, g i(x,) =a,,i +1<v <n. If Pis not defined
at gy return “failure”.
Solwe the j; by j; linear system
o g 8s 1o -
Ve,....an0 Dia DO, bR = 0 s ks i, M
(er....0)0% =0

in the indeterminateg, = ., 5. Ifthe system is singulareport “failure”.

SetcCq, . ¢ = Ve.....e» Where the RHS ranges@ all non-zero components of the solution of the
above g/stem. Noticehat the subscripts of these components define th&,setif the number
of those non-zero coefficients becomes more thaeturn “input polynomial has (probably)
more thart monomials.” O

The challenging part is the verification of the failure and incorrectness probabifites.
this, it is helpful to pree te following lemma.

Lemma 4.1:Let J; ON', card(d;) = j; < oco. Then
A =de(( By D008 e,..... )0 k..., §)
is a non-zero polynomial iR[ By ,..., Bj.il-

Proof. Simply obsenre that the monomial contributed by the main diagonal of the determinant is
unique.d

We row havethe following theorem:

Theorem 4.1: Algorithm Sparse Comrsion does notdil and outputs the correct result with
probability 1-2¢. In that case it requires

o(n(l dgt + d3t3)
arithmetic steps on a probabilistic algebraic RAMra (sufficiently large) field-.

Proof. Each of thej; < (dy + 1)t evduation in step | require®(l) arithmetic steps. Solving thg
by j; system taksO(j?) steps. Noticethat this bound also includes setting up the linear system
from J; andgy;. Step | is ecutedn times, which shows the stated complexity.

We row analyze the probabilistic behavior of the algorithiret us first assume that the algo-
rithm does notdil. A correct answer is returned provided the system (1) captures favaty
non-zero monomial coefficient df(x; ,..., %, &4 ,..., &). Let

FXpeo o Gisgsenan) = F G e X OODK,
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o = [1 G e dedoy)<mon(f)deqf).

.....

Notice that in general;,; O Ji.y. But i(ai, ..., &) Z 0 implies thatJ,,; = J;,;, which in turn
means that the unique solution to (1) must determiixg,..., %, &1 ,..., &). Sincemon(f) <
(dy +1)" the probability

Probgi(a41,..., &) #0 forall 1<i<n)

is not less than

,_§ deo) ;) nmon()dey(f) ,  nde(f)(dp +1)
iz cardR) cardR) cardR)

We row estimate the failure probabilityWe define the eents

>1-c

Eo ={(ay,..., &) | P is definedat gy(X1) = X1, @(X) = &;, 2<i <n}
and
Ex; ={(bx1,.-., i) | P is definedat g ;}.
As in [33], Lemma 4.2, we ka

I+1

ProbEo), Prob(Ey;|Eq) =1 -

cardR)
Sincej; < (dy +1)t we get
I+1 oI+l
Probon N B2 i) 1 8 card®)
k=1,..., k=1,..., ji

1o (n(dy +1)t +1)2'*
cardR)

Now by lemma 4.1 for a geni the coefficient matrix for (1) is non-singular with probabitity
_ da@) |, _ deg()ii , _ deg(f)(do +1)t
cardR) cardR) cardR)

Thus all n arising systems are non-singular with probabiktyi — ndeg(f)(dy +1)t/card(R).
Therefore, the algorithm fails with probabiliy

%d(R) gn(do +1)t +1) 21 + ndeg(f)(dy +1)tg .

We wish to remark that the input parametdgsandt need not be specified beforehann.
83 we hae dscussed hw to probabilistically determine; = deg, (f). Infact, the Sparse Con-
version algorithm runs more fediently if we used; in place ofd, for thei-th iteration of step I.
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The parameteris used only to abortxecution in casef has too mayymonomials or that we are
interpolating with unluck evaluation points. By adjusting cai) appropriately we can achie
expected polynomial running time also in njdbhwithout the input parametér In the contat

of an actual computer algebra system we prefer our formulation of the algorithm, whose running
time is independent of bad random choices.

We row dscuss the complications arising fer= Q. Our requirement is to accomplish
binary polynomial-time complexitylt is dear that we must include tloeefficient sizef f,

e)b

c-size(f) = (elmrg)ags(kel(f) {sizéc, ..
into our input parameters. One might think that all weehia do is tse the Egluation algorithm
of 83 inside the FOR loop of step | and adjust #ikife probability accordinglyUnfortunately,
there exists a theoretical possibility that sigg) is exponential inn. This would happen, for
instance, if all denominators of . were distinct primes and mgi) were exponential im.
A way to avercome this problem is to perform the entire\asion modulop, p an intger that
has been tested to be a prime with probality— ¢ [55], [49], and retrige the rational codiF
cients of f by a continued fraction approximation from the ¢icefnts of f mod p as in step C
of the cited Ealuation algorithm. The pseudo-prinpemust be selected such that also with
probability> 1 — ¢, P is defined ats(x,) = X,, ¢S) = smod p for all s [0 S (cf. the Zero-Dvision
Test algorithm cited in 83), and such that

p=cardR), 22¢sizeO)+1

In practice, it is better to work modulp® at the danger of increasing the failure probability
Then one woids the generation of the rather large pseudo-pfimand one can also savhe
linear system (tp-adically [8]. For the record, let us state the following theorem.

Theorem 4.2:For F = Q, dgorithm Sparse Camrsion, if used in conjunction with a probabilis-

tic primality test, the Zero-Division Test algorithm, and a vegp procedure for rational num-
bers from their modular images, can complete and determine a correct answer with prabability
1 - 3. Its binary running time is polynomial in dy, logl/e), t, d-size(P) and the additional
input parameter that is a bound for c-size( O

An interesting result concerning the gersion of a straight-line program to a sparse ratio-
nal function is a direct consequence of this theorem and the Numerator and Denominator algo-
rithm in [30].

Corollary 4.1: Let f/g be gven by a graight-line progranP, f, g OF[X; ,..., %], GCD(f, g)
=1,d=>de(f), dgg(g), 0< e < 1 In order to &oid ambiguity assume that the coefficient of the
lexicographically first monomial ig is 1. Provided the sparse representationfoirespectrely

g, has less thah monomials, it can be computed correctly with probability—== on a proba-
bilistic algebraic RAM wer F in polynomially many arithmetic steps in i), d, andt. In case

F = Q the binary running time is also polynomial in el-§Rg logll/s), and c-siz€f), respec-
tively c-size@). O
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Before we can apply theorem 4.2 to the Polynomial GCD algorithm in [33] we must intro-
duce a slightly more restricted notion of coefficient sizef pthat where the coefficients are
already brought to a common denominatdssume that

Ce,...0 = , Ug, .. e, U, OZforall(e,...,q) Oskel(f).

Then thecombined coefficient siod f is defined as

cc-sizef) = sizefu,) +(el .... retl)amékel(f) {sizdug . &)}
Now since the size of the coefficients of integral nualtiate polynomial &ctors can be polyno-
mially bounded [15], Chapter IIl, 84, Lemma Il, we obtain from the straight-line GCD algorithm
in [33] the following typical corollary.

Corollary 4.2: Let f, OF[X;,..., %] be gven by a draight-line progranP, d = deg(f,), 1< p
<r,9=GCD,(f,), 0<e < 1 Provided the sparse representatiorgdfas less thahmono-
mials, it can be computed correctly with probabilityl >& on a probabilistic algebraic RAM
ove F in polynomially may arithmetic steps in I€iP), d, andt. In caseF = Q the binary run-
ning time is also polynomial in el-siZ&), logl/¢), and min ., {cc-size(f,)}. O

Notice that we cannot yet pre the abee wrollary for c-sizéf,) replacing cc-sizg ).
Therefore, one might question whether our restriction is reasonable. The answer is that for three
large subclasses of polynomial representations, namely

Sparse polynomials, Formulas, and Determinants,

the combined coefficient size as well as thgreles are polynomially related to the input silze.
fact, we knav of no example for a straight-line program representing a polynomial of polynomi-
ally bounded degree and coefficient sia¢, where the combined coefficient size becomp®-e
nential.

We dall conclude this section with a remark on counting the number of monomials.
Clearly, the Sparse Camrsion algorithm can probabilistically produce the number of monomials
in a polynomial gren by a draight-line program in time polynomial in the unary representation
of that count. One may question whether it is possible to find the number of monomials in
binary in random polynomial-time. This is mostdii not the case due to the fact that thaue
ation of 0-1 permanents is #P-hard [6Epr if we replace all 1 entries in a 0-1 matrix by indeter
minatesy; j, i the corresponding voand j the corresponding column, then the number of mono-
mials in the determinant of thewematrix is equal to the permanent of the original 0-1 matrix.
Therefore the problem of counting the number of monomials in families of polynomials with
polynomially bounded dgee and straight-line computation length, which Valiant calls p-com-
putable [62], is #P-hard.
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5. Evaluation and Factor Degree Pattern

It is crucial for our Rctoring algorithm that the Hensel lifting is started with traetdr
images. Brtunately the efective vasions of the Hilbert irreducibility theorem [11] and [27]
make it possible to probabilistically enforce this assumptiém.this section we present a theo-
rem (Theorem 5.2) on the probabilities that certaauations presem the factor dgree pattern
that determines the number of irreducible factors, their multiplicities, and their tgiaede
The argument is essentially the same as that in [11], Theorem 3.6, but witfeotiveef/asion
of the Hilbert irreducibility theorem (Theorem 5.1). The main advantage of this change is that
the evaluations are simpler and the probability of success is higher.

Theorem 5.1(Effective Hilbert Irreducibility Theam): Let f(x; ,..., %) OF[X,..., %], F a
field, have total dgreed and be irreducible. Furthermore, assume thabccurs inf, that is
deg,(f) > 0. If char(F) = p > 0 we require that each coefficient éfin F possesses p-th root
in F. A sufficient condition for this to be true is thatbe perfect.Let RO F and leta, a3, ...,
an, bz ,..., b, be mandom elements iR. Then the probability

Prob(f (x; + &, X, b3y +a3,..., X + &)

4d 2¢

becomes reducibli@ F[xq, X5]) < m.

For a proof see [27], Theorem 30

In the following association betweendwpolynomials f and g is denoted byf [0 g and
means thaf = cgwith 0% c OF. The factor degree pattern 6fCJ F[x, ,..., X,] is defined as a
lexicographically orderedector (d;, &))i ..., such that forf =[5 h¥, hy OF[xq,..., X,

h; irreducible, d; =deg(hj)) 21, 1<i<r, h [0h;, 1<i#j<r,

We want to apply theorem 5.1 to the irreducible factors of a vaubite polynomial. However,
theorem 5.1 will only apply to those factors that depend,oriTherefore we need the follang
notion. Theprimitive partof a polynomial with respect to a variable is the polynomiaddd
by the GCD of all (polynomial) coefficients of thairiable. V¢ denote it by pp(. ), wherex is
the correspondingariable. Inparticular if no factors are independent nfwe call the polyno-
mial primitive in x.

Theorem 5.2 Let f OF[x,..., %], F a perfect field,d =deq f), RO F. Letay, a3,..., &,
bs,..., b, ORbe randomly selected elements,

f2 = f(X1+a1, Xo, b3X1+a3,..., b1X1+an).
Then

4d 29 + @3

Prob(pp,(f) and pp,(f2) have thesame factodegree patterp>1 - ~cardR) R
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Proof. First we consider all the factohs with deg, (h;) > 0. By theorem 5.1,
hi2 = hi(Xg +ag, X, bsXy +33,..., bhX +ap)

remains irreducible ifF[x;, X,] with probability= 1 — 4d,2%/card(R). It remains to estimate the
probability that dg(h; ;) = d; and thath; , [Th;, for all j #i. Let

Ni(X X, @1, @31 G Ba- -0 Br) = Ni(Xe + a1, Xo, BaXy + ..., BoXe + ),
ﬁi OF[X, Xp, a1, Q3 ,...,0pn, B3 ,..., Bn]- Clearly degXLXz(ﬁi) =d;. Let
0% 7m(B3,-.., Bn) UF[Bs,..., Bl
be the coefficient of a monomigl*x}z, j, + j, = d;, in ;. Now ded ;) < d; and
m(bs,..., b)) #0 implies dg(h;,) = d..
By [54], Lemma 1, this happens with probabitty

(- 9890m) o d
cardR) cardR)

We finally estimate the chance thgp [1h; . First we claim thaty [1h;, i # j, in F[x,, %], F =

F(ay, as,...,an, B3 ..., Bn). For if this were not the case, then therewd exist non-zerg;,
9; OF[ay, as,...,an, Ba -, B, GCDX(G;, ;) = 1, such that(gi/g;) h = h;. Hence either one
of hy or h; would have © be educible inF[x;, X, a1, 3 ,...,an, Ba ,--., Bnl, SaYh; = AV K.
However then

hi = (F‘?) ﬁi(Z))(Xl —ay, Xo, 01, X3 = Ba(X — A1), ..., % = Bn(X — a1), Bas- .., Bn)

would be a non-trivialdctorization ofh; which would necessarily kia © lie in F[X; ,..., %], in
contradiction to the irreducibility dfi. This shows non-associativity of andh; over F. We
now havetwo coefficients ofh, in F, that is

ﬁi — DDEH_O.i(/‘l-/\z) Xfl ng + D]B,I_a.i(ﬂl,ﬂz) X]/:ll Xé‘z +[1T] O.i(/‘lv/‘z)’ Ji('ul"UZ) N IE,
and two corresponding coefficients im;,
ﬁj - DDB‘_J}M&) Xflxgz + D]B,_Ugul,uz) XM xk2 + 1T O_EAMz)’ U-E:UanZ) OF,

such that

7 = o.i(/‘lv/\z)agﬂl«#z) _ O'i('ul'/JZ)O'EAl’AZ) £ 0.

Now rj j OF[ay, a3,...,an B3 ,..., Bn] @nd it is relatvely easy to see that
Ti’j(al, az,..., &, b3,..., th) 0 Implles hi,2 [l]hj,Z'
Since dg(7; ;) < d; + d; the probability of thiseent is> 1 —(d; + d;)/cardR).

Now we consider thosé; with deg, (h;) = 0. All that must be satisfied for the theorem to hold is
thath; , as defined abe is rot identical zero.Again the total degree df, gets preserved with
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probability d;/card(R), which is a sufficient conditionOverall, the factor dgree pattern is pre-
served with probability not less than

Cr 4di2di r di di + dj -
1- + > + ———]
fm cardR) iz cardR)  1<i<j<r card®)

_04d 2 , d ,dd-1 d 0, _ 4d 29 + o3
[tardR) cardR) 2 cardR) cardR)

One can probabilistically enforce that the input polynomial is pimii x, by making
the linear substitution; + ¢; X, for all x;, i # 2, with randomly choseg,. This substitution does
not effect the factor degree pattern. It should be clear from the dieorem that we thus can
probabilistically obtain the factor degree pattern of a polynomvehdiy a sraight-line program
by evaluation. We formulated theorem 5.2 in its generality because we willenaagightly dif-
ferent substitution in the Factorization algorithm in 8@oreover, the theorem in its current
form can be used to also compute the degrees of individual variables actttrs.f Ondets each
variable tale the role ofx, and identifies the factors in the differentdsiate domains bywvauat-
ing that variable at a linear formHowever, Snce this result is not needed in the following, we
shall skip the details.

The assumption that the field is perfect can be dropped at the cost of increasaigrine f
probability somewhat (cf [11],Lemma 4.2), but since the usual coefficient fields are perfect we
do not incorporate this generalization.
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6. Straight-Line Factorization

We row describe the algorithm for finding the straight-limetbrs of a straight-line poly-
nomial. Thealgorithm is dened from the One-Variable Lifting algorithm in [28], with the
homogeneous parts of the minor variables replacing the monomials of the singldevwith
respect to which is lifted. Note that a homogeneous polynomial of dddrae the form

.....

We will compute those homogeneous parts by straight-line progrdims.main reason whthe

answer is polynomial in length is that we only need to add on to the intermediate proghasns.

is because subsequent homogeneous parts can be computed from previous ones and Strassen
technique of obtaining a homogeneous program need not be applied at each iteration.

Algorithm Factorization

Input: f OF[x,..., X,] given by a graight-line progranP of lengthl, a boundd > deg(f), and
an allowed failure probability < 1.

Output:Either “failure”, that with probability <, or ¢ = 1 and irreducibleh; O F[x ,..., %], 1
<i<r, given by a graight-line progran® of length

len@Q) = O(d?l + d M(d?) log(d))
such that with probability > 1 &, f = []{_; h?". (Refer to algorithm Polynomigl Coefficients in
§3 for the definition oM(.).) In casep = char(F) divides ay e, that ise, = p% & with & not
divisible by p, we returng, in place ofe, andQ will computehipa.

Step R(Random Points Selection): From a Bdil F with
6
card®) > ; max2'*?, d29 + d°, 2(d +1)%

select random elements ,..., &, by ,..., b, ¢, G5 ,..., G. If F =F, with g small we can
instead work wer Fq,, p a prime integer >d. By Theorem 6.1 in [11] no additionahdtors
occur.

Test whetherP is defined at(x;) = &, 1<i < n. For F = Q we call algorithm Zero-Dision
Test in [33] such that the probability of “failureVen if P were defined apis less tharz/6. If P
turns out to be (probably) undefinedgatve return “dilure”. OtherwiseP is definitely defined
at ¢ and we compute the dense representation of

fo= (X +o X+ ag, Xp+ X + @y, b3Xg +C3Xp+ag,..., B X +C X+ ap).

This can be done byauation and interpolation similarly to the Sparse @osion algorithm.

If F =Q, abound for the cc-siZd¢) must be added to the input parameters and we mast ag
make the probability that “&ilure” occurs due to the use of modular arithmetic duruatpation
less thare/6.



November 17, 1987

Step F(Factorization): Factor
;
i=1

Gi» U F[xq, xp] irreducible and pairwise not associatédotice that by theorem 5.1 and f,
have with high probability the same factor degree pattern, that is irreducible factérsap to
pairwise non-associated irreducible factord0bf the same total deees. Br the remainder of
the algorithm we will assume that this is the case.

If chaF)=p>0 pivides ay of thee, say e = p® & with & not divisible byp, we replacee,
by & andg; , by C]i‘f;. This replacement guarantees that none of the multiplicities are divisible by
the characteristic.

Now set

i o(X) < G 2%, 0) O F[x].

Check whether GC{; o, 9j,0) U1 for 1<i < j <r and whether dgg; ,) = dedg; o) for 1<i<r.
If not return “failure”.

Let
_ r
f(Xl, v ,Xn) = f(Xl + g, Xo + b2X1 + Ay, ... . X, + bnxl + an) = I-I hi(Xl’ e ,Xn)e',
i=1

and assume thdt, are the &ctors that correspond @,. Notice that the assumptions on the
preservation of the total degrees of the factors throughouvsheaton process also imply that

dcf, (f) OF. ™*
Here Idcf,_ denotes the coefficient of the highestvpo of x; and is generally a polynomial in
F[X5,..., %,]. Furthermorelet P be a straight-line program computifig We write
B d d _ .
F(x, %) = 2 2 Fijm(Xeeos %) X
j=0 m=0

where fj,m OF[X5,..., %] iIs homogeneous of deee j. We remark thatd can nov be %t to
deg(f) rather than a bound for it\Ve will need a straight-line program that computes,. If we
replacex; by x, xd*t, 2<i < n, in P then fj,m is the coefficient oklj(d+1)+m. Therefore by ealuat-

ing at x; and interpolating as in the Polynomial Coefficients algorithm (83) we can find a
straight-line progran@, for ﬂ'm of length

len@Qy) = O(d? + M(d?) log(d)).

Notice that we need to randomly pi¢tt+1)? distinct points at which we interpolate and we
must malk sure that the straight-line prograiis defined at those points. If that is not the case,
or if for F = Q we cannot confirm by the Zero-Division Test algorithm (83) that a point is good,
that with probability <e/(6(d +1)?), we return “&ilure”. For more details we refer to step P in
the cited Polynomial Coefficients algorithm.
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Step H(Hensel Lifting Loop)Ffor k - 0,..., d-1Dostep L.
Step L (Lift by One Dayree): Let

4 d
hi(X11---1 )91) = Z Z Ci,j,m(XZ""! )g'l) X]r_n! di = d@(hl)’
m=0 j=0
wherec; j m(X2 ..., %) O F[Xz,..., X,] is homogeneous of dgee j. At this point we hee a
straight-line progran@, over F(x; ,..., %,) that computes; ; , for 1<i<r,0< j<k,0sms
d;, and all f_jym, 0< j, m<d. Notice thatc; o, O F is the coefficient okq" in g; o found in step
F, and thereforeQ, need not encode themWheneer reference to these coefficients is made
later, we just encode them as scalahgotice also that by (*; ; 4 = 0 for j > 0. We will extend
Qk t0 Q4 that also computes .4 . It is useful to introduce the following polynomials

k di di
—_ m ~ —_ m
Oik=2 2 CijmX: Gikn= 2 CikamX -

j=0 m=0 m=0
Now consider the congruence
! ra =+,
(106 + 100 = T mod .., 1) 0
1=
Expanding the LHS we get
. T . r _ r
oo 0007 Z(@ Gk [1910 = T~ 11 g7 mod (.., %) )
i=1 j=1 i=1
j#i
By our loop ivariant for Qy
d-1

(f-T1 gie,'k) mod (Xz,..., %)““? = tias = 3 tram(Xor---, %) X
i=1 m=0

wheret,,; , OF[X,,..., %] is homogeneous of deeek +1. Noticethat the degree df.; in x;

is< d -1 by the assumption (*)We reed a progrant,,, that computesy,, ,,. Howeve, T,y
does not start from scratch, but references the program varialdgstivat computec; ; , and

f; m- If ks €NCOdes a tree-kkhvariate multiplication scheme with those program variables as
undetermined coefficients, that can be done in

len(Ty.a) = O(M(d?) log(d)).

Now, since tiq equals the LHS of (15" (00gy," must diide tysy in F[ ,..., %]. Notice

that this claim might not be valid & , is not an image dfi, snce then thexastence of thej; .,

cannot be guaranteedHowever, in that case our construction still completest the resulting
straight-line answer is incorrect. Let

-1
oy +I8d, m_ tk+1

Ugn = 2 UamX( =

3 o7 UYkrm OF[X,..., Xl
m=0 Qlf,lo1 DD[gﬁol
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Again, we need a straight-line prograf,, that computes all,, ,, from the program ariables
for ty. m in Tyyy as indeterminates. Since the leading coefficient iof gf}gl D]ngjgl is an ele-
ment inF, the u,; , can be determined by simply encoding avamate polynomial division in

X1 over the coefficient field=(x, ,..., %,). Thereforewe can construdi,,; of length leU,.,) =
O(M(d)). (Actually, the entire drisor is in F[x;] but our argument also applies to a quadratic
lifting procedure, see the remark belthe proof of theorem 6.1.) Moconsider

Uyg _ & Gy a1 e & @r,k+1_
9,00 0 g0 Or0
It is clear thatec; ;.4 are the coefficients of the wariate partial fraction decomposition of
U1/(0n,0 J0LY, o) carried out wer the fieldF(x; ,..., X,). Oneway to compute these coief

cients by a straight-line progra@k+l with Ier(Qk+1) = O(d?) is to ace and for all findj%) 0
F[x], 0 m<dy HOF d, — 1, with

x4 6
1 = =0+ 2 deq@i(’rg)) < d;,
o000 Gio Oro
and encode the summation
n 1 d1+|I|H'd,—l . .
Gun=— 2 Ul 1<isr.
€ m=0

We nust be able to divide bg and here we need the fact that the multiplicities must not be
divisible by chafF). We finally link the program®, T.1, Uk, and Q.4 properly together to
obtain the prograr®,,;. Notice that

len@Qy+1) < len@y) + C M(d?) log(d),
whereC is an absolute constant. Therefore @n() = len@Q,) + O((k +1) M (d?) log(d)).
Step T (Final Translation): Fron®Q4 we obtainQ that computes
hi(X = &g, Xo = ba(X — &) —ag,..., X —bn(X — &) —an)
by adding in front of)4 instructions for translating the appropriately. O
The following theorem summarizes the complexity of thevalagorithm.

Theorem 6.1 Algorithm Factorization does not fail with probability > 1e- In that case it
reduces the problem in polynomially nyasieps on a probabilistic algebraic RAMep F as a
function inl andd to factoring bvariate polynomials.lts answer will be correct with probability
> 1 -¢. Itrequires polynomially manrandomly selected field elementSor F =Q or F = F,
the algorithm has binary polynomial complexity also in1ég), el-sizeP), and cc-sizel).

Proof. The arithmetic and binary running time is polynomial as a direct consequence of the
results in [33], in particular Theorem 3.1, 4.1, and 5.1. It remains to analyze the failure probabil-
ities of the Factorization algorithm. The onlyayvan incorrect program® can be produced is

that the factor degree patterns fofand f, disagree. Ifdeg (f) = dedf), which is true with
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probability > 1 —d/card(R) > 1 — £/12, then by by theorem 5.2 this happens with probability less
than

4d29 + @3 L4
cardR) 6
Thus the compound probability of getting an incorrect resulisis <

“Failure” can occur in six separate circumstancesst, P may be undefined a, that with

probability <2'*/card(R) < £/6 by Lemma 4.2 of [33]. Second, fér = Q we might fail to rec-
ognize thatP is defined atp, but we male this possibility happen with probability 6. Third,

for F = Q the computation of, may fail with probability <¢/6.

Fourth, “failure” can occur if for some# j, GCD(g; o, 9j0) ! 1, or dedgio) < deq§,). Let
75(B2) = ldcfy (i o(X1, BoXq + a)) and let
aij(az, Bo) = resultant, (G ,(X1, BoX1 + @2), §j (%1, BaXa + @2))

ove Flay, By, %]. It is easy to see that® r; o;; U Fla,, B,] and 75(by) g j(az, by) # 0
implies that the ab@ events are impossibleNow, deq(7;) < d; and dg(o; ;) < 2d;d; and there-
fore the probability that the at® events occur for any # j is less than

Cod 20id; _ (d +MEd,)? . d?

El cardR) 15« cardR) cardR) cardR) <%

Notice that ifP were division-free, thisvent would be the only one where failure could occur.

Fifth, we may not find good interpolation points in order to prodQge If we try at most
(d +1)* points, the probability that at legst+1)* = d* points are good can be estimatee lik
the proof of [33], Theorem 5.1We dhall repeat the argument her&n individual point was not
picked earlier with probabilitg 1 - (d +1)*/card(R) > 1 — /12 P is not defined at an inddual
point substituted fox, with probability <2'*/card(R) < /12 Hence a suitable point can be
found in a block ofi* points with probability >

*

« £ £

1-(e) >1- =, &=

(8 ) d* ! £ 67

becausel(e*)“'*‘1 > 29" —1 > d* for &* < 1/2. Now the probability that a good point occurs in
all of thed™ blocks of points is >

d*
and therefore failure happens with probabilitg/8. Sixth and last, folF = Q we may not rec-

ognize that we he gpod interpolating points, that for &t +1)? points together with probability
< /6. Summing up these failure probabilities completes the praof.

Q- )" >1-¢",

We remark that our result in [26] would aoto further reduce the problem on an alge-
braic RAM over F to unvariate factorization. V& dso mention that the input parametkcan be
probabilistically estimated in expected polynomial-time irg(d¢ (83). Furthermorethe
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algorithm could be formulated using quadratic lifting [25] in steplben the length of) could
be asymptotically reduced @(d?l + M(d?) log(d)). Finally we mention that the binary polyno-
mial-time upper bound can be easily generalizde being an algebraic extension@f

We row formulate tvo corollaries to theorem 6.1. The first refers to computing the sparse
factorization off and follows from theorem 4.2.

Corollary 6.1: If in addition to the input parameters of the Factorization algorithm we aee gi
t>0, for F =Qor F =F; we can find in polynomially manbinary steps and random bit
choices in

[, d, Iog(%), d-size(P), cc-size(f), andt

sparse polynomials that with probability > le-constitute all irreducible factors df with no
more thart monomials.

Notice that the abh@ mnning time is aliays polynomial independently whether the correct
sparse factors were produced or whether otiepfs are dense. This makes this corollary supe-
rior to all previous work on sparsactorization. Thesecond corollary deals with possibly non-
uniform closure. Again, in a amily of p-computable polynomials the degrees computation
lengths are polynomially bounded [62].

Corollary 6.2: Let F be a field of characteristic 0. Thenyaamily of factors of a family of p-
computable polynomials is p-computable.

Notice that this corollary appliesyen to fields in which arithmetic is recuvei kut over
which polynomial factorization is undecidable [9]. It also shows that a polynongest@®ound
is necessarily requiredWe rote thatx® - 1 can be computed witl(d) instructions but it is
known that aer the compl& numbers there exist factors that requit@®?/vd) computation
length [43] and [50]. It would be nice tovgi siIch an example where the factors are irreducible
polynomials eer Q.

We have implemented the Factorization algorithm [8]. In order tha{Q&@ndoes not
become too large, twpractically important impreements to the Factorization algorithm as it is
described abege were made. First, the cdiefents ﬂvm are not computed a-priorubas thg are
needed for eack in the lifting loop. This is accomplished by using the Polynomial @oieints
algorithm in the original version of [33], which is based on Taylor sexigansion. Secondhe
product[]i5 gﬁk is also computed incrementally using the coefficients determined already for
k —1 of the same product.
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7. Conclusion

Aside from the predecessor paper [33] currently tmore of our papers deal with the sub-
ject of manipulating polynomials in straight-line representation. In the forthcoming paper [32]
we shov how to replace the input parameterin the Factorization algorithm by a degree bound
for the individual &ctors. V& dso hare implemented our algorithms in Lisp with an ingaxé to
Macsyma. Thaletails of this first implementation together with practical inagmeents and our
experience on test cases are reported in [8].

The question arises what major unresolved problems in the subject of polyractoal f
ization remain.lt is appropriate to distinguish between theoretical and practical issues. One the-
oretical question is to reme the necessity of random choices frony ahthe problems knen
to lie within probabilistic polynomial-time, say factorization ofvaniate polynomials er large
finite fields. Another problem is tovestigate the parallel complexity of polynomialctoriza-
tion, say for theNC model [7]. Kroneckers reduction from algebraic number coefficients [36],
[60], and [37], Berlekamp’factorization algorithmwer small finite fields [10], Kaltofers deter-
ministic Hilbert irreducibility theorem [26], 87, andéibergers irreducibility test forQ[x] [65]
all lead toNC solutions by simply applying kmen NC methods for linear algebra problenis.
is open whether factoring @[] or irreducibility testing inF [x], p large, or inQ[X, y] can be
accomplished ilNC. We remark that testing a rational dense nvattate polynomial for abso-
lute irreducibility can be shown to beNC [29].

In connection with the Factorization algorithm presented here, we also mention an open
guestion. Assumthat a straight-line program computes a polynomial whose degreeasen-
tial in the length of the program. Are then at least its factors of polynomially boungeskge
computable? Adositve aaswer to this question would slkidhat testing a polynomial for zero in
a aiitable decision-tree model is polynomial-time related to computing that polynomial (cf [32],.
86, Problem 6). In general the theory of straight-line manipulation of polynomials may be
extendable in part to unbounded input degrees, Vit for the elimination of divisions problem
[57] the answer is not known.

From a pragmatic point of wiethe main unresolved question is what role the polynomial-
time polynomial factorization algorithms should play in computer algebra systems, that is in
actually used implementations. Thé&® algorithm [42] has been considered impractical by
even one of the imentors, but that &ws not meant to imply that this algorithm is useless for poly-
nomial factorization. Infact, usingL® to recover algebraic numbers from their modular images
leads to a practically competé factoring algorithm for polynomialsver agebraic humber
fields [39]. We submit that careful implementations of different lattice reduction schemes
together with the compteroot approximation method [52] might out-perform the Berlekamp-
Hensel algorithm on hard-to-factor polynomials. The first implementation of the straight-line
factorization algorithm is reported in [8]. There its practical meriteeH&en demonstrated on
very dense inputs such as symbolic determinants.

In summaryin this paper we were able to contribute @li&ht's dgebraic counterpart of
the theory ofP vs. NP in the positve, that is establish a polynomial upper bound for a major
problem in computational algebra. In fact, it comes to us as a small surprise that p-computable
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polynomials are closed undexctorization. Andve have, finally, put to rest the problem of com-
puting the sparse factorization of a mudtiate polynomial.

Note added in pioof. Since this chapter has been submitted, progress waasgroblems discussed can be
reported. The sparse aa@nsion problem in Sectiofh has been sols nore efficiently by Ben-Or and iari
[Proc. 20thAnnual ACM Symp. Theory Comp@®01--309 (1988)], Zippeldl SYmbolic Computto appear (1990)],
and by Lakshman atpati and the authorProc. ISS& 1988, Springer Lec. Notes Comp8ti. to appear (1989)].
John Cany and Barry Trager ha&e made the authorveare of a more déctive vasion of the Hilbert Irreducibility
Theorem 5.1that essentially reduces the numerator of the probability boud®{3. Such a theorem also folles
from methods presented in [K6], Section 5. Findigrry Trager and the authdProc. 29thAnnual SympFounda-
tions ComputSci. 296--305 (1988)] hae shown that another implicit representation for medtiate polynomials,
that of black box programs that merely allto evaluate the polynomials at\gn input points, can be used as input
and output representation for polynomial-time polynomial factorization.

Acknowledgement A discussion | had with Barry Trager aMgears ago has helped me irveleping 84. | also
thank Joachim von zur Gathen and Gregory Imirzian for their valuable comments.
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