
Improved Sparse Multivariate

Polynomial Interpolation Algorithms*

Erich Kaltofen and Lakshman Yagati

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York, 12180-3590
Inter-net: kaltofen@cs.rpi.edu, yagatil@cs.rpi.edu

Abstract. We consider the problem of interpolating sparse multivariate polynomials from their values.
We discuss two algorithms for sparse interpolation, one due to Ben-Or and Tiwari (1988) and the other due
to Zippel (1988). We present efficient algorithms for finding the rank of certain special Toeplitz systems
arising in the Ben-Or and Tiwari algorithm and for solving transposed Vandermonde systems of equations,
the use of which greatly improves the time complexities of the two interpolation algorithms.

1. Introduction

We consider the problem of interpolating a multivariate polynomial over a field of characteristic
zero from its values at several points. While techniques for interpolating dense polynomials have
been known for a long time (e.g., Lagrangian interpolation formula for univariate polynomials),
and probabilistic algorithms for interpolating sparse multivariate polynomials have existed since
1979 (Zippel 1979, 1988), until recently no algorithm was known to interpolate sparse multivariate
polynomials deterministically in polynomial-time.

Ben-Or and Tiwari (1988) have recently proposed a deterministic sparse interpolation algo-
rithm based on decoding BCH codes and certain special substitutions used in (Grigoryev and
Karpinski 1987). In this paper, we discuss the algorithm of Ben-Or and Tiwari and also a prob-
abilistic algorithm due to Zippel (1988). The Ben-Or and Tiwari algorithm has time complexity
O(ndτ 3 log(n)) (where n is the number of variables, d is the total degree and τ is an upper bound
on the number of terms in the polynomial) on an algebraic RAM (i.e., the operations +,−,× and
÷ are considered as unit step operations). It evaluates the polynomial to be interpolated at 2τ dis-
tinct points. Zippel’s algorithm performs O(ndt2) arithmetic operations to interpolate the sparse
polynomial. Here t is the actual number of terms and not an upper bound. The algorithm performs
O(ndt) distinct evaluations of the polynomial.
We present new efficient algorithms to

1) find the rank of and solve a special Toeplitz system of equations arising in the Ben-Or and
Tiwari Interpolation algorithm by making use of results by Brent, Gustavson and Yun (1980)
in time quasi-linear in τ (i.e., τ × poly-log(τ)), and

*This material is based on work supported by the National Science Foundation under Grant No. CCR-87-05363
and by an IBM faculty development award. Appears in Symbolic Algebraic Comput. Internat. Symp. ISSAC ’88
Proc., P. Gianni, editor, Springer Lecture Notes in Computer Science, vol. 358, pp. 467–474 (1988).

1



2) solve a transposed Vandermonde system in time quasi-linear in t.

The use of our algorithms improves the running time of the Ben-Or and Tiwari algorithm
to O(dn log(n) τM(τ) log(τ)), where M(τ) denotes the complexity of multiplying two univariate
polynomials of degree τ . Our fast algorithm for solving transposed Vandermonde systems also
improves the running time of Zippel’s interpolation algorithm from quadratic in the number of
terms t to quasi-linear in t.

The rest of the paper is organized as follows. We first set up some notation and then give brief
descriptions of the Ben-Or and Tiwari algorithm and Zippel’s algorithm. We then describe our
algorithms for finding the rank of special Toeplitz systems and solving transposed Vandermonde
systems. In §6, we discuss some difficulties in a root finding step in the Ben-Or and Tiwari algorithm
and in conclusion, we mention an application of the interpolation algorithms.

Notation:

Let P (x1, . . . , xn) = c1m1 + c2m2 + . . . + ctmt be the polynomial to be interpolated. The mi =
x

ei,1

1 . . . x
ei,n
n are distinct monomials and the ci are the corresponding non-zero coefficients; t is the

number of terms in P . Let vi = p
ei,1

1 . . . p
ei,n
n denote the value of the monomial mi at (p1, . . . , pn)

where pi is the i-th prime number. Clearly, different monomials evaluate to different values under
this evaluation. Let a0, a1, . . . , a2τ+1 denote the value of P at the 2(τ + 1) points (p0

1, . . . , p
0
n),

. . . , (p
2(τ+1)−1
1 , . . . , p

2(τ+1)−1
n ). We have ai =

∑τ+1
j=1 cjv

i
j.

2. The Ben-Or and Tiwari Interpolation Algorithm

The algorithm needs as input an upper bound τ + 1 ≥ t on the number of terms in P . The
algorithm proceeds in two stages. The monomial values vi are determined first by the use of an
auxiliary polynomial ζ(z). Once the vi are known, the coefficients ci can be obtained easily.

The polynomial ζ(z) is defined as follows. Let

ζ(z) =
t

∏

i=1

(z − vi) = zt + ζt−1z
t−1 + . . . + ζ1z + ζ0.

Consider the sum

t
∑

i=1

civ
j
i ζ(vi) =

t−1
∑

k=0

ζk(c1v
k+j
1 + c2v

k+j
2 + . . . + ctv

k+j
t ) + (c1v

t+j
1 + c2v

t+j
2 + . . . + ctv

t+j
t )

for all j, 0 ≤ j ≤ t − 1 . Since ζ(vi) = 0, we have

ajζ0 + aj+1ζ1 + . . . + aj+t−1ζt−1 + aj+t = 0, 0 ≤ j ≤ t − 1.

We now have the Toeplitz system Tt−1,t−1ζ̂t−1 = t̂2t−1,t−1 where

Tu,v =









au au+1 . . . au+v

au−1 au . . . au+v−1
...

...
. . .

...
au−v au−v+1 . . . au









, ζ̂v =









ζ0

ζ1
...
ζv









, t̂u,v = −









au

au−1
...

au−v









.

2



This system is non-singular as can be seen from the factorization

Tt−1,t−1 =









vt−1
1 vt−1

2 . . . vt−1
t

vt−2
1 vt−2

2 . . . vt−2
t

...
...

. . .
...

1 1 . . . 1

















c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . ct

















1 v1 . . . vt−1
1

1 v2 . . . vt−1
2

...
...

. . .
...

1 vt . . . vt−1
t









.

Since the vi are distinct, the two Vandermonde matrices are nonsingular and as no ci is zero, the
diagonal matrix is nonsingular, too. If the input value of the upper bound τ + 1 is greater than t,
then the coefficients ck, for k > t, can be regarded as zero and the resulting system Tτ,τ would be
singular.

Lemma 1. If t is the exact number of terms in P (x1, . . . , xn), then
a) Ti,t−1 is non-singular for all i ≥ t − 1 .
b) Ti,t+j is singular for all i ≥ t − 1, j ≥ 0.

Proof. Every Tu,v, u, v ≥ t − 1, can be factored like Tt−1,t−1 above. The statements a) and b) are
obvious from such a factorization of Tu,v. �

The roots of the polynomial ζ(z) give the vi and by choosing the first t evaluations of P , we get
the following transposed Vandermonde system of equations Aĉ = â for the coefficients of P , where

A =









1 1 . . . 1
v1 v2 . . . vt
...

...
. . .

...
vt−1

1 vt−1
2 . . . vt−1

t









, ĉ =









c1

c2
...
ct









, â =









a0

a1
...

at−1









(1).

We now give a more precise description of the interpolation algorithm.

Algorithm Polynomial Interpolation (by Ben-Or and Tiwari)

Input: A black box for evaluating a multivariate polynomial P (x1, . . . , xn) and an upper bound
τ + 1 on the number of terms in P .

Output: The polynomial P =
∑t

i=1 cimi where t, ci,mi all denote the same things as before.

Step 1: (Evaluation.) Evaluate P at the 2(τ +1) points (p0
1, . . . , p

0
n), . . . , (p

2(τ+1)−1
1 , . . . , p

2(τ+1)−1
n ).

Let a0, . . . , a2τ+1 be the corresponding values.

Step 2: (Computing the auxiliary polynomial ζ(z).) Solve the Toeplitz system Tτ,τ ζ̂τ = t̂2τ+1,τ

(or the largest non-singular subsystem Tj,2τ−j = t̂2τ+1,2τ−j of T0,τ , if it is singular) to obtain the
polynomial ζ(z) =

∑t

i=0 ζiz
i.

Step 3: (Finding integer roots of ζ(z).) Find the integer roots of ζ(z) to get the vi. Compute the
monomial mi from vi by repeatedly dividing vi by p1, . . . , pn.

Step 4: (Computing the coefficients.) Find the coefficients ci by solving the transposed Vander-
monde system Aĉ = â described earlier. �

Step 2 can be performed in O(τ 2) arithmetic operations using the Berlekamp-Massey algorithm
(Blahut 1983). Step 3 can be performed in O(t3 log(B)) operations (B = 2O(dn log(n)) is an upper
bound on the values of the roots, d being the total degree of the polynomial to be interpolated)

3



using the p-adic root finder in (Loos 1983). Step 4 can be performed in O(t2) arithmetic operations
using Zippel’s transposed Vandermonde inversion algorithm (Zippel 1988). The complexity of the
root finding step clearly dominates that of the other steps and the overall complexity of Polynomial
Interpolation is O(τ 2 + t3 log(B)). The polynomial is evaluated at 2(τ + 1) distinct points and the
bit size of the evaluation points is O(τn log(n log n)).

3. Zippel’s Interpolation Algorithm

We now describe briefly Zippel’s probabilistic sparse interpolation algorithm. As before, P =
c1m1 + c2m2 + . . . + ctmt where mi = x

ei,1

1 . . . x
ei,n
n are distinct monomials. Let mi,k = x

ei,1

1 . . . x
ei,k

k

denote mi restricted to the first k variables. Let vi,k = p
ei,1

1 . . . p
ei,k

k where pi are distinct primes. Let

Pk(x1, . . . , xk, bk+1, . . . , bn) = c1,kmi,k + . . . + ct′,kmt′,k

where bk+1, . . . , bn are randomly chosen from Z, the integers, and t′ ≤ t. (It can happen that
mi,k = mj,k for i 6= j.) Pk is called the k-th skeleton of P . The algorithm proceeds in stages. In
the k-th stage, Pk+1 is obtained from Pk. The algorithm needs as input an upper bound d on the
degree of P in each variable. Now,

Pk+1(x1, . . . , xk+1, bk+2, . . . , bn) = P̂1(xk+1)mi,k + . . . + P̂t′(xk+1)mt′,k

where each P̂i(xk+1) is of degree at most d in xk+1. The values of each P̂i(xk+1) are obtained for
d + 1 distinct values u1, . . . , ud+1 of xk+1 as follows:

Pk+1(1, . . . , 1, uj, bk+2, . . . , bn) = P̂1(uj) + . . . + P̂t′(uj)

Pk+1(p1, . . . , pk, uj, bk+2, . . . , bn) = P̂1(uj)v1,k + . . . + P̂t′(uj)vt′,k

Pk+1(p
2
1, . . . , p

2
k, uj, bk+2, . . . , bn) = P̂1(uj)v

2
1,k + . . . + P̂t′(uj)v

2
t′,k

...

Pk+1(p
t′

1 , . . . , pt′

k , uj, bk+2, . . . , bn) = P̂1(uj)v
t′

1,k + . . . + P̂t′(uj)v
t′

t′,k

This is a transposed Vandermonde system of equations and can be solved for the P̂i(uj) in O(t2)

arithmetic operations. From the values at v1, . . . , vd+1, each P̂i(xk+1) can now be recovered by
univariate interpolation. This step needs O(d2t) arithmetic operations as there are at most t poly-
nomial coefficients P̂i(xk+1) to be recovered. The algorithm starts with P (b1, . . . , bn) for randomly
chosen b1, . . . , bn and applies stages n times to get P . There is a small chance that the answer
produced by this algorithm is wrong – this can happen if we choose a bad initial evaluation point
(or the “anchor”) b1, . . . , bn. Zippel proves that if the bi are chosen uniformly randomly from a set
of size nd2t2/ε, then the probability of error is less than ε (for details, refer to (Zippel 1988). ) Since
there are n stages and each stage performs O(dt2) arithmetic operations, the interpolation algorithm
performs O(ndt2) arithmetic operations in all. In each stage, the polynomial P is evaluated atmost
(d + 1)t times. Therefore, the total number of evaluations performed is O(ndt). The size of the
evaluation points is O(tn log(n log n)).

4



4. Solving Toeplitz Systems

We have to solve the Toeplitz system Tτ,τζτ = t̂2τ+1,τ in step 2 of Polynomial Interpolation to de-
termine the auxiliary polynomial ζ(z). Efficient algorithms, such as the one due to (Brent et al 1980)
are known for solving a non-singular Toeplitz system of equations. However, Tτ,τ may be singular
in which case we have to invert a largest non-singular block submatrix (i.e., made of contiguous
rows and columns) of Tτ,τ . Equivalently, we want to find the smallest j (τ ≤ j ≤ 2τ), such that
Tj,2τ−j is non-singular. For the sake of clarity, Tj,2τ−j and t̂2τ+1,2τ−j are displayed again:

Tj,2τ−j =









aj . . . a2τ

aj−1 . . . a2τ−1
...

. . .
...

a2j−2τ . . . aj









(2τ−j+1)×(2τ−j+1)

and t̂2τ+1,2τ−j = −









a2τ+1

a2τ
...

aj+1









.

(2τ−j+1)×1

We now extend the method of (Brent et al 1980) to find the rank of Tτ,τ , if it is singular. The
algorithm uses a polynomial remainder sequence and the fundamental theorem of subresultants
(Brown and Traub 1971).

Let F0 = x2τ+1 and F1 = a2τx
2τ + ... + a1x + a0. Let Sj(F0, F1) denote the j-th subresultant of

F0 and F1, i.e.

Sj(F0, F1) = det(



























1 0 . . . 0 a2τ 0 . . . 0
0 1 . . . 0 a2τ−1 a2τ . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 aj+1 aj+2 . . . 0
0 0 . . . 0 aj aj+1 . . . a2τ

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 a2j−2τ+1 a2j−2τ+2 . . . aj+1

x2τ−j−1F0 x2τ−j−2F0 . . . F0 x2τ−jF1 x2τ−j−1F1 . . . F1



























).

This is a polynomial in x of degree j and it is easily seen that its formal leading coefficient is
det(Tj,2τ−j). Let Fi−1 and Fi denote successive remainders in the polynomial remainder sequence
of F0 and F1 such that degree of Fi is δi ≤ τ and degree of Fi−1 is δi−1 > τ . In other words Fi is
the first remainder in the remainder sequence of F0 and F1 whose degree is at most τ .

Theorem 1. Tτ,τ is non-singular iff δi = τ . If δi < τ then 2τ − δi−1 + 1 is the size of the largest
non-singular block submatrices of Tτ,τ .

Proof. Let ldcf(f) denote the leading coefficient of the polynomial f . By the fundamental theorem
of subresultants, if δi = τ then Sτ (F0, F1) = bFi where b is a non-vanishing scalar. Hence,
ldcf(Sτ (F0, F1)) = ldcf(Fi)b i.e., det(Tτ,τ ) = ldcf(Fi)b, a non-zero scalar, therefore Tτ,τ is non-
singular.

If δi < τ then Sτ (F0, F1) is actually a polynomial of degree less than τ ; hence its formal leading
coefficient det(Tτ,τ ) has to vanish, i.e. Tτ,τ is singular.

Now consider Sδi−1
(F0, F1). It is an associate of Fi−1. Hence, its leading coefficient det(Tδi−1,2τ−δi−1

)
is non-zero. By the fundamental theorem of subresultants, for δi−1 − 1 ≥ j ≥ δi, every Sj(F0, F1)
vanishes identically. Hence their leading coefficients, det(Ti,2τ−i) vanish.

5



Sδi−1−1(F0, F1) is an associate of Sδi
(F0, F1). But it is formally a polynomial of degree δi−1 − 1 and

therefore, its leading coefficient det(Tδi−1−1) vanishes unless δi−1−1 = δi which would then be equal
to τ . Therefore, for δi−1 > j > δi, det(Tj,2τ−j) = 0.

If τ + 1 > T then Tτ,τ is singular and it has just been proven that for δi−1 > j > δi, Tj,2τ−j is
singular. By Lemma 1 (§2), for δi−1 > j > δi and for all k, Tk,2τ−j is singular. Since Tδi−1,2τ−δi−1

is the largest block submatrix of Tτ,τ that is non-singular, again by Lemma 1, 2τ − δi−1 + 1 is the
exact number of terms in the polynomial P (x1, x2, . . . , xk). �

We can now use the scheme of Brent, Gustavson, and Yun to compute T−1
δi−1,2τ−δi−1

t̂δi−1+1,2τ−δi−1
.

The remainders Fi−1 and Fi can be computed in O(M(τ) log(τ)) arithmetic operations by the
algorithm PRSDC in (Brent et al 1980). Here M(n) is the number of arithmetic operations needed
to multiply two degree n polynomials. The algorithm of Brent et al to solve a non-singular Toeplitz
system performs O(M(τ) log(τ)) arithmetic operations. Therefore the task of finding the rank of
Tτ,τ and computing the auxiliary polynomial ζ(z) can be performed in O(M(τ) log(τ)) arithmetic
operations.

5. Solving Transposed Vandermonde Systems

We now describe an efficient algorithm to solve a transposed Vandermonde system of equations

Ax̂ = â (2)

where

A =









1 1 . . . 1
v1 v2 . . . vn
...

...
. . .

...
vn−1

1 vn−1
2 . . . vn−1

n









, x̂ =









x1

x2
...

xn









, â =









a0

a1
...

an−1









.

This is needed in the final step of the algorithm Polynomial Interpolation and in every stage of
Zippel’s algorithm.

Let B = ATr (i.e., A-transposed). We have x̂ = (B−1)Trâ. In (Zippel 1988), it is observed that if
the j-th column bj = (b0,j , b1,j , . . . , b(n−1),j)

Tr of B−1 is regarded as the coefficients of z0, z1, . . . , zn−1

in the polynomial Bj(z) = b0,j + b1,jz + . . . + b(n−1),jz
n−1, then the (i, j)-th element of BB−1 is just

Bj(vi) =

{

1, if i = j;
0, otherwise.

Therefore,

Bj(z) =
∏

1≤k≤n
k 6=j

z − vk

vj − vk

, 1 ≤ j ≤ n

and

x̂ = (B−1)Trâ =





∑n−1
i=0 bi,1âi

...
∑n−1

i=0 bi,nâi



 .

6



Notice that xi = coefficient(zn) in Bi(z)D(z) where

D(z) = a0z
n + a1z

n−1 + . . . + an−2z
2 + an−1z.

The xi can be computed quickly without computing all the Bi(z)D(z) by exploiting the fact
that

Bi(z) =
B(z)

αi(z − vi)
where B(z) =

∏

1≤j≤n

(z − vj), αi =
∏

j 6=i

(vi − vj).

Let

B(z)D(z) = q2nz2n + q2n−1z
2n−1 + . . . + q1z + q0.

The coefficient of zj in the quotient B(z)D(z)/(z − w) is given by

Qj(w) = q2nwj−1 + q2n−1w
j−2 + . . . + qj+2w + qj+1.

Clearly, Qn(vi) = αixi. Qn(w) is a degree n − 1 polynomial and has to be evaluated at n points
v1, v2, . . . , vn.

Lemma 2. A univariate polynomial of degree n can be evaluated at m ≥ n distinct points in
O(m/n M(n) log(n)) arithmetic operations.

Proof. A degree n polynomial can be evaluated at n points in O(M(n) log(n)) arithmetic operations
(Aho et al 1974). The lemma follows by dividing the set of m points into d(m/n)e sets of n points
each and evaluating the polynomial at all points of each of these sets. �

By Lemma 2, Qn(w) can be evaluated at points v1, . . . , vn in O(M(n) log(n)) arithmetic oper-
ations.

The αi still remain to be evaluated. Observe that B ′(z) = dB(z)/dz =
∑

i

∏

j 6=i(z − vj).
Therefore B′(vi) = αi. All the αi, 1 ≤ i ≤ n, can be obtained by evaluating B ′(z) at points
v1, . . . , vn. This can be done efficiently using the algorithm that was used to evaluate Qn(w) earlier.

Following is a description of the algorithm to solve a transposed Vandermonde system of equa-
tions:

Algorithm Invert

Input: Entries v1, . . . , vn which make up the transposed Vandermonde matrix A; vector â =
(a1, . . . , an)Tr.

Output: Vector x̂ = (x1, . . . , xn)Tr where x̂ = A−1â.

Step 1: Compute the polynomial B(z) =
∏

1≤j≤n(z − vj) by the tree multiplication algorithm.

Step 2: Let D(z) = a1z
n + a2z

n−1 + . . . + an−1z
2 + anz. Compute B(z)D(z) using fast polynomial

multiplication. Let B(z)D(z) = q2nz2n + q2n−1z
2n−1 + . . . + q0. Read off the polynomial Qn(w) =

q2nwn−1 + q2n−1w
n−2 + . . . + qn+2w + qn+1 from B(z)D(z).

Step 3: Evaluate Qn(w) at points v1, . . . , vn to obtain αixi.(The αi are the scalars described earlier.)

Step 4: Compute the αi by evaluating B′(z) at points v1, . . . , vn.

Step 5: Output (αixi/αi)i=1,...,n. �

7



The polynomial B(z) in step 1 can be computed in O(M(n) log(n)) arithmetic operations us-
ing the tree multiplication algorithm (Aho et al 1974). Steps 3 and 4 are multipoint evaluation
steps and they can be accomplished in O(M(n) log(n)) arithmetic operations by lemma 2. Step
2 is a univariate polynomial multiplication step and can be performed using O(M(n)) arithmetic
operations. Step 5 needs n divisions. Therefore the total time complexity of algorithm Invert is
O(M(n) log(n)). The algorithm uses O(n) space.

Using Invert in each stage of Zippel’s algorithm reduces the time complexity of Zippel’s algo-
rithm to O(nd M(t) log(t)).

6. Finding Integer Roots

The p-adic root finder in (Loos 1983) computes the roots of ζ(z) mod p where p is a prime
of magnitude O(t2 log B) and B is a bound on the values of the roots (for ζ(z), B = O(2dn log(n))
where d is the total degree of the polynomial to be interpolated). It can be shown that such a
prime separates all the roots of ζ(z) with high probability. The (mod p) roots are determined by
evaluating ζ(z) at the points 0, 1, . . . , p− 1. A straight forward evaluation of a degree t polynomial
at O(t2 log B) points needs O(t3 log B) steps. The (mod p) roots are then lifted upto the bound B.
Each lifting step costs O(t) steps (linear Hensel lifting) and the lifting has to be performed O(log B)
times at most. Therefore, the total complexity of the root finding step in Polynomial Interpolation
is O(t3 log B).

If fast evaluation is used, the evaluation of ζ(z) at points 0, 1, . . . , p − 1 can be performed
in O(t log(B) M(t) log(t)) steps (Lemma 2). The total complexity of the root finder can thus be
brought down to O(ndt M(t) log(t) log(n)).

The overall complexity of Polynomial Interpolation as a result of the proposed improvements is
O(t log(B) M(t) log(t)+M(τ) log(τ)). The best known upper bound for M(t) is O(t log(t) log(log t))
(Schönhage 1977, Cantor and Kaltofen 1987). Therefore, an upper bound on the arithmetic com-
plexity of Polynomial Interpolation is

O(t2 log2(t) log(log t) log(B) + τ log2(τ) log(log τ)).

7. Discussion

We have presented two sparse interpolation algorithms, and new efficient algorithms for finding
the rank of certain special Toeplitz systems arising in the Ben-Or and Tiwari algorithm and for
solving transposed Vandermonde system of equations. In Polynomial Interpolation, the root finding
step is clearly the most expensive one. We believe that this step can be drastically improved by
working with several small primes (as opposed to a single prime of magnitude O(t2 log B)). However,
at this time we do not have a theoretical justification for this claim.

Using Invert reduces the arithmetic complexity of Zippel’s probabilistic interpolation algorithm
to O(dnM(t) log(t)). A modified version of Zippel’s algorithm for dense interpolation has been used
in (Canny et al 1988) for evaluating the Macaulay determinants of a system of non-linear polynomial
equations. The sparse interpolation algorithms are also very useful in polynomial factorization as
has been demonstrated in (Kaltofen and Trager 1988).

8



References

Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of Algorithms; Addison and Wesley, Reading, MA,
1974.

Ben-Or, M. and Tiwari, P., “A deterministic algorithm for sparse multivariate polynomial interpolation,” 20th Annual

ACM Symp. Theory Comp., pp. 301–309 (1988).

Blahut, R. E., Theory and Practice of Error Control Codes; Addison-Wesley, Reading, MA, 1983.

Brent, R. P., Gustavson, F. G., and Yun, D. Y. Y., “Fast solution of Toeplitz systems of equations and computation
of Padé approximants,” J. Algorithms 1, pp. 259–295 (1980).

Brown, W. S. and Traub, J. F., “On Euclid’s algorithm and the theory of subresultants,” J. ACM 18, pp. 505–514
(1971).

Canny, J., Kaltofen, E., and Lakshman, Yagati, “Solving systems of non-linear polynomial equations faster,”
Manuscript, 1988.

Cantor, D. G. and Kaltofen, E., “Fast multiplication of polynomials with coefficients from an arbitrary ring,”
Manuscript, March 1987.

Grigoryev, D. Yu. and Karpinski, M., “The matching problem for bipartite graphs with polynomially bounded
permanents is in NC,” Proc. 28th IEEE Symp. Foundations Comp. Sci., pp. 166-172 (1987).

Kaltofen, E. and Trager, B., “Computing with polynomials given by black boxes for their evaluations: Greatest com-
mon divisors, factorization, separation of numerators and denominators,” Proc. 29th Annual Symp. Foundations

of Comp. Sci., (1988 (to appear)).

Loos, R., “Computing rational zeros of integral polynomials by p-adic expansion,” SIAM J.Comp. 12, pp. 286-293
(1983).

Schönhage, A. and Strassen, V., “Schnelle Multiplikation grosser Zahlen,” Computing 7, pp. 281–292 (1971). (In
German).

Zippel, R. E., “Probabilistic algorithms for sparse polynomials,” Proc. EUROSAM ’79, Springer Lec. Notes Comp.

Sci. 72, pp. 216–226 (1979).

Zippel, R. E., “Interpolating polynomials from their values,” Manuscript, Symbolics Inc., January 1988.

9


