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ABSTRACT: We present a modification of the
Goldwasser-Kilian-Atkin primality test, which, when
given an input n, outputs either prime or composite,

along with a certificate of correctness which may be ver-
ified in polynomial time. Atkin’s method computes the
order of an elliptic curve whose endomorphism ring is
isomorphic to the ring of integers of a given imaginary
quadratic field Q(

√
−D). Once an appropriate order is

found, the parameters of the curve are computed as a
function of a root modulo n of the Hilbert class equation
for the Hilbert class field of Q(

√
−D). The modification

we propose determines instead a root of the Watson
class equation for Q(

√
−D) and applies a transforma-

tion to get a root of the corresponding Hilbert equation.
This is a substantial improvement, in that the Watson
equations have much smaller coefficients than do the
Hilbert equations.

1 Introduction

The Goldwasser-Kilian (1986) primality test, as mod-
ified by Atkin, allows one to efficiently certify a large
integer on a computer to be a prime number. Atkin’s
modification abandons the rigorous polynomial-time
running time property of the algorithm in order to make
the production of the elliptic curve based certificate
practical (see also Morain (1988)). In this paper, we
further improve on this modification by using Watson’s
(1935) defining equations for the Hilbert class fields that
Atkin selects.

∗This material is based on work supported by the National
Science Foundation under Grant Nos. CCR-87-05363 and CDA-
8805910 (first and second author); and by the National Science
and Engineering Research Council (Canada) under Grant No.
A8566 (third author); appears in the Proceedings of the Interna-
tional Symposium of Symbolic and Algebraic Computing, ACM
Press, July 1989, pp.26-33.

Elliptic curves gained prominence in computational
number theory with the integer factorization paper by
Lenstra (1986) and the Goldwasser-Kilian (1986) pri-
mality test. The latter used elliptic curves to construct a
certificate of correctness for the assertion that the given
input was prime. In this test, curves are generated at
random and their points counted until a curve with a de-
sired order is found. The point counting (Schoof 1984)
is an expensive operation, however. The Atkin test (cf.
A.Lenstra and H.Lenstra 1987) avoids this problem by
computing first the order of curve, then the curve it-
self, from the complex multiplication field Q(

√
−D) as-

sociated with the curve. The curve’s parameters are
then obtained from a root of the Hilbert class equa-
tion for the Hilbert class field of Q(

√
−D). The Hilbert

equation, however, has coefficients which are extremely
large, though the constant term and the discriminant
are highly divisible numbers.

The modification we propose uses Watson equations
instead of Hilbert equations. The Watson class equa-
tions have coefficients which are very small compared
to those of their Hilbert counterparts. Indeed, the roots
of the Watson equations are, in certain cases, units.

We begin in section 2 by presenting some back-
ground material on elliptic curves. In section 3 we de-
scribe the Goldwasser-Kilian algorithm and present a
theorem on which the correctness of this algorithm and
the modifications based on it depend. The modification
due to Atkin is presented in section 4, along with the
necessary background on quadratic forms and quadratic
fields. Finally, section 5 introduces the Watson equation
and demonstrates how a root of it can be transformed
to a root of the Hilbert equation. A sample output of
a test run with this new modification is provided as an
appendix.
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2 Elliptic Curves

We present some material on elliptic curves. Further
details may be found in Lenstra (1985).

Let F be a field of characteristic 6= 2, 3, and let a, b ∈ F
satisfy 4a3 + 27b2 6= 0F .

Definition 2.1: The elliptic curve EF (a, b) is the set of
points given by {(x, y) ∈ F×F | y2 = x3+ax+b}∪{I∞}.
The point I∞ is said to be the point at infinity of
the curve. The quantities ∆ = −16(4a3 + 27b2) and

j = 1728(4a)3

∆ are respectively the discriminant and the
j-invariant of EF (a, b).

Theorem 2.2: The set EF (a, b) is an additive abelian
group with identity I∞ and addition defined as follows:
(i): (x, y) + (x,−y) = I∞
(ii): if y 6= 0 then

(x, y) + (x, y) = (λ2, λ3 − y + λx),

where λ = 3x2+a
2y

(iii): if x1 6= x2 then

(x1, y1) + (x2, y2) = (x3,−λx3 − y1 + λx1),

where x3 = λ2 − x1 − x2 and λ = y2−y1

x2−x1

We note that the addition of Theorem 2.2 may be a
partial function if we allow elliptic curves to be defined
over arbitrary rings. Indeed, the quotients used to de-
fine λ must exist in the ring if the addition function is
to be total.

Our interest is in elliptic curves over GF (p), p prime.
The following result, due to Hasse, allows us to confine
our search for the order of an elliptic curve over GF (p)
to a small interval centered at p + 1. To simplify nota-
tion, we let E denote EGF (p)(a, b) and |E| the order of
the group (E,+).

Theorem 2.3: |E| = p + 1 − t, where |t| ≤ 2
√

p.

Finally, we define the notion of elliptic curve isomor-
phism. (cf. Silverman (1986) or Husemöller (1987)).

Definition 2.4: Two elliptic curves E = EF (a, b) and
Ē = EF (ā, b̄) are isomorphic if there is a change of
variables x = u2x̄, y = u3ȳ, u ∈ F − {0} such that
(x, y) ∈ E ⇐⇒ (x̄, ȳ) ∈ Ē.

Note that the isomorphic curves of Definition 2.4 must
have a = u4ā, b = u6b̄, and  = ̄. Thus the quantity j is
invariant under isomorphism . Conversely, two elliptic

curves with the same j value are isomorphic over the al-
gebraic closure F̄ of F . Thus, once we know a curve’s j-
invariant, we have determined the F̄ -isomorphism class
of the curve.

3 The Goldwasser-Kilian Algo-

rithm

The probabilistic primality test due to Goldwasser and
Kilian (1986) was the first of its kind to use elliptic
curves and to produce a certificate of correctness for its
assertion of primality. This recursive algorithm, which
we sketch in Figure 1, serves as a model for the Atkin
test and its modification, which we describe in sections
4 and 5.

We remark that B may be any reasonable bound
below which it makes sense to use trial division (e.g.
106). Also, qP denotes a repeated addition

P + P + . . . + P
︸ ︷︷ ︸

q times

,

which may fail (see the remarks following Theorem 2.2).
If failure does occur, we terminate with a non-trivial di-
visor of p as a certificate of p’s compositeness. Finally,
we note that the above algorithm employs Schoof’s
(1984) O(log8(p)) algorithm for computing the order of
ER(a, b), given a and b.

The correctness of the Goldwasser-Kilian algorithm
hinges on the following result, which is the basis for the
recursive call above.

Theorem 3.1: Let (n, 6) = 1 , R = Z/nZ, a, b ∈
R satisfy (n, 4a3 + 27b2) = 1. Suppose there exists
P ∈ ER(a, b) − I∞ such that qP = I∞ for some prime
q > (n1/4 + 1)2. Then n is prime.

Thus GK(p) computes a sequence p = p1, p2, . . . , pt such
that

pt prime ⇒ . . . ⇒ p1 prime.

4 Atkin’s Modification

Whereas the Goldwasser-Kilian algorithm generates el-
liptic curves randomly and counts their points, the
Atkin test uses the notion of a “complex multiplication
field” to compute an elliptic curve’s order, and from
this, the curve itself. Thus, Atkin avoids the expense of
Schoof’s technique.



Algorithm GK(p)
Input: p, a highly-probable prime.
Output: Either prime or composite along with a certificate of correctness
for the assertion.
begin

If p < B then
perform trial divisions to determine whether p is prime
and return list of trial-divisors

else
repeat

let a, b be randomly chosen elements of R = Z/pZ;
let q = |ER(a, b)|/2

until probable-prime(q);
repeat

randomly generate P ∈ ER(a, b)
until qP = I∞;
return( (P, q, a, b) appended to GK(q) )

end;

Figure 1: The Goldwasser-Kilian Algorithm

We now outline the theory underlying Atkin’s method.
Further details may be found in Lenstra and Lenstra
(1987). Throughout this section, F denotes GF (p), p
prime, and E = EF (a, b).

Theorem 4.1: The ring EndF (E), consisting of en-
domorphisms of E which fix F elementwise, is isomor-
phic to the ring of integers O−D of a quadratic field
Q(

√
−D). This quadratic field is said to be the complex

multiplication field of E. Specifically, the complex mul-
tiplication field of an elliptic curve E over GF (p) with

order p + 1 − t is Q(
√

t2 − 4p).

For more general results regarding endomorphism
rings of elliptic curves over arbitrary fields, the reader
is referred to Silverman (1984), chapter III, section 9.

Theorem 4.2: Under the isomorphism of Theorem 4.1,
the endomorphism x 7→ xp is identified with π ∈ O−D

satisfying ND(π) = ππ̄ = p. (Here, ND is the norm
function on Q(

√
−D) and π̄ is the conjugate of π). From

this, it follows that |E| = p + 1 − (π + π̄) = p + 1 − t,
where t ∈ Z and, by Theorem 2.3, |t| ≤ 2

√
p.

We call −D a fundamental discriminant if D ≡ 3
(mod 4) or D ≡ 4 (mod 16) or D ≡ 8 (mod 16),
and D is squarefree in its odd prime divisors. We note
that if D ≥ 4, there are two factorizations of p of the
type described in Theorem 4.2, corresponding to ±π.

In general, the number of such factorizations is equal to
the number of units of O−D.

The Atkin test finds a fundamental discriminant sat-
isfying (−D

p ) = 1 ,a necessary condition for a split of p
to occur. If p can be split, the order of E is computed
using Theorem 4.2. But, how does the Atkin test at-
tempt to split the integer p? The answer is found in the
theory of quadratic forms, which we now summarize.

Definition 4.2: A binary quadratic form Q = [a, b, c]
is a polynomial Q(x, y) = ax2 + bxy + cy2 ∈ Z[x, y].
Its discriminant is b2 − 4ac. The form is primitive if
(a, b, c) = 1 and reduced if |b| ≤ a ≤ c and b ≥ 0 when-
ever c = a or |b| = a. The matrix corresponding to Q

is

MQ =

(
a b

2
b
2 c

)

.

Definition 4.3: Two forms Q and Q′ are equivalent if
there exists a matrix A with determinant 1 such that
MQ′ = AT MQA.

Theorem 4.4: Equivalent forms have the same dis-
criminant and represent the same set of integers. Every
equivalence class of primitive quadratic forms contains
exactly one reduced form.

Theorem 4.5: The equivalence classes of primitive re-
duced quadratic forms of discriminant −D are in one-
to-one correspondence with the equivalence classes of
ideals of O−D, where the latter equivalence is defined



by

I ∼ J ⇐⇒ ∃α, β ∈ O−D s.t. (α)I = (β)J.

It follows from Theorem 4.5 and the definition of
“class number” that there are h(−D) reduced forms of
discriminant −D, where h(−D) is the class number of
Q(

√
−D).

Atkin applies the preceding theory in the follow-
ing way: In the case −D ≡ 1 (mod 4), D ≥ 7, we

have O−D = {a + bω|a, b ∈ Z}, with ω = 1+
√
−D

2 .
We search for π by attempting to find a short vec-

tor in the lattice L = pZ + Z( b+
√
−D

2 ), where b2 ≡
−D(mod p). Note that νx,y = px + ( b+

√
−D

2 )y ∈ L

satisfies p = ND(νx,y) = p2x2 + bpxy + y2( b2+D
4 ) if

and only if [p, b, b2+D
4p ] ∼ [1, 1, 1−D

4 ] since the form

x2 + xy + 1−D
4 y2 represents 1 when x = 1 and y = 0.

Thus, if [p, b, b2+D
4p ] reduces to [1, 1, 1−D

4 ], we set π to

νx,y, where (x, y)T = S(1, 0)T , S is the matrix of trans-

formation from [p, b, b2+D
4p ] to [1, 1, 1−D

4 ].

At this point, we have p = νν, where ν = ±π, and
one must check m+ = p + 1 + (π + π) and m− = p +
1 − (π + π) to determine if either factors as kq with
k > 1 and q a large prime. Once such a ν is found, the
j-invariant of the elliptic curve E and the parameters a
and b of E are determined as a function of a root modulo
p of the Hilbert class equation

H−D(x) =

h(−D)
∏

i=1

(x − j(τi))

where τi = bi+
√
−D

2ai

and the [ai, bi, ci](i = 1, . . . , h(−D))
are the reduced forms of discriminant −D. The modular
function j(z) is given by

j(z) =
(1 + 240

∑∞
k=1

k3qk

1−qk )3

q
∏∞

k=1 (1 − qk)24
, q = e2πiz

Approximations to the values of j(z) can be com-
puted via a power series approximation (cf. Kaltofen
and Yui (1984)). If r ∈ GF (p) is a root of H−D, the
curve we are interested in is either EGF (p)(3l, 2l) or
EGF (p)(3lc

2, 2lc3), where l ≡ r(1728 − r)−1 (mod p)
and c is a randomly chosen quadratic non-residue mod-
ulo p. The correct curve for our purposes is the one
which has order kq. We remark also that k is well-
defined and non-zero since we are assuming D ≥ 7.
Computation of H−D(x) is costly and its coefficients
are very large. In the next section, we provide an al-
ternative to the use of H−D(x) in our construction of
elliptic curves. The Atkin test is summarized in Figure
2.

5 A New Approach

Let H−D(x), h(−D), and j(z) be as in section 4, and put
h = h(−D). Recall that the Atkin modification com-
puted the elliptic curve j-invariant as a root of H−D(x).
In this section, we propose a technique by which we in-
stead factor a “reduced” class equation w−D(x), known
as the Watson class equation for the Hilbert class field
of Q(

√
−D). Again, the Watson equations have dra-

matically smaller coefficients than their Hilbert coun-
terparts. The idea is to somehow transform a root of
w−D to a root of H−D, which is what we require. We
illustrate how to do this in the case −D ≡ 1 (mod 8)
with a theorem due to Watson (1935).

Theorem 5.1: Let H−D(x) = xhH−D

(
(x−16)3

x

)

.

Then H−D(x) has an irreducible (over Q) monic fac-

tor h−D(x) =
∏h

k=1(x − αk) ∈ C[x]. Moreover, for a
suitable choice of 24th root of αk (k = 1, . . . , h),

w−D(x) = xh
h∏

k=1

(
1

x
− 24

√
αk).

We note that w−D may be computed from an ap-
proximation of a single real root via a technique which
involves lattice reduction (cf. Kaltofen and Yui 1989).

We make use of Theorem 5.1 as follows:

Let γ 6= 0 be a root of w−D. Then ( 1
γ )24 = αk for

some k. From Theorem 5.1, x − αk divides H−D(x),
i.e. αk is a root of H−D(x). Now, letting β1, . . . , βh

denote the roots of the Hilbert equation H−D(x), we

have H−D(x) = xh
∏h

i=1

(
(x−16)3

x − βi

)

=
∏h

i=1((x −
16)3 − xβi). Thus, for some i, αk satisfies

(αk − 16)3 − αkβi = 0.

This yields a Hilbert root as a function of the Watson
root:

βi =
(αk − 16)3

αk
.

Naturally, in our modified Atkin test, these transforma-
tions are performed modulo the number to be proven
prime. A sample output, using this new technique, ap-
pears as an appendix.



Procedure Atkin(p)
Input: p, a highly-probable prime.
Output: Either prime or composite along with a certificate of correctness
for this assertion.
begin

If p < B then
perform trial divisions to determine whether p is prime
and return a list of trial-divisors

else
repeat

repeat
find a fundamental discriminant −D ≤ −7 satisfying(−D

p ) = 1;

set b to
√
−D (mod p);

adjust b so that its parity is equal to that of −D

reducedform := Reduce[p, b, b2+D
4p ]

until reducedform = [1, 1, 1−D
4 ];

(x y)T := S(1 0)T , where S is the transformation matrix

from [p, b, b2+D
4p ] to [1, 1, 1−D

4 ];

{remark: now π = x + y( 1+
√
−D

2 )}
t:= 2px + by; m+:=p + 1 + t; m−:=p + 1 − t

until m+ or m− = kq, q > (p
1

4 + 1)2, and probable-prime(q);

r := root mod p of H−D(x); l:=r(1728 − r)−1 (mod p);
(a, b):=(3l, 2l) (mod p); E:=EF (a, b);

If (kq)P 6= I∞ then
c := randomly chosen quadratic non-residue mod p;
(a, b) := (ac2, bc3); E:=EF (a, b)

EndIf ;

Randomly generate P ∈ E until kP 6= I∞ and (kq)P = I∞;
Append (P, k, q, a, b) to Atkin(q)

end;

Figure 2: The Atkin Test
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D.Husemöller, Elliptic Curves , Springer GTM 111,
1987

E.Kaltofen and N.Yui, “Explicit construction of the
Hilbert class fields of imaginary quadratic fields with
class numbers 7 and 11”, EUROSAM’84, Lecture Notes

in Computer Science 174 (1984), pp.310-320, Springer-
Verlag

E.Kaltofen and N.Yui, “Explicit construction of the
Hilbert class fields of imaginary quadratic fields by inte-
ger lattice reduction”, New York Number Theory, Lec.

Notes Math.,Springer Verlag, to appear, 1989

A.K.Lenstra and H.W.Lenstra Jr., “Algorithms in
Number Theory”, in Handbook of Theoretical Science,

North Holland, Amsterdam 1987

H.W.Lenstra Jr., “Factoring integers with elliptic
curves”, Annals of Math, 126, 1987, pp.649-673

F.Morain, “Implementation of the Goldwasser-Kilian-
Atkin Primality Testing Algorithm”, (Draft), Univer-
sity of Limoges, 1988

J.H.Silverman, The Arithmetic of Elliptic Curves,

Springer GTM 106, 1986

G.N.Watson, “Singular Moduli (4)”, Acta Arithmetica
1 (1935), pp.284-323



APPENDIX: A Primality Certificate for a 209 Digit Number

We present a portion of a certificate for a 209 digit number. The certificate was obtained from our Lisp imple-
mentation of the modified Goldwasser-Kilian-Atkin test on a Symbolics 3670 computer.

At each level, we exhibit the number N to be proven prime, the parameters A and B of an elliptic curve
E = EGF (N)(A,B), a decomposition |E| = KQ, with Q > (N

1

4 +1)2 a probable prime, and P ∈ E a point satisfying
(KQ)P = I and KP 6= I. Theorem 3.1 assures us that N is prime provided Q is prime. At the next level, we
therefore proceed with N replaced by the Q of this level.

In addition to this, we include at each level information regarding how the curve was constructed. We show the
discriminant DISC and either the Watson (WATSEQN) or Hilbert (HILBEQN) class equation for the field Q(

√
DISC).

Note that whenever DISC ≡ 1 (mod 8), we can employ the theory of section 5 to transform the root W-ROOT of the
Watson equation to the desired root H-ROOT of the Hilbert equation. The results of these transformations are also
depicted in such cases.

(N= 44849522402294576388062847465075375801818813514437743394932401135594/

70701107169469859688779135585699141886647146117855269161083338750352040/

5324743895419257626810889993197886070602123649861148338395777376394079

DISC= -1528)

(HILBEQN= (1 -215268892142320585480835263642311079363564257459264000

998784775249544021655512244994326693088930344827693660386718303730239915/

52000000

130243728283299475446073413827510639336517994515982186679121131367955079/

20896000000000

440965705781341613340051370543735443449794646350475924862081008378403105/

300480000000000000

-162745667020938810121011563088932982210195336187506214454855144644001744/

9975808000000000000000

253491423236741884924851766355082859460724386592025708388888189188727434/

9559808000000000000000000

-133043485505562670948914734781089766016360603667515974615534226800332653/

1469312000000000000000000000

354575195374461844246948169302330676593475440368426716439789752420588738/

052096000000000000000000000000)

H-ROOT= 1648927564002510749416996730441210023410096821471374972292984198/

7684549031584329726567146823205814262854207907962600981493647864092228299/

952213429001442574873342903254185397925273860595281816475454849938270698)

)

(K= 39406

Q= 113813943060180115688125786593603450748157167726837901321962140627302/

2052760282563533393082052374181378959803714042961109683212049866919389546/

614575571814780868244492594269034742888765005120202166186174183

A= 250517222971774900024837533408005967813407643241520204508332671174429/

9165884092152529804958039776925779633512951864928493885549669718367174735/

0908277423815304509281541550820678693548080834237477771380868798396

B= 175130739735346787230155307217527258695423837795543250224471103309709/

2102203382783999737123146560508057934595858706672395366720002287941029792/

357553142790994069224363301251762261657503935775539048994787067571

P= (686472019

40227378384215312715461923173265645300929851500319910701416206175782/

9922285492345919788530551065606024388738920103733709359795282960836279550/

03497587296772200413778435838221459529760927084567010704035277367945))



(N= 1138139430601801156881257865936034507481571677268379013219621406273/

02205276028256353339308205237418137895980371404296110968321204986691938/

9546614575571814780868244492594269034742888765005120202166186174183

DISC= -571)

(HILBEQN= (1 400497845154831586723701480652800

818520809154613065770038265334290448384

4398250752422094811238689419574422303726895104

-16319730975176203906274913715913862844512542392320

15283054453672803818066421650036653646232315192410112)

...

.

.

.

(N= 167914564828063403047877737704654289373393305605166432906761217057

DISC= -47)

(WATSEQN= (1 0 -1 -2 -2 -1)

H-ROOT= 157802772974708238730713964995978423824267305127219319095974461077)

(TRANSFORMED_FROM_W-ROOT=

98943962984957353716765947459669649176084326493611331376732901259)

(K= 1845504 Q= 90985749599059879061696825205827135337925381756228286851577

A= 148908828340387242415672401248818027503230076346660057525192560720

B= 80559905361800237505510331044231416602289767192410946878075514778

P= (1581278695

53341474148687862270570699866495456892135289611515267460682123534)

)

(N= 90985749599059879061696825205827135337925381756228286851577 DISC= -463)

(WATSEQN= (1 -11 -9 -8 -7 -7 -3 -1)

H-ROOT= 89269063821083628669686104610140304331597503052637374453663)

(TRANSFORMED_FROM_W-ROOT=

52500329291704501488386480971208755282874239293568282807051)

(K= 4 Q= 22746437399764969765424206301347842659703211196334784520281

A= 83408272427817509053027933398633442929109311269726523824918

B= 85934098151564965722584230667698007065381334765227111500471

P= (556388845 33280120002543536945823748149405006167558800785473982376373)

)

.

.

.

(N= 299181570129062362581619776823 DISC= -7)

(HILBEQN= (1 3375) H-ROOT= 299181570129062362581619773448)

(K= 202372016 Q= 1478374214195025720161

A= 80731534794564966901210191982 B= 72890765758395612443350295079

P= (1114665619 109659926675783084815657590861)

)

(N= 1478374214195025720161 DISC= -7)

(HILBEQN= (1 3375) H-ROOT= 1478374214195025716786)

(K= 107120384 Q= 13801054094879

A= 1259710778715252563263 B= 900930232093972691732

P= (638640083 1084169087079598897830)

)




