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1. Introduction

Finding the solution to a system of n non-linear
polynomial equations in n unknowns over a
given field, say the algebraic closure of the coef-
ficient field, is a classical and fundamental prob-
lem in computational algebra. For algebraic
reasons (refer to footnote 1 in van der Waer-
den (1953, §80)) one considers projective prob-
lems, that is, the polynomials are homogeneous
and the solutions are sought in n-dimensional
projective space. Note also that the solutions
of an affine system are specializations of the so-
lution rays of its homogenized projective ver-
sion. Going back to Cayley and Bezout in the
last century, solvability of such a projective sys-
tem is determined by the vanishing of a certain
invariant, its resultant. This invariant general-
izes the Sylvester resultant of two polynomials
in a single variable (Knuth 1981) and the deter-
minant of the coefficient matrix on a homoge-
neous linear system. In 1916 Macaulay (1916)
showed that the resultant can be expressed by a
quotient of two determinants whose correspond-
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ing matrices have coefficients of the input poly-
nomials as their entries. These matrices have
dimension exponential in the number of vari-
ables, but since there is an easy reduction to an
NP-complete problem (Agnarsson et al 1984),
there is little hope for a polynomial-time solu-
tion in the number of variables. Finally, if a
projective system of n − 1 equations and n un-
knowns has finitely many solutions, these can
again be found by computing the resultant of
the system with the addition of a generic linear
form. That resultant, the so called u-resultant,
is a polynomial in the generic coefficient vari-
ables of the added form, and it factors into lin-
ear factors whose scalar coefficients are exactly
the components in the corresponding solution
rays (refer also to the example below). The
results discussed so far are classical; for mod-
ern extensions of these to deal with infinitely
many solutions at infinity, for instance, refer to
(Lazard 1981) and (Canny 1988b).

The main result of this article is a new effi-
cient algorithm to evaluate the resultant. The
dimensions of Macaulay’s matrices are bounded
by D, where

D =

(

d + n − 1

n − 1

)

, d = 1 +
n

∑

i=1

(di − 1),

di the degree of the i-th projective equation.
We present an algorithm that computes the re-
sultant in

O(nD2 (log2(D) log(log D) + n))
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arithmetic steps over the coefficient field, us-
ing O(D) locations for field elements. The best
previous methods, described in present day re-
search by (Lazard 1981), (Grigoryev and Chis-
tov 1984), (Canny 1988c), and (Renagar 1987b),
for instance, all required to compute the
Macaulay determinants by Gaussian elimina-
tion or the derived algorithms using fast matrix
multiplication. Hence our result improves the
time complexity from O(Dω), where ω is the
matrix multiplication exponent, to essentially
D2+o(1), with n = Do(1) for d = Ω(n), and even
more importantly, we have improved the space
requirements from O(D2) to O(D).

Having a fast resultant evaluation procedure,
one can find solutions of a non-singular system
quickly. Here non-singular means that the sys-
tem only has finitely many solutions. One needs
to factor the u-resultant of the input system.
Our algorithm provides an efficient method to
evaluate the u-resultant at a specialization for
the generic variables. Fortunately, this is all
one needs in order to apply Canny’s primitive
element method (Canny 1988a), or the more
general factorization method for polynomials
given by black boxes for their evaluation (Kalt-
ofen and Trager 1988). Both approaches essen-
tially take O(N2) arithmetic operations, where
N =

∏n

i=1 di is the number of solutions.

There are two alternate ways of computing
solutions to polynomial systems, the classical
elimination method due to Kronecker (van der
Waerden 1953) and the modern Gröbner ba-
sis method due to Buchberger (see the survey
(Buchberger 1985)). From a theoretical point of
view, the complexity bound for the first method
is doubly-exponential in n. The Gröbner basis
algorithm for 0−dimensional ideals has com-
plexity n3max{di}

O(n3) (Caniglia et al 1988).
Moreover, the initial reductions in the Gröbner
basis algorithm are identical to the initial Gaus-
sian row elimination steps on the Macaulay
matrix. An S-polynomial construction in the
Gröbner basis algorithm corresponds to several
row reductions in Gaussian elimination. In one

variable this makes computation of Sylvester re-
sultants by the Euclidean algorithm quadratic
time vs. the cubic time algorithm for triangular-
izing the Sylvester matrix. However, this phe-
nomenon seems difficult to generalize, at least
in a straight-forward fashion, to multivariate re-
sultants and the Gröbner basis algorithm. In
fact, the main problem with performing Gaus-
sian elimination on this usually sparse matrix
is the fill-in to quadratic size. This is especially
costly since this matrix has dimension exponen-
tial in n.

Our new resultant algorithm is based on two
recent results in computational algebra. For
one we make use of Wiedemann’s (1986) fast
method for computing the determinant of a ma-
trix using a linear number of matrix times vec-
tor operations. In the case of Macaulay’s ma-
trix, the matrix times vector product can be
shown to be equivalent to computing a multi-
variate polynomial product in which the prod-
uct is a dense polynomial bounded in total de-
gree. In order to compute this product in lin-
ear time in the number of terms in the answer,
we make use of the new sparse interpolation
algorithms (Ben-Or and Tiwari 1988), (Zip-
pel 1990), and (Kaltofen and Lakshman 1988).
In this particular setting, the term-structure
of the answer polynomial is known and one
only needs to perform the last step of the Ben-
Or&Tiwari algorithm. We can show that both
the pointwise evaluation and interpolation prob-
lems, which correspond to transposed Vander-
monde systems, can be solved in the same
asymptotic time regular Vandermonde systems
are solvable.

We wish to point out that our algorithm is
an exact method. There are numerical meth-
ods based on homotopical transformation of so-
lution paths (see, e.g., (Drexler 1977), (Gar-
cia and Zangwill 1979), (Li et al. 1988), and
(Zulehner 1988)), and on Newton iteration (Re-
nagar 1987a). These methods are, however, not
universally applicable.

This paper first introduces some notation for
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the Macaulay resultant matrices. Then we pro-
vide the fast total degree bounded multivari-
ate polynomial product algorithm. Finally, we
show how that result can be combined with
Wiedemann’s determinant algorithm to give our
fast and space efficient resultant method.

2. The Multivariate Resultant

We now give a brief description of the mul-
tivariate resultant of a system of polynomial
equations. The interested reader can consult
(Macaulay 1916) and (Canny 1988c) for further
details. Given n homogeneous forms f1, . . . , fn

in the variables x1, . . . , xn, their resultant is
defined as the ratio of the determinant of a
certain matrix M (whose construction is de-
scribed below) and the determinant of a par-
ticular submatrix ∆ of M . The rows of M are
indexed by the monomials in x1, . . . , xn of de-
gree d = 1 +

∑n

i=1(di − 1), where di is the de-
gree of the polynomial fi. Therefore, M has
D =

(

d+n−1
n−1

)

rows.
A polynomial is said to be reduced in the vari-

ables xi1 , xi2 , . . . , xik for 1 ≤ i1, i2, . . . , ik ≤ n iff
for all j, 1 ≤ j ≤ k, its degree in xij < dij . A
polynomial is said to be just reduced if it is re-
duced in any n−1 of the n variables x1, . . . , xn.

Consider the homogeneous form

F = f1g1 + f2g2 + . . . + fngn (1)

where deg(gi) = d − di and gi is a generic
polynomial in x1, . . . , xn (i.e., coefficients are
not specialized) reduced in x1, . . . , xi−1. The
columns of M are labelled by the monomials
of gi and the rows are labelled by monomi-
als in x1, . . . , xn of degree d. The entries in
the column labelled by a particular monomial
~x~α = xα1

1 . . . xαn
n of gi are the coefficients of fi,

the coefficient of a particular monomial ~x
~β in fi

is placed in the row labelled by the monomial

~x~α+~β. There are exactly as many rows in M as
columns. Notice that the way in which the ma-
trix M is set up depends on the way the fi are
ordered. A different matrix is obtained with a
different ordering of the polynomials.

The submatrix ∆ is obtained by deleting the
rows in M whose labels are reduced (in any
n − 1 variables) and the columns containing
the coefficients of xdi

i in fi in the deleted rows.
Thus, ∆ has D − D′ rows and columns where
D′ =

∑

j

∏

i6=j di. The resultant is given by
R = det(M)/det(∆), provided det(∆) 6= 0.
Otherwise one chooses a different ordering of
the polynomials, say f2, . . . , fn, f1. If for all
such orderings the determinants of the corre-
sponding ∆’s are zero, R is defined to be zero.
The fundamental property of the resultant is
that the fi have common zeros if and only if
R = 0.

The common zeros of n non-homogeneous
polynomials f1, . . . , fn in n variables x1, . . . , xn

can be recovered by homogenizing the fi by the
addition of a homogenizing variable xn+1 and
introducing a new form fn+1 = u1x1 + u2x2 +
. . .+un+1xn+1 where the ui are indeterminates.
The resultant of these n+1 forms is now a poly-
nomial in the ui, the u-resultant of f1, . . . , fn.
Provided the homogeneous system has finitely
many solution rays, this u-resultant factors into
linear factors in u1, . . . , un+1 over the algebraic
closure of the coefficient field, and the coeffi-
cients of the ui in each factor correspond to the
components in the solution ray of the homoge-
nized system.

In the case of two homogeneous polynomials
in two variables or two inhomogeneous polyno-
mials in a single variable, the resultant reduces
to the familiar Sylvester resultant. In the case
of n linear forms, the resultant reduces to the
determinant of the coefficient matrix. To illus-
trate these concepts, we shall give a small ex-
ample.

Resultant Example (Lazard 1981): Given is
an affine system in two variables augmented by
a generic linear form:

f1 = x2 + xy + 2x + y − 1 = 0,
f2 = x2 + 3x − y2 + 2y − 1 = 0,
fl = ux + vy + w = 0.

(2)

Following is the matrix corresponding to the
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M =

































x y z x y z xy xz yz z2

x3 1 0 0 1 0 0 0 0 0 0
x2y 1 1 0 0 1 0 u 0 0 0
x2z 2 0 1 3 0 1 0 u 0 0
xy2 0 1 0 −1 0 0 v 0 0 0
xyz 1 2 1 2 3 0 w v u 0
xz2 −1 0 2 −1 0 3 0 w 0 u
y3 0 0 0 0 −1 0 0 0 0 0
y2z 0 1 0 0 2 −1 0 0 v 0
yz2 0 −1 1 0 −1 2 0 0 w v
z3 0 0 −1 0 0 −1 0 0 0 w

































u-resultant of (2), with z the homogenizing
variable. The divisor det(∆) is in this case a
non-zero rational.The labels at the rows and
columns correspond to its construction.Notice
that

det(M) = (u−v+w)(−3u+v+w)(v+w)(u−v)

corresponding to the affine solutions (1,−1),
(−3, 1), (0, 1), and one solution at infinity.

3. Fast Polynomial Multiplication

In this section, we describe an efficient algo-
rithm for computing the product of two to-
tal degree bounded multivariate polynomials.
More precisely, we prove the following:

Theorem 1. Given two multivariate polynomi-

als f1(x1, . . . , xn) and f2(x1, . . . , xn) over a field

of characteristic zero and of total degrees δ1 and

δ2, respectively, their product g(x1, . . . , xn) can

be computed in O(M(T ) log(T )) arithmetic op-

erations, where M(T ) denotes the numbers of

arithmetic operations needed to multiply two

univariate polynomials of degree T , and T =
(

δ1+δ2+n

n

)

, the total number of terms in the

product g.

Notice that a multidimensional FFT-based
multiplication algorithm performs O(M(δn))
arithmetic operations in this case, where δ =
δ1 + δ2. Also, the best univariate polynomial
multiplication algorithm over an arbitrary field
has M(T ) = O(T log(T ) log(log T )) complex-
ity (Schönhage 1977). Our algorithm works by

evaluation, pointwise scalar multiplication, and
interpolation:

— f1 and f2 are evaluated at specially chosen
integer points.

— The values of g at these points are computed
by multiplying the corresponding values of f1

and f2.
— g is interpolated from its values at the special

points.
We now describe the algorithm in detail.

3a. Evaluating a Multivariate

Polynomial at Special Points

Let f(x1, . . . , xn) = a1m1 + a2m2 + . . . + atmt

where the mi are distinct monomials and ai are
constant coefficients. We want to evaluate f at
the points

(1, . . . , 1), (p1, . . . , pn), . . . , (pt−1
1 , . . . , pt−1

n )

where pi denote distinct primes. Let

vi = (mi)xj=pj ,1≤j≤n and bi = f(pi
1, . . . , p

i
n).

We want to compute the bi for 0 ≤ i ≤ t − 1.
Let

V =









1 v1 v2
1 . . . vt−1

1

1 v2 v2
2 . . . vt−1

2
...

...
...

. . .
...

1 vt v2
t . . . vt−1

t









,

a =









a1

a2
...
at









, b =









b0

b1
...

bt−1









;
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V is a Vandermonde matrix. Clearly, V Tra = b.
Rewrite this as

(V TrV )V −1a = b. (3)

Let V −1a = a′. Solving a (t × t) Vander-
monde system is equivalent to interpolating a
univariate polynomial of degree t − 1 from its
values at t points. This can be performed in
O(M(t) log(t)) arithmetic operations (cf. (Aho
et al 1974)). Formula (3) now becomes

(V TrV )a′ = b

with
V TrV =








n
∑

vi

∑

v2
i . . .

∑

vt−1
i

∑

vi

∑

v2
i

∑

v3
i . . .

∑

vt
i

...
...

...
. . .

...
∑

vt−1
i

∑

vt
i

∑

vt+1
i . . .

∑

v
2(t−1)
i









,

which is a Hankel matrix. The product of a (t×
t) Hankel matrix and a vector can be computed
in O(M(t)) arithmetic operations. It can be
read off from the coefficients of the product of
polynomials

f = n+
∑

viz+
∑

v2
i z

2+. . .+
∑

v
2(t−1)
i z2(t−1)

and
g = a′

1z
t−1 + a′

2z
t−2 + . . . + a′

t.

Therefore, (V TrV )a′ can be computed using at-
most O(M(t) log(t)) arithmetic operations if
all the entries of V TrV can be computed in
O(M(t) log(t)) arithmetic operations . But the
entries of V TrV are the first 2(t−1) power sums
of the vi. Now, Newton’s identities for comput-
ing the power sums sj =

∑

vj
i from the elemen-

tary symmetric functions σj of vi lead to the
Toeplitz system of equations Ws = w where

W =























1 0 . . . . . . 0
−σ1 1 . . . . . . 0
σ2 −σ1 . . . . . . 0
...

...
. . . . . .

...
σt −σt−1 . . . . . . 0
...

. . . . . . . . .
...

0 . . . (−1)tσt . . . 1























s =























s1

s2

s3
...

st+1
...

s2t























, w =





















σ1

−2σ2

3σ3
...

tσt
...
0





















.

A (t × t) Toeplitz system can be solved in
O(M(t) log(t)) arithmetic operations (Brent et
al 1980). The elementary symmetric functions
σi can be read off from the coefficients of the
polynomial

∏t

i=1(z − vi) which can be com-
puted in O(M(t) log(t)) arithmetic operations
(cf. (Aho et al 1974)). This method can eas-
ily be generalized to evaluate f(x1, . . . , xn) at
points (1, . . . , 1), (p1, . . . , pn), . . . , (pT

1 , . . . , pT
n )

for T ≥ t in O(M(T ) log(t)) arithmetic opera-
tions. Another approach to the entire problem
is to pre-multiply V tra by a vector of indetermi-
nates, and apply the Baur and Strassen (1983)
all partial derivatives algorithm to the resulting
single entry. However, for that solution it is not
clear that linear space can be accomplished.

3b. Dense Interpolation

The final step of the polynomial multiplication
algorithm is the interpolation step. We now
describe a dense interpolation scheme. The
algorithm needs as input the total degree δ
of the polynomial to be interpolated and its
values at special points. Let g(x1, . . . , xn) =
a1m1 + a2m2 + . . . + aT mT be the polynomial
to be interpolated. We have mi = x

ei,1

1 . . . x
ei,n
n

such that
∑

j ei,j ≤ δ; ai and vi are as before,

and T =
(

δ+n

n

)

is the maximum possible number
of terms in g.

Evaluate g at points (1, . . . , 1), (p1, . . . , pn),
(p2

1, . . . , p
2
n), . . . , (pT−1

1 , . . . , pT−1
n ). Let the re-

spective values be denoted by g0, g1, . . . , gT−1.
Clearly,









1 1 . . . 1
v1 v2 . . . vT
...

...
. . .

...
vT−1

1 vT−1
2 . . . vT−1

T

















a1

a2
...

aT
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=









g0

g1
...

gT−1









.

This is a transposed Vandermonde system of
equations and the ai can be computed in
O(M(t) log(t)) steps (Kaltofen and Lakshman
1988). It now follows that the multiplication
algorithm performs O(M(T ) log(T )) arithmetic
operations in all as both the evaluation step
and the interpolation step can be completed
in O(M(T ) log(T )) arithmetic operations. The
pointwise multiplication step only needs O(T )
arithmetic operations. This proves Theorem 1.

4. Evaluating the Resultant

Let A be a (k × k) matrix and b be any k-
dimensional vector over a sufficiently large field.
By an Ab-step we mean computing the product
Ab. Wiedemann (1986) gives a randomized Las
Vegas algorithm to compute the determinant of
A via Ab-steps. We have:

Theorem 2. The determinant of a (k×k) ma-

trix A over a field with 50k2log(k) or more ele-

ments can be computed by a Las Vegas type

randomized algorithm in O(k) Ab-steps and

O(k2log(k)) arithmetic operations.

We show next that the product of M , the
Macaulay resultant matrix defined in §2, and
a vector b ∈ QD, Q the rationals, can be read
off from a polynomial sum of products. In fact,
this follows from the way the matrix M is de-
fined. The entries of the vector b are labelled by
the monomials of gi in (1) as are the columns
of M . The product of a row labelled by the
monomial m and the vector b is simply the co-
efficient of the monomial m in the polynomial
sum of products

F̂ = f1ĝ1 + f2ĝ2 + . . . + fnĝn, (4)

where ĝi represents gi with the coefficients of
the monomial m′ specialized to the value of
the component b which is labelled by the same
monomial m′. This idea is best demonstrated

by considering the example in §2.

Resultant Example continued: In order to
multiply M by

b = ( b1 b2 . . . b9 b10 )tr ,

we compute f1ĝ1 +f2ĝ2 +flĝl, where ĝ1 = b1x+
b2y + b3, ĝ2 = b4x + b5y + b6, and ĝl = b7xy +
b8x + b9y + b10. We have

f1g1 + f2g2 + flgl = · · · + 〈Mm,∗, b〉m + · · ·

where 〈Mm,∗, b〉 represents the dot product of
the row of M labelled by the monomial m and
the vector b.

The product of the sub-matrix ∆ and a vector
b′ ∈ QD−D′

can be obtained in a similar fashion
by starting with the matrix M and padding b′ to
b ∈ QD with zeros in those components whose
labels are the same as the labels of the columns
of M deleted to obtain ∆. This observation
and the use of theorems 1 and 2 lead to the
following:

Theorem 3. The resultant of n homoge-

neous polynomials over a field of characteris-

tic zero in n variables can be computed cor-

rectly by a Las Vegas randomized algorithm us-

ing O(nD2(M(D) log(D)+nD)) arithmetic op-

erations requiring to store at most O(D) field

elements.

Proof. Using the polynomial multiplication al-
gorithm described in the section 3,we can com-
pute an Mb-step in O(nD + M(D)log(D)) op-
erations. Hence we can find det(M) and det(∆)
in O(D (M(D) log(D) + nD)) arithmetic oper-
ations if the values of all fi in (4) at the points
pj

1, . . . , p
j
n for 0 ≤ j ≤ D − 1 can be computed

within that time. We show that it can be done
by separating the linear, quadratic, and higher
degree fi. Clearly, the linear fi can be evalu-
ated in O(nD) steps. For the quadratic ones,
say there are l of them, the total number of
terms is bounded by

l

(

n + 1

n − 1

)

≤

(

1 + l + n − 1

n − 1

)
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≤

(

d + n − 1

n − 1

)

= D for all n ≥ 4, l ≤ n.

For the fi with deg(fi) ≥ 3, for their total num-
ber of terms we have

∑

di≥3

(

di + n − 1

n − 1

)

≤

(

n +
∑

di≥3(di − 1)

n − 1

)

≤

(

d + n − 1

n − 1

)

= D for n ≥ 3.

The first inequality follows from
(

r + k

k

)

+

(

s + k

k

)

≤

(

r + s − 1 + k

k

)

for all r, s ≥ 3, k ≥ 2,

which in turn is established by induction on k.
Since the total number of terms on all the poly-
nomials is bounded by D, they can be evalu-
ated in O(M(D) log(D)) steps. Notice that one
computes the values of the sum in (4) before
performing a single sparse interpolation. ⊠

5. Conclusion

We have given a method that allows to compute
resultants and u-resultants of polynomial sys-
tems in essentially linear space and quadratic
time. We believe that our algorithm constitutes
the first improvement over Gaussian elimination-
based methods for computing these fundamen-
tal invariants. The resultant has many impor-
tant properties for the geometry of the vari-
ety the system defines, see for example (Ba-
jaj et al. 1988). One important property of the
u-resultant is that its linear factors over the al-
gebraic closure of the coefficient field determine
the solutions in the non-singular case.

There are several problems that arise from the
introduction of our new algorithm. One is that
we cannot yet apply Canny’s generalized char-
acteristic polynomial algorithm (Canny 1988b)
to locate isolated points in case there are com-
ponents of higher dimesion in the variety. This
is an important consideration for the affine case,
since projectivization may introduce infinitely

many solutions at infinity. The reason we can-
not apply Canny’s method is that we do not
know how to compute the characteristic polyno-
mial of the Macaulay matrices in time quadratic
in the dimension of the Macaulay matrices.
However, we can compute the minimal poly-
nomial of the Macaulay matrices in this time
using Wiedemann’s algorithm. Using this, we
can compute the “generalized minimal polyno-
mial” of a system of homogeneous equations
(in the sense of (Canny 1988b)) in the same
time it takes us to compute the u-resultant of
the system of equations. We conjecture that
the trailing coefficient of the generalized min-
imal polynomial has linear factors correspond-
ing to the isolated zeros of the system just as
the u-resultant does in the purely 0-dimensional
case. If so, we can find all the isolated affine
zeros of the system (but not their multiplici-
ties), in essentially the same amount of time
it takes to compute all the zeros of the purely
0-dimensional case.

Secondly, it might be possible to compute
the resultant in time of essentially linear de-
pendency on the dimension of the Macaulay
matrix, as is the case for the Sylvester resul-
tant (Schwartz 1980). And finally, it appears
important to us to possibly develop a theory
of subresultants, again generalizing the one for
Sylvester resultants (Brown and Traub 1971).

Note added on Sep. 16, 1994: The definition
of the resultant p. 123 is slightly flawed: R may
by non-zero even when det(∆) = 0 for all or-
derings of f1, . . . , fn. In such cases Theorem 3
is invalid.
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